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Abstract: Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and
therapies involving the transfer of large numbers of cancer-specific CTLs have been successfully
used to treat several types of cancers in humans. While the molecular mechanisms of how CTLs
kill their targets are relatively well understood, we still lack a solid quantitative understanding of
the kinetics and efficiency by which CTLs kill their targets in vivo. Collagen–fibrin-gel-based assays
provide a tissue-like environment for the migration of CTLs, making them an attractive system to
study T cell cytotoxicity in in vivo-like conditions. Budhu.et al. systematically varied the number of
peptide (SIINFEKL)-pulsed B16 melanoma cells and SIINFEKL-specific CTLs (OT-1) and measured
the remaining targets at different times after target and CTL co-inoculation into collagen–fibrin gels.
The authors proposed that their data were consistent with a simple model in which tumors grow
exponentially and are killed by CTLs at a per capita rate proportional to the CTL density in the gel. By
fitting several alternative mathematical models to these data, we found that this simple “exponential-
growth-mass-action-killing” model did not precisely describe the data. However, determining the
best-fit model proved difficult because the best-performing model was dependent on the specific
dataset chosen for the analysis. When considering all data that include biologically realistic CTL
concentrations (E ≤ 107 cell/mL), the model in which tumors grow exponentially and CTLs suppress
tumor’s growth non-lytically and kill tumors according to the mass–action law (SiGMA model) fit
the data with the best quality. A novel power analysis suggested that longer experiments (∼3–4 days)
with four measurements of B16 tumor cell concentrations for a range of CTL concentrations would
best allow discriminating between alternative models. Taken together, our results suggested that
the interactions between tumors and CTLs in collagen–fibrin gels are more complex than a simple
exponential-growth-mass–action killing model and provide support for the hypothesis that CTLs’
impact on tumors may go beyond direct cytotoxicity.

Keywords: cytotoxic T lymphocytes; killing; B16 tumors; mathematical modeling

1. Introduction

Cytotoxic T lymphocytes (CTLs) are important in controlling viral infections and
tumors [1,2]. CTLs exhibit such control via several complimentary mechanisms including
direct cytotoxicity—the ability of CTLs to kill virus-infected or tumor (target) cells. Killing
of a target cell by a CTL in vivo is a multi-step process: (1) CTLs must migrate to the
site where the target is located; (2) CTLs must recognize the target (typically by the T cell
receptor (TCR) on the surface of T cells binding to the specific antigen presented on the
surface of the target cell); (3) CTLs must form a cytotoxic synapse with the target; (4) CTLs
must induce the apoptosis of the target cell by secreting effector molecules (e.g., perforin
and granzymes) or through Fas/Fas-ligand interactions [3–7]. The relative contribution
of these steps to the efficiency at which a population of CTLs kill their targets in vivo
remains poorly understood especially in complex tissues. Improving the efficacy of cancer
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immunotherapies such as adoptive transfer of cancer-specific T cells will likely come from
better understanding of a relative contribution of these processes to tumor control [8].

Many previous studies have provided quantitative insights into how CTLs eliminate
their targets in vitro. The first insights came from generating conjugates between target
cells and CTLs and quantifying how quickly a target cell dies when either being bound by a
different number of CTLs or when one CTL binds to different targets [9–16]. Further in vitro
studies highlighted that killing by CTLs may kill multiple targets rapidly [17–19], but also
highlighted heterogeneity in the efficacy at which individual CTLs kill their targets [20,21].
Interestingly, killing of tumor cells in vitro may take a long time (hours) with speed and
turning being important in determining the likelihood that a CTL will find and kill the
target [22,23]. One study suggested that killing of targets in vitro may follow the law
of mass–action [24]. The killing efficiency of CTLs has also been evaluated in so-called
chromium release assays, which have been a standard method in immunology to measure
T cell cytotoxicity in vitro [25–32].

Evaluating the killing efficacy of CTLs in vivo is challenging. One approach to evaluate
how a population of CTLs eliminates targets in vivo has been to perform in vivo cytotoxicity
assays [33]. In the assay, two populations of cells, pulsed with a specific peptide and
another being a control, are transferred into mice carrying peptide-specific CTLs, and a
relative percent of peptide-pulsed targets is determined in a given tissue (typically spleen)
after different times after the target cells are transferred [33–35]. Different mathematical
models have been developed to determine specific terms describing how CTLs kill their
targets and to estimate CTL killing efficacy; such estimates varied orders of magnitude
between different studies often using similar or even the same data [36–43]. One study
suggested that a mass–action killing term is fully consistent with the data from different
in vivo cytotoxicity experiments [41], while other studies based on theoretical arguments
suggested that killing should saturate at high CTL or target cell densities [37,44,45].

Intravital imaging has provided additional insights into how CTLs kill their targets in
vivo [46,47]. One pioneering study followed interactions between peptide-pulsed B cells
and peptide-specific CTLs in lymph nodes of mice and found that CTLs and their targets
form stable conjugates and move together until the target stops and dies, presumably
due to a lethal hit delivered by the CTL [48]. This and other studies revealed that, to
kill a target in vivo, CTLs either need to interact with the target for a long time (tens of
minutes to hours) or multiple CTLs must contact a target to ensure its death [2,49–54].
By measuring the decay of the fluorescence of Plasmodium yoelii sporozoites inside of
hepatocytes in murine livers in vivo, we recently showed that the killing of the infected
hepatocytes by individual CTLs takes several hours [55]. The time it takes CTLs to kill
tumors or Plasmodium-infected hepatocytes is much longer than the half-life of peptide-
pulsed targets estimated from in vivo cytotoxicity assays in mice [39,50,51,55]. This may
be due to different levels of presented antigens (targets pulsed with a high concentration
of a cognate peptide vs. targets expressing endogenous antigens), but may also be due
to differences in the intrinsic killing abilities of different T cells. Mathematical modeling
provided quantification of how CTLs kill their targets and of various artifacts arising in
intravital imaging experiments; for example, one recent study showed how allowing for
the retention of CTLs at a dying (or already dead) target cell called “zombie contacts”
influences estimates of CTL killing efficacy [56,57]. We recently suggested that the median
killing efficacy of individual Plasmodium-specific CTLs is too low to rapidly eliminate a
Plasmodium liver stage, highlighting the importance of clusters of CTLs around the the
liver stage for its efficient elimination [55].

Even though studying how CTLs kill their targets in vivo is most relevant, such
experiments are expensive and time-consuming and have a low throughput. On the other
hand, traditional in vitro experiments (e.g., on plates or in wells) suffer from the limitation
that CTLs and targets do not efficiently migrate on flat surfaces as they do in vivo in many
tissues. Collagen–fibrin gels have been proposed as a useful in vitro system to study CTL
and target cell interactions, which allows better representing the complex 3D environment
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of the tissues with a low cost and higher throughput [58–60]. CTLs readily migrate in these
gels with speeds similar to that of T cells in some tissues in vivo [61,62]. One recent study
measured how CTLs derived from transgenic mice whose TCRs are all specific for the
peptide SIINFEKL (from chicken ovalbumin) can eliminate SIINFEKL-pulsed B16 tumor
cells in collagen–fibrin gels [58]. Interestingly, the rate at which tumor cells were lost from
the gel was linearly dependent on the concentration of CTLs in the gel (varying from 0
to 107 cell/mL) and was independent of the number of B16 tumor cells deposited in the
gel [58]. This result suggested that the killing of B16 tumor cells in collagen–fibrin gels
follows the law of mass–action, and given that the population of B16 tumor cells grew
exponentially with time in the absence of CTLs, the authors proposed that 3.5× 105 cell/mL
of CTLs are required to prevent B16 tumor cell accumulation in these gels.

In the present paper, by using mathematical modeling, we re-analyzed the data of
Budhu et al. [58] including two additional previously unpublished datasets on the CTL
killing of B16 tumor cells in collagen–fibrin gels. We found that the simple exponential
growth and mass–action killing model never provided the the best fit of the data. The
best-fit model in the list of the four tested model was dependent on a specific dataset used
for the analysis. The model in which CTLs reduced the growth rate of B16 tumor cells
and killed the tumors via a mass–action law (proportional to concentrations of the CTLs
and tumors) fit our largest dataset consisting of 431 gels the best. Importantly, the type
of the model was critical in predicting the CTL concentration that would be needed to
eliminate most of the tumor cells within a defined time period (e.g., 100 days), suggesting
the need for future experiments to discriminate between alternative models. Following
our recent framework for experimental power analyses [63], we simulated three different
experimental designs and found which designs would allow better discriminating between
alternative mathematical models of the CTL-mediated control of B16 tumor cells and, thus,
will allow better predicting how many CTLs are needed for tumor control.

2. Materials and Methods
2.1. Experimental Details and Data

The details of the experimental designs were described previously [58]. In short,
103–106 SIINFEKL-pulsed B16 melanoma tumor cells (=104–107 cell/mL) were inoculated
alone or with 103–106 (equivalent to 104–107 cell/mL) of activated OT1 T cells (CTLs) into
individual wells containing collagen–fibrin gels of a total volume of 0.1 mL. At differ-
ent times after co-inoculation of cells, gels were digested, and the resulting solution was
diluted 101–103-fold (depending on the initial desired B16 cell concentration) in growth
medium; the number of surviving B16 cells in each gel was counted [58]. The data rep-
resent the concentration of B16 tumor cells (in cell/mL) surviving in the gels for a given
time. Budhu et al. [58] kindly provided us with the data from their published experiments
(Datasets 1, 2, and 3), as well as two additional unpublished datasets (Datasets 4 and 5). A
summary of these datasets is as follows:

1. Dataset 1 (“growth”): SIINFEKL-pulsed B16 melanoma cells were inoculated in 3D
collagen-I–fibrin gels with the desired initial concentrations of 103, 104, or 105 cell/mL
and no OT1 cells. The surviving B16 cells were measured at 0, 24, 48, and 72 h after
inoculation into gels. The total number of data points (gels) n = 70 (Figure A1A).

2. Dataset 2 (“short-term growth and killing”): SIINFEKL-pulsed B16 melanoma cells
were inoculated with the desired initial concentrations of 104, 105, or 106 cell/mL with
activated CD8+ OT1 cells with concentrations of 0, 104, 105, 106, or 107 cell/mL. The
surviving B16 cell numbers were measured at 0 and 24 h. The total number of data
points n = 175 (Figure A1B).

3. Dataset 3 (“long-term growth and killing”): SIINFEKL-pulsed B16 melanoma cells
were inoculated with the desired initial concentrations of 106 or 108 cell/mL with OT1
T cells with concentrations of 0, 106, or 107 cell/mL. Gels with a B16 cell concentration
of 108 cell/mL were unstable and, thus, were not included in the analysis. The
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measurements of surviving B16 cells were performed at at 0, 24, 48, 72, and 96 h
post-inoculation into the gels. The total number of data points n = 96 (Figure A1C).

4. Dataset 4 (“growth and killing in the first 24 h”): In this previously unpublished
dataset, SIINFEKL-pulsed B16 melanoma cells were co-inoculated into gels with the
desired initial concentration of 105 cell/mL and with OT1 T cells at concentrations
of 0, 106, or 107 cell/mL. Surviving B16 cells were measured at 0, 4, 8, 12, and 24 h
post-inoculation into the gels. The total number of data points n = 90 (Figure A1D).

5. Dataset 5 (“killing at a high CTL concentration”): In this previously unpublished
dataset, SIINFEKL-pulsed B16 melanoma cells were co-inoculated into gels at the
desired initial concentration of 105 cell/mL and with OT1 cells at concentrations of 0
or 108 cell/mL. Surviving B16 cells were measured at 0 and 24 h. The total number of
data points n = 7 (Figure A1E).

Experiments generating the data for Datasets 1–4 were repeated three times (Ex-
periments 1, 2, and 3), and each measurement was performed in duplicate [58]. These
experimental duplicates were prepared for each experimental condition; at a time point,
each of the two gels was lysed and diluted, and the cells from each gel were plated into
two 65× 15 mm2 plates. The experiment generating Dataset 5 was performed once.

2.2. Mathematical Models
2.2.1. Mathematical Models to Explain Tumor Dynamics

Given previous observations of Budhu et al. [58], we assumed that B16 melanoma
(tumor) cells grow exponentially and are killed by OT1 CD8+ T cells (CTLs) at a rate
proportional to the density of the tumors. The change in the B16 cell concentration (T) over
time is then described by a differential equation of the general form

dT
dt

= fg(E)T − fk(E)T, (1)

where fg(E) is the per capita growth rate, fk(E) is the death rate of tumors, and E is the CTL
concentration. When E is constant, the general solution of this equation can be written as

ln T(t) = ln
(

Ta

α

)
+ ( fg(E)− fk(E))t, (2)

where we let T(0) = Ta/α be the initial count, which depends on the desired B16 tumor
cell concentration Ta subject to an effective fraction 1/α of cells. It was typical to recover
a somewhat lower B16 cell number from the gel than when it was inoculated. For exam-
ple, when aiming for 1× 104 B16 tumor cells per mL in a gel, it was typical to recover
∼0.4 ×104 cell/mL at Time 0 (e.g., Figure A1A).

The simplest exponential growth and mass–action killing (MA) model assumes that
tumors grow exponentially and are killed by CTLs at the rate proportional to the CTL
density ( fg(E) = r and fk(E) = kE, Figure 1A). Using Equation (2), the change in the
density of targets over time is given by

ln T(t) = ln
(

Ta

α

)
+ (r− kE)t. (3)

This model has three parameters (r, k, and α) to be estimated from the data.
The second “saturation” (Sat) model assumes that tumors grow exponentially and are

killed by CTLs at a rate that saturates at high CTL densities ( fg(E) = r and fk(E) = kE
h+E ,

Figure 1B). Using Equation (2), its solution is

ln T(t) = ln
(

Ta

α

)
+

(
r− kE

h + E

)
t. (4)

This model has 4 parameters (r, k, h, and α) to be estimated from the data.
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The third “Power” model assumes that grow exponentially and are killed by CTLs at
a rate that scales as a power law with CTL density ( fg(E) = r and fk(E) = kEn, Figure 1C).
Using Equation (2) its solution is

ln T(t) = ln
(

Ta

α

)
+ (r− kEn)t. (5)

This model has 4 parameters (r, k, n, and α) to be estimated from the data.
In the fourth suppression-in-growth with mass–action-killing (SiGMA) model, we

assumed that CTLs suppress the growth rate of the tumor and kill the tumor according to
the mass–action law ( fg(E) = g0 +

g1
1+E/g2

and fk(E) = kE, Figure 1D). Using Equation (2),
its solution is

ln T(t) = ln
(

Ta

α

)
+

(
g0 +

g1

1 + E/g2
− kE

)
t, (6)

where g0 is the B16 tumor growth rate, which is independent of the CTLs, g1 the tumor
growth rate that can be reduced by CTLs via non-lytic means, and g2 the density of CTLs at
which the growth rate g2 is reduced to half of its maximal value due to CTL activity. Note
that, in this model, the rate of tumor cell replication in the absence of CTLs is r = g0 + g1.
This model has 5 parameters (g0, g1, g2, k, and α) to be estimated from the data.

T T T

r r r r

k E
k E

k En k E
h + E

g1

1 + E/g2

MA Saturation Power

T

A B C D
SiGMA

Figure 1. A schematic representation of the four main alternative models fit to data on the dynam-
ics of B16 tumor cells. These models are as follows: (A) an exponential growth of tumors and a
mass–action killing by CTLs (MA) Model (Equation (3)); (B) an exponential growth of tumors and
saturation in killing by CTLs (Saturation or Sat) Model (Equation (4)); (C) an exponential growth of
tumors and killing by CTLs in accord with a power law (Power) Model (Equation (5)); and (D) an
exponential growth of tumors with CTL-dependent suppression of the growth and mass–action
killing of tumors by CTLs (SiGMA) Model (Equation (6)). The tumor growth rate r is shown on the
top of the cyan discs, which represent the B16 tumor cells T. For the suppression-in-growth model
with a mass–action term in killing ((D), SiGMA), the E dependent suppression rate is presented over
the green arrow. The killing rate k for each model is shown in the blue arrow pointing downwards.
For example, the Power model is shown by a constant growth rate r with the death rate of the tumors
due to E CTLs being kEn.

2.2.2. Estimating Initial Density of Tumor Cells in Gels

In the general solution (Equation (2)), we assumed that the initial tumor density is
proportional to the density desired in the experiments scaled by a factor α. We found
that recovered concentrations of B16 tumor cells from gels at time t = 0 were consistently
lower than the desired value, and such reduction was approximately similar for different
initial B16 concentrations (results not shown). Experimentally, this may arise because
the clonogenic assay used to count the number of B16 tumor cells in the gels was not
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100% efficient. To check this assuming an identical effective fraction 1/α for the initial
B16 concentration in different experiments, we tested an alternative model, where we
assumed different α for different desired B16 cell concentrations. In this varying α model,

the first term in Equation (2) can be written as ln
( Tai

αi

)
, where i denotes the desired B16 cell

concentration. For example, a dataset containing the desired B16 concentrations of 105, 106

and 107 cell/mL would have three α: α1, α2, and α3, respectively. To fit the model with
dataset-dependent α, we used the function MultiNonlinearModelFit in Mathematica. We
found that allowing α to vary between different desired B16 concentrations when fitting the
SiGMA model to Datasets 1–4 marginally improved the model fit (χ2

4 = 9.5, p = 0.02), but
did not influence the estimates of other parameters (Table A2); in our following analyses,
we, therefore, opted for the simpler model with a single effective fraction parameter 1/α.

2.2.3. Time to Kill 90% of Targets

To evaluate the efficacy of the CTL-mediated control of tumors, we calculated the
time it takes to kill 90% of tumors initially present. For every model (Equations (3)–(6)),
we solved an equation fg(E)t90 − fk(E)t90 = ln(0.1) to find time t90 in terms of CTL
concentration E:

t90(E) =
ln(10)

fk(E)− fg(E)
. (7)

2.2.4. Models to Explain Tumor Growth in the First 24 h after Inoculation into Gels

In new experiments (Dataset 4), we found that the growth of the tumors in the first 24 h
after inoculation into the gels may not follow a simple exponential curve. Experimentally,
this delay may be due to the tumor cells adjusting to the gel environment. In order to
explain this dynamics, we propose two additional models. As a first alternative (Alt 1)
model, we allowed for a natural death of B16 tumor cells, and then, after a delay, growth
starts. The motivation for this new growth function came from an algebraic sigmoid
function, which changes sign from a constant negative value to a constant positive value.
The change in the concentration of B16 tumor cells in the absence of CTLs is given by

ln T(t) = ln
(

Ta

α

)
+ r
√

1 + (t− t′)2, (8)

where the constant t′ quantifies the time at which this change in sign happens. This model
has 3 parameters (α, r, and t′) to be estimated from the data.

As the second alternative (Alt 2) model, we considered a more mechanistic explanation
of the nonlinear dynamics of the tumor cells. We assumed that a fraction fd of B16 tumor
cells die at rate d and the rest (1− fd) grow at rate r. The model can be described by the
following equations:

T(t) = fd

(
Ta

α

)
e−dt + (1− fd)

(
Ta

α

)
ert, (9)

where d is the death rate of the fd subset of tumor cells. This model has 4 parameters (α, fd,
d, and r) to be estimated from the data.

Statistics

Natural log-transformed solutions of the models were fit to the natural log of the mea-
sured concentrations of B16 tumor cells using least squares. In the data, there were 13 gels
(out of 451) that had 0 B16 tumor cells recovered; these data were excluded from most of
the analyses. The regression analyses were performed using function NonlinearModelFit
in Mathematica (ver 11.3.0.0). For every model, we calculated AIC and ∆ as

∆i = AICi −min{AICi}, (10)
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where subscript i denotes the model and “min” denotes the minimal AIC for all models [64].
The Akaike weight for the model i was calculated as

wi =
e−∆i/2

∑i e−∆i/2 . (11)

To evaluate the appropriateness of the assumptions of the least-squares-based re-
gressions, we analyzed the residuals of the best fits by visual inspection and using the
Shapiro–Wilk normality test using the function ShapiroWilkTest in Mathematica.

3. Results
3.1. Experiments to Measure How CTLs Kill Targets in Collagen–Fibrin Gels

To estimate the density of the tumor-specific CTLs needed to control the growth of B16
tumor cells, Budhu et al. [58] performed a series of experiments in which variable numbers
of SIINFEKL peptide-pulsed B16 tumor cells and SIINFEKL-specific CTLs (activated OT1
CD8 T cells) were co-inoculated in collagen–fibrin gels, and the number of surviving
tumor cells was calculated at different time points (see Figure A1 and the Materials and
Methods Section for more details). In the absence of CTLs (Dataset 1), B16 tumor cells grew
exponentially with the growth rate being approximately independent of the initial tumor
density (Figure A1A). Short-term (24 h) experiments (Dataset 2) showed that, when the
density of CTLs exceeded 106 cell/mL, the density of B16 cells declined in 24 h, suggesting
that the killing rate of the tumors exceeded their replication rate (Figure A1B). Longer
(96 h) experiments (Dataset 3) showed that, at high CTL densities (>106 cell/mL), the
number of B16 targets recovered from the gels declined approximately exponentially
with time; interestingly, however, at an intermediate density of CTLs and B16 tumor
cells of 106 cell/mL, the B16 cells initially declined, but then rebounded and accumulated
(Figure A1C). Previously unpublished experiments (Datasets 4–5) showed a similar impact
of increasing CTL density on the B16 tumor dynamics during short-term (24 h) experiments
(Figure A1D,E). Budhu et al. [58] concluded that the data from short- and long-term
experiments (Figure A1A–C) are consistent with the model in which the number of B16
tumor cells grows exponentially due to cell division and are killed by CTLs at a mass–action
rate (proportional to the density of targets and CTLs). Budhu et al. [58] also concluded that
a density of 3.5 × 105 cell/mL was critical for the controlling growth of B16 tumor cells in
collagen–fibrin gels.

3.2. Alternative Models of Growth and Killing May Better Explain the Data than a Simple
Exponential-Growth-and-Mass–Action-Killing Model

The conclusion that a simple model with exponentially growing tumors and killing of
the tumors by CTL via the mass–action law (MA model, Figure 1A) was based on simple
regression analyses of individual datasets (e.g., Dataset 1 or 3). To more rigorously inves-
tigate this issue, we propose three additional models, which make different assumptions
of how CTLs impact B16 tumor cells including (i) saturation in the killing rate (Sat model,
Equation (4) and Figure 1B), (ii) nonlinear change in the death rate of tumors with increas-
ing CTL concentrations (Power model, Equation (5) and Figure 1C), and (iii) reduction in
the tumor growth rate with increasing CTL concentrations and the mass–action killing
term (SiGMA model, Equation (6) and Figure 1D). We then fit these models including the
MA model to all the data, which in total included 438 measurements (and excluded 13 gels
with zero B16 tumor cells; see the Materials and Methods Section for more details). These
data included two new unpublished datasets (Dataset 4 and 5) including the B16 tumor
dynamics at unphysiologically high CTL concentrations (E = 108 cell/mL, Figure A1E).
Interestingly, we found that the MA model fit these data with the least accuracy while the
Sat model (with a saturated killing rate) fit the data best (Table A1). Saturation in the killing
rate by CTLs is perhaps not surprising in the full dataset given that, in Dataset 5, two gels
inoculated with 105 B16 tumor cells and 108 cell/mL CTLs still contained B16 tumor cells
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at 24 h (Figure A1E). Because 108 cell/mL is a physiologically unrealistic density of CTLs
in vivo, for most of our following analyses, we excluded Dataset 5.

Importantly, the MA model was still the least-accurate at describing the data from
Datasets 1–4, which is visually clear from the model fits of the data, as well as from the
statistical comparison of alternative models using the AIC (Figure 2 and Table 1). In
contrast, the SiGMA model provided the best fit (Table 1). The SiGMA model is unique
because it suggests that, in these experiments, CTLs impact tumor accumulation not
only by killing the tumors, but also by slowing down the tumor rate of growth from
the maximal value of r = g0 + g1 = 0.76/day to the minimal g0 = 0.12/day already at
moderate CTL concentrations (E ≈ 104 cell/mL, Table 1). It is well recognized that CTLs
are able to produce large amounts of interferon-gamma (IFNg), which may directly inhibit
tumor growth, especially of IFNg-receptor-expressing cells [65–67]. Interestingly, while
statistically, the Sat and Power models fit the data worse than the SiGMA model (Table 1),
visually, the fits of these three models were very similar (Figure 2). Furthermore, at high
CTL concentrations (E = 107 cell/mL), all four models provided fits of a similar quality
(Figure 2E).

It is important to note that, even the best-fit SiGMA model did not accurately describe
all the data. For example, the model over-predicted the B16 counts at 24 h for OT1 concen-
trations of 104 and 105 cell/mL (Figure 2B,C) and under-predicted the B16 counts at 96 h in
growth (Figure 2A) and at 72 h for OT1 concentrations 107 cell/mL (Figure 2E).

To intuitively understand why the MA model did not fit the data well, we performed
several regression analyses. Specifically, for every CTL and B16 tumor cell concentrations,
we calculated the net growth rate of the tumors rnet (Figure A1); in cases of several different
desired B16 concentrations, we calculated the average net growth rate. In the absence of
CTLs, the net growth rate of tumor cells was r0 = 0.62/day (Figure A2). Then, for every
CTL concentration, we calculated the death rate of B16 tumor cells due to CTL killing
as K = r0 − rnet. For the MA model, the death rate K should scale linearly with the CTL
concentration [41]; however, we found that this was not the case for B16 tumor cells in
gels where the death rate scaled sublinearly with the CTL concentration (Figure A2). Im-
portantly, this analysis also illustrated that, at low CTL concentrations (104–105 cell/mL),
we observed a much higher death rate of targets than expected at the power n = 0.57
(Figure A2). This indirectly supported the SiGMA model, which predicted a higher (appar-
ent) death rate of targets at low CTL concentrations due to the non-lytically reduced tumor
growth rate.

Table 1. Parameters of the 4 alternative models fit to Datasets 1–4 (excluding data with
CTL = 108 cell/mL) and metrics of relative quality of the model fits. Estimated parameters: α

is a dimensionless inverse of the effective fraction; r is given in units of per day; h is in cell/mL; g1 is
in per day; g2 is in cell/mL. The parameter k had different units in different models: per OT1 cell/mL
per day, per day, per OT1 (cell/mL)n per day, and per OT1 cell/mL per day for MA (Equation (3)),
Sat (Equation (4)), Power (Equation (5)), and SiGMA (Equation (6)), respectively; n is a dimensionless
parameter. The parameter estimates and 95% confidence intervals for the best-fit SiGMA model
were: α = 2.71 (2.5–2.9), g0 = 0.12 (0.036–0.2)/day, g1 = 0.64 (0.55–0.73)/day, g2 = 6.72 (4.14–17.57)
× 103 cell/mL, and k = 3.3 (3.15–3.4) × 10−7 mL/cell/day; the model fits are shown in Figure 2.
The best-fit model (with the highest w) is highlighted in blue.

Datasets 1–4 (E ≤ 107 cell/mL): n = 431

Model α r, 1/day k h n g0 g1 g2 SSR AIC ∆ w

MA 2.77 0.576 3.79× 10−7 164 814 160 0

Sat 2.81 0.744 6 5.34× 106 118.5 677 23 0

Power 2.79 0.744 2.23× 10−4 0.606 116 668 14 0

SiGMA 2.71 3.29× 10−7 0.12 0.64 6715 112 654 0 1
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Figure 2. The model assuming exponential growth of B16 tumor cells and mass–action killing
by CTLs is not consistent with the B16 tumor cell dynamics. We fit the mass–action killing (MA,
Equation (3) and Figure 1A), saturated killing (Sat, Equation (4) and Figure 1B), power law killing
(Power, Equation (5) and Figure 1C), and saturation-in-growth and mass–action killing (SiGMA,
Equation (6) and Figure 1D) models to the data (Datasets 1–4, 431 gels), which included all our
available data with CTL densities of ≤107 cell/mL (see Section 2 for more details). The data are
shown by markers, and the lines are the predictions of the models. We show the model fits for the
data for (A) OT1 = 0, (B) OT1 = 104 cell/mL, (C) OT1 = 105 cell/mL, (D) OT1 = 106 cell/mL, and
(E) OT1 = 107 cell/mL. Parameters of the best-fit models and measures of relative model fit quality
are given in Table 1; Akaike weights w for the model fits are shown in Panel A. The size of the markers
denotes different desired B16 concentrations (104–108 cell/mL).

One feature of these experimental data is that the recovery of B16 tumor cells from the
gels was typically lower than the desired concentration, which somewhat varied between
different experiment and desired B16 cell numbers (e.g., Figure A1). Instead of fitting
individual parameters to estimate the initial density of B16 tumor cells for every desired
B16 concentration, we opted for an alternative approach. To predict the initial concentration
of B16 tumor cells, we fit a parameter α that scaled the desired B16 concentration to the
initial measured B16 concentration in the gel (see the Materials and Methods Section for
more details). In separate analyses, we investigated assuming different α for different target
B16 tumor concentrations by fitting our best-fit models (for Datasets 1–4 or Datasets 1–5)
with one or 5 α (see Section 2 for more details and Table A2). Interestingly, the SiGMA
model with varying α fit the data (Datasets 1–4) marginally better than the model with one
α (F-test for nested models, p = 0.02, Table A2). Other parameters such as the B16 tumor
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growth rate and CTL kill/suppression rates, however, were similar in both fits (Table A2).
In contrast, the fits of the Sat model to all data (Datasets 1–5) were similar whether we
assumed different or the same α for different target B16 tumor concentrations (p = 0.37,
Table A2). Because, in all cases, other statistical features of the model fit (e.g., residuals)
were similar, in most of the following analyses, we considered a single parameter α in
fitting the models to the data.

In our datasets, we had in total 13 gels that did not contain any B16 tumor cells after
co-incubation with CTLs (Figure A1B,C); these data were excluded from the analyses so
far. Data exclusion may generate biases, and we, therefore, investigated, instead of 0 B16
targets, assuming these measurements were at the limit of detection (LOD). The true limit
of detection was not defined in these experiments, so we ran analyses assuming that the
LOD = 2–10 cell/mL. Importantly, inclusion of these 13 gels at the LOD did not alter our
main conclusion; specifically, the SiGMA model remained the best model for Datasets 1–4,
and the Sat model remained the best model when we used Datasets 1–5 (results not shown).

3.3. The Best-Fit Model Varies with the Chosen Subset of the Data

The experimental data suggested that a CTL concentration of approximately 106 cell/mL
was critical for the removal of B16 melanoma cells [58]. Specifically, at concentrations
of E < 106 cell/mL, the tumor cell concentration increased (Figure A1A–C), while at
E > 106 cell/mL, the tumor cell concentration declined (Figure A1B–D). The growth and
death rates of the tumors were similar when E ≈ 106 cell/mL, and interestingly, in one
dataset, the B16 tumor concentration initially declined, but after 48h, started to increase
(Figure A1C). None of our current models could explain this latter pattern. To investigate
if the data with a CTL concentration of 106 cell/mL may bias the selection of the best-fit
model, we fit our four alternative models to the data that excluded gels with desired B16
concentrations of 105 and 106 cell/mL and CTL concentrations of 106 cell/mL from Dataset
3 and Dataset 4, respectively. Interestingly, for these subsets of data, the Power model fit
the data with the best quality (based on the AIC), predicting that the death rate of B16
tumor cells scales sub-linearly (n = 0.42) with the CTL concentration (Table A3). The Power
model also provided the best fit if we included seven additional gels from Dataset 5 (with
the highest CTL concentrations, Table A3) to this subset of data. Interestingly, the MA
model fit this data subset with much better quality visually, even though statistically, the fit
was still the worst out of all four models tested (Table A3; results not shown).

We further investigated if focusing on smaller subsets of data may also result in other
models fitting such data the best. For example, in one approach, we focused on fitting
the models to subsets of data with a single target B16 tumor cell concentration (Table A4).
Interestingly, for B16 concentrations of 104 and 106 cell/mL, the Power model provided
the best fit, but for target B16 concentration of 105 cell/mL, the Power and SiGMA models
gave the best fits. Including Dataset 5 in these analyses often led to the Sat model being
the best (Table A4). Finally, dividing the data into subsets for different experiments (out of
three), the Power model fit the data from Experiment 1 and 3 best, and the SiGMA model
fit the data from Experiment 2 best (see Table A5). Taken together, these analyses strongly
suggested that selecting the best model describing the dynamics of B16 tumor cells depends
on the specific subset of data chosen for the analysis.

3.4. Alternative Models Predict Different CTL Concentrations Needed to Eliminate the Tumor

Given the difficulty of accurately determining the exact model for B16 tumor growth
and its control by CTLs, one could wonder why we need to do that. To address this
potential criticism, we calculated the time (Equation (7)) it would take for CTLs to elim-
inate most (90%) of the tumor cells if CTLs control tumor growth in accord with one of
the four alternative models (e.g., with the parameters given in Table 1). Interestingly,
the MA model predicted the largest CTL concentration that would be required to elim-
inate most of the tumor cells in 100 days, while the SiGMA model required the fewest
(1.54× 106 cell/mL vs. 0.41× 106 cell/mL, respectively, Figure 3). The four-fold difference
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may be clinically substantial in cancer therapies using adoptively transferred T cells (e.g.,
in tumor-infiltrating-lymphocyte-based therapies [68]). Interestingly, however, the differ-
ence in the predicted CTL concentration was somewhat similar for the SiGMA and Power
models, which provided the best fits for the subsets of the data (Figure 3). The range of
CTL concentrations was wider between the alternative models fit to the subsets of the data
(results not shown), further highlighting the need for a better, more-rigorous understanding
of how CTLs control tumor’s growth in collagen–fibrin gels.
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Figure 3. The CTL concentration needed to eliminate most B16 tumor cells depends on the model
of tumor control by CTLs. For every best-fit model (Table 1), we calculated the time to kill 90% of
B16 targets for a given concentration of CTLs (Equation (7)) from the best-fit parameters. For every
model, we also calculated the control CTL concentration (Ec) that was required to eliminate at least
90% of the tumor cells within 100 days.

3.5. Mathematical Models Different from Simple Exponential Growth Are Needed to Explain B16
Tumor Dynamics in the Absence of CTLs

In our analyses, so far, we have focused on different ways CTLs can control the growth
of B16 tumor cells, assuming that, in the absence of CTLs, tumors grow exponentially
(Equations (3)–(6)). In our new Dataset 4, in which the gels were sampled at 0, 4, 8, 12, and
24 h after inoculation, we noticed that B16 tumor cells did not grow exponentially early
after inoculation into the gels (Figure A1D). We, therefore, investigated whether a simple
model in which B16 tumor cells grow exponentially is, in fact, consistent with these data.

First, we fit the exponential growth model (Equation (3) with E = 0) to all data from
Datasets 1–5. Interestingly, while the model appeared to fit the data well (Figure 4A) and,
statistically, the fit was reasonable (e.g., residuals normally distributed), the model fits did
not describe all the data accurately. In particular, the model over-predicted the concentration
of B16 tumor cells at low (103–104 cell/mL) and high (108 cell/mL) desired B16 concentra-
tions. The lack of fit test also indicated that the model did not fit the data well (F20,154 = 7.12,
p < 0.001). Finally, allowing the tumor growth rate to vary with the desired B16 concen-
tration resulted in a significantly improved fit (F4,170 = 19.77, p < 0.001), suggesting that
the growth rate of B16 tumor cells in the absence of CTLs may be density-dependent
(r0 = 0.59/day, r0 = 0.65/day, r0 = 0.64/day, and r0 = 0.85/day, r0 = −0.15/day for
desired B16 tumor cell concentrations of 103, 104, 105, 106, and 107 cell/mL, respectively,
and α = 2.48).

Second, we noticed that, in our new dataset with the B16 tumor growth kinetics
recorded in the first 24 h after inoculation into the gels (Dataset 4), this did not fol-
low a simple exponential increase (Figure A1D). Instead, there was an appreciable de-
cline and then increase in the B16 cell concentration. We, therefore, fit an exponential
growth (EG) model along with two alternative models, which allowed for non-monotonic
dynamics—(i) a phenomenological model (Alt1, Equation (8)) and (ii) a mechanistic model
allowing for two sub-populations of tumor cells, one dying and another growing over
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time (Alt2, Equation (9)). Interestingly, while the EG model did not fit the data well, both
of the alternative models described the data relatively well (Figure 4). These analyses,
thus, strongly suggested that the dynamics of B16 tumor cells in collagen–fibrin gels in
the absence of CTLs are not consistent with a simple exponential growth model, at least in
short-term (24 h) experiments.
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Figure 4. Pure exponential growth (EG) model is not consistent with the data on B16 tumor
dynamics in the absence of CTLs. (A) We fit with an exponential growth model (Equation (3)
with E = 0) to data on B16 growth from all Datasets 1–5 with OT1 = 0. The best-fit val-
ues for the parameters along with the 95% confidence intervals are: α = 2.6 (2.4–2.8) and
r = 0.74 (0.69–0.79)/day. (B) We fit exponential growth and two alternative models (Equation (3)
with E = 0 and Equations (8) and (9)) to the data from Dataset 4 for which OT1 = 0. The relative
quality of the model fits is shown by Akaike weights w (see Table A6 for model parameters and other
fit quality metrics). The data are shown by markers, and model predictions are shown by lines.

3.6. Experiments with Several Measurements of B16 Tumor Concentrations at Variable CTL
Densities Will Best Allow Discriminating between Alternative Models

In several alternative analyses, we found that the best model describing the dynamics
of B16 tumor cells in collagen–fibrin gels depends on the specific dataset chosen for the
analyses. It is unclear why this may be the case. One potential explanation is that individual
datasets are not balanced, some have more measurements, but on a shorter time scale,
while others are of a longer duration with fewer replicates. Because the exact mechanism
of how CTLs impact tumor dynamics is important in predicting the concentration of CTLs
needed for tumor elimination (Figure 3), we next sought to determine whether specific
experimental designs may be better-suited to discriminate between alternative models [63].
We, therefore, performed stochastic simulations to generate “synthetic” data from a given
assumed model for different experimental designs and tested whether, by fitting alternative
models to the synthetic data, we can recover the model used to generate the data.

We considered three different designs and compared two types within each design:

• Design D1: Two-time-point experiment (Type A) vs. four-time-point experiment
(Type B). The two-time-point experiments had 48 observations. The desired B16
concentrations were 103, 104, 105, 106, 107, and 108 cell/mL; the OT1 concentrations
were 0, 105, 106, and 107 cell/mL, the time points were 0 and 24 h. The four-time-point
experiments had 48 observations. The desired B16 concentrations are 105, 106, and
107 cell/mL; the OT1 concentrations were 0, 105, 106, and 107 cell/mL; the time points
were 0, 24, 48, and 72 h.

• Design D2: Short-term experiment (Type A) vs. long-term experiment (Type B). The
short-term experiments had 48 observations. The desired B16 concentrations were
105, 106, and 107; the OT1 concentrations were 0, 105, 106,and 107 cell/mL; the time
points were 0, 8, 16, and 24 h. The long-term experiments had 48 observations. The
desired B16 concentrations were 105, 106, and 107 cell/mL; the OT1 concentrations
were 0, 105, 106, 107 cell/mL; the time points were 0, 24, 48, and 72 h.

• Design D3: More-frequent OT1 experiment (Type A) vs. less-frequent OT1 experiment
(Type B). The more-frequent OT1 experiments had 40 observations. The desired B16
concentrations were 105 and 106 cell/mL; the OT1 concentrations were 0, 5× 105, 106,
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5× 106, and 107 cell/mL; the time points were 0, 24, 48, and 72 h. The less-frequent
OT1 experiments had 40 observations. The desired B16 concentrations were 105 and
106 cell/mL; the OT1 concentrations were 0, 104, 105, 106, and 107 cell/mL; the time
points were 0, 24, 48, and 72 h.

To draw a statistical comparison between Types A and B of the experimental designs
described above, we first chose one of the Sat, Power, or SiGMA models with their best-fit
parameters (Table 1) and generated 48 observations for D1 and D2 or 40 observations for
D3 for Types A and B. We excluded the MA model from these analyses as it never fit
the data well. In each of the generated predictions, we added an error randomly chosen
from the residuals (yi − ȳt), where yi is the observed B16 count in the data and ȳt is the
average of yi at time t. Next, we simulated 100 replicates of such pseudo experiments,
fit the three models (Sat, Power, and SiGMA) to these 100 replicates, and computed the
Akaike weights to determine the best-fit model for each replicate. Due to the randomly
chosen error structure for these hypothetical experiments, we found substantial variability
among these 100 replicates, where the best-fit model was often different from the model
from which the identical replicates were generated. For example, generating 100 simulated
datasets from the Sat model, we found that the Sat model fit these data only in 52% of cases,
while the Power model fit the best 36% of the time and the SiGMA model 12% of the time
(first column of the first Type A matrix of Figure A5D1).

By repeating the analysis for all three models, we generated a matrix of Akaike weights
with diagonal terms being heavier than the off-diagonal terms along with a constraint that
the sum of a column should always add up to one (see Figure A5). In this representation,
a better experimental design among each type had heavier diagonal than off-diagonal
elements. Following this rule, we see that D1 (Type B), D2 (Type B), and D3 (Type A)
were the better experimental designs (Figure A5). To show that the difference between
the experimental designs was statistically significant, we used a resampling approach. We
defined a test statistic measure given by

|∆D| = ||D(A)| − |D(B)||, (12)

where D is the determinant of the matrix and |∆D| is the absolute difference between two
determinants. Mathematically, |∆D| is equivalent to a difference in volume of two 3D
parallelepipeds, the edges of which are the columns of a matrix. For the hypothesis testing,
we defined the null hypothesis as follows: the column vectors, with the constraints that
the sum of the elements must be unity, belong to the same class for both experimental
designs. We performed a null distribution test and a permutation test to reject the null
hypothesis and showed that the column vectors that constituted the experimental designs
were significantly different.

For the null distribution test, we randomly generated Type A and Type B sets of 106

matrices with their columns being normalized to unity. |∆D| was then computed for the
the Type-A and -B designs, which formed a universal null distribution. The p-value was
then the number of times the |∆D|null’s were greater than the observed |∆D|obs normalized
by the total number of simulations (106). The p-values for each of the designs D1, D2, and
D3 (Figure 5B) confirmed that a long time experiment with more time point observations
and closely spaced CTL concentrations was a significantly better experimental design. For
the permutation test, we generated three column matrices from all permutations of the six
columns for each of designs D1, D2, and D3. The columns were chosen from the constructed
matrices of Figure A5. Then, we randomly chose sets of two matrices for Types A and B from
all the permutations of the previous step. |∆D|per was computed for Types A and B, which
formed a distribution. The p-value was then the number of times the permuted |∆D|per’s
were greater than the observed |∆D|obs normalized by the total number of permuted sets
(Figure A5). With a permutation test, we found that a long time experiment with more time
point observations was a significantly better experiment, but failed to confirm the same
for closely spaced OT1 concentrations with statistical significance (see the right panels of
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Figure A5 for p-values). Taken together, these simulations suggested that longer experiments
(72 h) with at least four time points and a variable CTL concentration should provide the best
statistical power to discriminate between alternative models of B16 tumor cell control.

A�������������������������������������������������������B

Figure 5. Power analysis indicated that longer experiments with several, closely spaced CTL con-
centrations would allow finding the best discriminate between alternative models. We performed
three sets of simulations to obtain insights into a hypothetical future experiment, which may allow
better discriminating between alternative mathematical models. (A) The three experimental designs
are: D1—2 time-point vs. 4 time-point experiments; D2—short time scale (0–24 h) vs. long time scale
(0–72 h) experiments; D3—more-frequently chosen values of CTL concentrations vs. less-frequently
chosen values of CTL concentrations (see Figure A5 and Section 2 for more details). For every experi-
mental setup, we calculated D—the determinant of a matrix formed from a simulated experimental
set whose columns are constrained. (B) We defined a test measure |∆D|obs between two sets of each
of D1, D2, and D3 and compared the observed |∆D|obs with the universal null distribution of |∆D|null

to compute the p-value. The values of D in red in Panel A show the better experimental designs in
the pairs.

4. Discussion

Quantitative details of how CTLs kill their targets in vivo remain poorly under-
stood. Here, we analyzed unique data on the dynamics of SIINFEKL peptide-pulsed B16
melanoma tumor cells in collagen–fibrin gels—which may better represent in vivo tissue
environments—in the presence of defined numbers of SIINFEKL-specific CTLs (OT1 CD8
T cells) [58]. We assumed that the CTL concentration is time independent in our models.
This was based on one of the results of Budhu et al. [58], which showed that the activated
CTL concentration >90% remained constant for at least 72 h in collagen–fibrin gels. We
found that a previously proposed model in which tumors grow exponentially and are
killed by CTLs proportional to the density of CTLs (mass–action law) did not describe the
experimental data well. In contrast, the model in which CTLs suppress the rate of tumor
replication and kill the tumors in accord with the mass–action law fit a subset of the data
(Datasets 1–4 with physiologically relevant CTL concentrations of E ≤ 107 cell/mL) with
the best quality (Table 1). This result raises an interesting hypothesis that the control of
tumors by CTLs may extend beyond direct cytotoxicity, e.g., by the secretion of cytokines.
In fact, previous observations suggested that IFNg and TNF may suppress tumor growth
in different conditions, although the ultimate effect of these cytokines on tumor progres-
sion in vivo is context-dependent as IFNg may, in fact, improve the metastasis of some
tumors [65–67].



Viruses 2023, 15, 1454 15 of 26

Importantly, however, fitting the alternative models to different subsets of data re-
sulted in different best-fit models, e.g., including the dataset with high CTL concentrations
(E ≤ 108 cell/mL) typically selected the Sat model as the best predicting that the death rate
of B16 tumor cells saturates at high CTL concentrations (Table A1). In other cases, a power
model in which the death rate of tumors scales sublinearly with the CTL concentration
described the subsets of the data best (Table A3). The analysis of a new dataset on B16
tumor growth in the first 24 h after inoculation into gels with no CTLs suggested that a
simple exponential model did not describe these data adequately; instead, models that
allow for initial loss and then rebound in the concentration of B16 tumor cells were the best
(Figure 4B). We also developed a novel methodology and proposed the designs of experi-
ments that may allow better discriminating between alternative mathematical models. Our
analysis suggested that longer-term experiments (0–72 h) with four measurements of the
B16 cell concentration with several OT1 concentrations would have the highest statistical
power (Figure 5).

Determining the exact mechanism by which CTLs control the growth of B16 tumors
may go beyond academic interest. In T-cell-based therapies for the treatment of cancer,
knowing the number of T cells required for tumor control and elimination is important.
Our analysis suggested that the specific details of the killing term impact the minimal CTL
concentration needed to reduce the tumor size within a defined time period (Figure 3).
Other parameters characterizing the impact of CTLs on tumor growth may also be impor-
tant (Figure 6). For example, our analysis suggested that the tumor’s growth rate, the per
capita killing rate by CTLs, or the overall death rate of the tumors depends differently on
the CTL concentration given the underlying model (Figure 6A–C). The latter parameter, the
death rate of CTL targets, has been estimated in several previous in vivo studies (reviewed
in [43]) and ranges from 0.02/day to 500/day [36,38,39,42,69–73]. While our estimates
were consistent with this extremely broad range, whether killing of B16 tumor cells in
collagen–fibrin gels occurs similarly to the elimination of targets in vivo (peptide-pulsed or
virus-infected cells) remains to be determined. Interestingly, our models predicted a highly
variable number of B16 tumor cells killed per day, especially at low CTL concentrations
(Figure 6D). We estimated that a relatively small number of targets are killed per CTL per
day, which is in line with previous estimates for the in vivo killing of peptide-pulsed targets
by effector or memory CD8 T cells ([41], Figure 6D).

Our work has several limitations. First, the specifics of tumor cell and CTL movements
in the gels remain poorly defined. Previous studies suggested that CTL motility in collagen–
fibrin gels may be anisotropic, creating a bias in how different CTLs locate their targets [61].
Second, errors in estimating the number of surviving B16 tumor cells have not been
quantified. For example, in some cases, zero B16 cells were isolated from the gels, while
other gels in the same conditions contained tens-to-hundreds of cells (Figure A1B,C). In
our experience, the clonogenic assays typically do not allow recovering 100% of inoculated
cells, which is also indicated by the estimated parameter α > 1. In fact, α = 2.8 suggests
that only 1/2.8 = 35% of inoculated B16 tumor cells are typically recovered. In the way
we fit the models to the data (by log-transforming the model predictions and the data), we
had to exclude gels with zero B16 tumor cells from the analysis. While this exclusion did
not impact our overall conclusions, future studies may need to use methods to include
zero values (i.e., censored data) in the analysis. Third, the density of the gels may change
over the course of the experiment, reducing the ability of CTLs to find their targets. Using
microscopy to track tumor cells and CTLs may better define if the movement patterns of
the cells change over time in the gel. Fourth, the dynamics of CTLs and loss of peptides
by B6 tumor cells were not accurately measured. In particular, we observed that, at a CTL
concentration of 106 cell/mL and a desired B16 tumor cell concentration of 106 cell/mL,
after the initial decline, the B16 tumor cell concentration rebounded (Figure A1C). A decline
in the CTL concentration with time could be one explanation; however, in other conditions,
the B16 tumor cells continued declining exponentially, arguing against a loss of CTLs in
the gels. The loss of recognition of tumors by CTLs (i.e., tumor escape) could be another
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explanation. Future experiments would benefit from also measuring the CTL concentration
in the gel, along with B6 tumor cells, especially in longer (48–72 h) experiments. Fifth, the
final fits of the models to the data did not pass the assumption of normality as the residuals
were typically non-normally distributed (e.g., by the Shapiro–Wilk normality test). We tried
several methods to normalize the residuals (e.g., excluding the outliers, using arcsin(sqrt)
transformation), but none worked. Whether non-normal residuals led to biased parameter
estimates of our best-fit models remains to be determined. Sixth and finally, we assumed
that every CTL is capable of killing and every target is susceptible to CTL-mediated killing,
which may not be accurate. Indeed, the result where the Power model fit several subsets of
data with the best quality and predicted a sublinear (n < 1) increase in the death rate of
targets with the CTL concentration may be due to heterogeneity in the CTL killing efficacy.
However, such a model would need to assume that the inoculation of CTLs into gels results
in a bias of inoculating a smaller fraction of killer T cells at higher CTL concentrations,
which seems unlikely.
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Figure 6. Metrics to quantify the efficacy of CTL-mediated control of tumors are model-
dependent. For the three alternative models (Sat, Power, and SiGMA) that fit some subsets of
the data with the best quality, we calculated metrics that could be used to quantify the impact of CTLs
on tumor growth depending on the concentration of tumor-specific CTLs. These metrics included:
(A) the growth rate of the tumors ( fg in Equation (1)); (B) the per capita kill rate of tumors (per 1 CTL
per day, fk/E in Equation (1)); (C) the death rate of tumors due to CTL killing ( fk in Equation (1)); the
grey box shows the range of the experimentally observed death rates of targets as observed in some
previous experiments (see Section 4 for more details and [43]); (E) the total number of tumors killed
per day as a function of 3 different initial tumor cell concentrations (indicated in the panel); (D) the
number of tumors killed per 1 CTL/mL per day. The latter two metrics were computed by taking the
difference of the growth and combined killing at 24 h. The parameters for the models are given in
Table 1, and the model equations are given in Equations (4)–(6).
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Our work opens up avenues for future research. One curious observation of Budhu
et al. [58] is that the death rate of B16 tumor cells does not depend on the concentration
of the targets in the gel. We confirmed this observation as the models that included the
dependence of the B16 tumor cell death rate on tumor cell concentration (e.g., the updated
SiGMA model with fk = kE/(1 + a1T + a2E)) did not improve the fit quality, e.g., in the
best fits of Datasets 1–4, we found a1 → 0 and a2 → 0). This model-driven experimental
observation is inconsistent with the effector-to-target ratio dependence in in vitro chromium
release assays and with many theoretical arguments suggesting that the killing of targets
(or interactions between predators and preys) should be ratio-dependent, not density-
dependent [28,44,74,75]. Interestingly, our analysis of the data from the experiments on
the killing of peptide-pulsed targets in murine spleens by activated and memory CD8 T
cells also showed no dependence on target cell concentration [41]. Future studies need to
reconcile the difference between theoretical arguments and some in vitro experiments vs.
experimental observations in gels and in vivo.

5. Conclusions

The hypothesis that CTLs may impact the rate of tumor growth in collagen–fibrin gels
can be tested experimentally. One such experiment could be to use two populations of
tumors expressing different antigens, e.g., SIINFEKL and Pmel, in the presence or absence
of SIINFEKL-specific CTLs (OT-1 T cells) [76]. If CTLs reduce the growth rate of the
tumor, we should detect a reduction of Pmel-pulsed tumors in gels with SIINFEKL-pulsed
tumors and SIINFEKL-specific CTLs. Our experiments and mathematical-modeling-based
analyses can be extended to other types of tumor cells, CTL specificity, and the type of gel.
Whether the CTL killing rates estimated from in vitro data correlate with CTL efficacy in
vivo remains to be determined. Effective cancer immunotherapy relies on the infiltration
and killing response of CD8 T cells [77,78]. The increase of intratumoral CD8 T cells has
been shown to have a direct correlation with the radiographic reduction in tumor size in
patients responding to treatment [79]. In B16 preclinical melanoma models, cancer vaccines
are found to induce cancer-specific CD8 T cells into tumors, leading to cytotoxicity [80].
Estimating CTL killing efficiency such as kill rate per day or the number of melanoma
cells killed per day could be useful in providing guidelines on cancer immunotherapy
research and, thus, our modeling platform could, therefore, provide valuable insights for
estimating the efficacy of T-cell-based immunotherapies against cancer. The collagen–fibrin
platform could be also useful to determine the killing efficiency of T cells (either expanded
tumor infiltrating lymphocytes (TILs) or chimeric antigen receptor (CAR) T cells) prior to
adoptively transferring them into patients; correlating this killing efficacy metric with the
actual success or failure of the therapy in patients may be a less-expensive way to predict
the overall efficacy of the therapy, thus saving time and resources.
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Abbreviations
The following abbreviations are used in this manuscript:

CTLs cytotoxic T lymphocytes
MA mass–action
Sat saturation
SiGMA suppression-in-growth with mass–action-in-killing.
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Figure A1. Data on the dynamics of B16 tumor cells for different time periods and at different
CTL concentrations. We show all 5 datasets (Dataset 1–5, panels (A–E)) analyzed in this paper.
(A) Dataset 1 (growth) is on B16 tumor growth for 72 h in the absence of CTLs; (B) Dataset 2 is on
B16 tumor dynamics for 24 h at different initial B16 cell and CTL concentrations (note that 5 gels had
0 B16 cells recovered, all at OT1= 107 cell/mL); (C) Dataset 3 is on B16 tumor dynamics for up to
96 h at different initial B16 cell and CTL concentrations (note that 8 gels had 0 B16 cells recovered at 72
and 96 h post inoculation); (D) Dataset 4 on B16 tumor dynamics in the first 24 h after inoculation at
3 different CTL concentrations, and (E) Dataset 5 (high CTL density) on B16 tumor dynamics for 24 h
at 0 and 108 OT1 cell/mL. The size of markers indicates the different desired number of B16 tumor
cells. The lines connect average numbers (excluding gels with 0 B16 cells in (B,C)). For each panel we
also show the number of gels n and sum of squared residuals (SSR) are computed by the relation
SSR = ∑N

i=1(yi − ȳt)
2. The red horizontal dashed line is the limit of detection for the experiments set

at 2 cell/mL.
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Table A1. The model with exponential growth of tumors and saturated killing rate by CTLs gives
the best fit when the models are fit to all data (Datasets 1–5). We list the best-fit parameters for the
alternative models along with SSR, AIC, ∆, and Akaike weights w. Other details are similar to those
given in Table 1.

Datasets 1–5 (E ≤ 108 cell/mL): n = 438

Model α r, 1/day k h n g0 g1 g2 SSR AIC ∆ w

MA 2.78 0.24 1.85× 10−7 779 1503 779 0

Sat 2.81 0.696 7.32 8.63× 106 131 724 0 1

Power 2.78 0.792 0.0017 0.477 147 776 52 0

SiGMA 2.95 1.72× 10−7 2.88× 10−8 0.86 291 583 1380 656 0

Table A2. Assuming different effective fractions 1/α in best-fit models moderately improves the
fit but results in similar parameter estimates. We fit the SiGMA model (Equation (6)) to the data
from Datasets 1–4 or the Sat model (Equation (4)) to the data from Datasets 1–5 with one or five
different effective fractions 1/α.

SiGMA Model Sat Model
Datasets 1–4 (n = 431) Datasets 1–5 (n = 438)

Parameters Fixed α Varied α Fixed α Varied α

α 2.71 2.82
α1 3.18 2.89
α2 2.7 2.82
α3 2.74 2.86
α4 2.49 2.64
α5 3.85 3.56
r 0.7 0.7
k 3.29 ×10−7 3.24 ×10−7 7.2 7.2
h 8.64× 106 8.14 ×106

g0 0.12 0.096
g1 0.65 0.67
g2 6714 6382

AIC 654.2 650.5 723.7 727.5
LR 11.8 4.3

χ(0.95,4) 9.5 9.5
p 0.02 0.37

Table A3. A phenomenological Power model gives the best fit for the subset of the data. B16
tumor dynamics in two settings (at T = 106 cell/mL and E = 106 cell/mL from Dataset 3 and
T = 105 cell/mL and E = 106 cell/mL from Dataset 4) is not monotonic (Figure A1). We fit 4 alterna-
tive models (Equations (3)–(6)) to the subset of the data that excludes these two settings for Datasets
1–4 (top) or Datasets 1–5 (bottom). Other details are similar to those given in Table 1.

Datasets 1–4 (Subset) n = 371
Models α r k h n g0 g1 g2 SSR AIC ∆ w

MA 2.88 0.72 3.84 ×10−7 88 526 99.7 0
Sat 2.74 0.72 4.8 2.49 ×106 71 451 24.7 10−6

Power 2.67 0.74 0.004 0.423 66.7 426.3 0 0.93
SiGMA 2.68 3.17 ×10−7 6.84 ×10−8 0.72 7930 67.3 431.4 5.1 0.072

Datasets 1–5 (subset) n = 378
Models α r k h n g0 g1 g2 SSR AIC ∆ w

MA 2.85 0.32 1.87 ×10−7 724 1327 889 0
Sat 2.86 0.72 9.36 1.39 ×107 82 503 65 0
Power 2.62 0.72 0.01 0.37 69 438 0 1
SiGMA 2.94 1.76 ×10−7 1.18 ×10−7 0.84 252 544 1222 784 0
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Figure A2. Regression analysis suggests nonlinear change of the death rate of B16 tumor cells
with increasing CTL concentration. For the data in Datasets 1–4 we estimated the net rate of growth
of B16 tumor cells over time rnet for every CTL and desired B16 tumor concentrations (see Figure A1
for the average rnet per CTL concentration). In the absence of CTLs, the net growth rate of tumors
was rnet = r0 = 0.62/day. We then calculated the death rate of B16 tumor cells K by subtracting
the estimated net rate of tumor change from r0, K = r0 − rnet. Individual symbols are estimates
of K for different target B16 tumor concentrations at a given CTL level. Assuming that death rate
depends on CTL concentration as power law with scale n, we estimated n for individual ranges of
CTL concentrations. For example, the death rate of targets scales as K ∼ E0.25 for CTL concentrations
E between 104 and 105 cell/mL. The dashed line shows a linear relationship K ∼ E between the death
rate of targets K and CTL concentration E as predicted by the exponential-growth-mass–action-killing
model (Equation (3)). Note that values with a negative death rate K at low CTL densities were
removed from the analysis.

Table A4. The Power model fits the subset of data best when we focus on a single desired B16
tumor cell concentration in the gel. Here we divided Datasets 1–4 (top) or Datasets 1–5 (bottom)
based on the target B16 concentration. For T = 104 and 106, the Power model provides the best fit.
For T = 105 without the high CTL data (Datasets 1–4), both the SiGMA and the Power model fits the
data with similar Akaike weights. However, if we include the high CTL data (Datasets 1–5), the Sat
model best explains the data. For other details of the table refer to Table 1.

Datasets 1–4 B16 = 104 n = 80
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 2.74 0.6 3.55 ×10−7 14 96 60.5 0
Sat 2.67 0.62 4.08 1.85 ×106 8 54 18.5 10−4

Power 2.46 0.65 0.009 0.37 6.4 35.5 0 0.99
SiGMA 2.52 2.93 ×10−7 1.2 ×10−7 0.67 8162 7.5 50 14.5 10−3

Datasets 1–4 B16 = 105 n = 142
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 2.42 0.53 4.63 ×10−7 20 134 36.65 0
Sat 2.36 0.58 6.48 4.07 ×106 16.5 107 9.65 4.2 ×10−3

Power 2.33 0.58 0.001 0.52 15.37 97.35 0.17 0.48
SiGMA 2.34 4.1 ×10−7 1.37 ×10−7 0.6 7322 15.14 97.18 0 0.52

Datasets 1–5 B16 = 105 n = 149
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 3.34 0.38 ×10−7 175 454 336.6 0
Sat 2.4 0.55 9.12 9.6 ×106 18 117.4 0 1
Power 2.35 0.62 0.02 0.33 22 149 31.6 0
SiGMA 2.96 9.38 ×10−8 1.38×10−7 0.9 6106 139 425 307.6 0

Datasets 1–5 B16 = 106 n = 112
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 3.16 0.89 3.79 ×10−7 28 170 39 0
Sat 2.93 0.89 4.56 2.1 ×106 21.5 143 12 2 ×10−3

Power 2.8 0.89 0.008 0.39 19.36 131 0 0.82
SiGMA 2.8 2.95 ×10−7 9.8 ×10−8 0.9 10,243 19.43 134 3 0.18
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Figure A3. The residuals of the best models for sub-datasets with T = 104 and 105 are nor-
mally distributed. Here we show the normal probability plot of the best models of Table A4 for
T = 104 (A) and 105 (B–D) with the p-value of the Shapiro-Wilk (SW) test.

Table A5. The Power and SiGMA models give the best fit if we fit the models to subsets of
data experiment-wise. As we described in Materials and methods, each Datasets 1–4 has three
experiments performed in duplicates. If we divide the data based on the three Experiments 1, 2 and 3
then the Power model gives the best fit for Experiment 1 and 3. For Experiment 2, the SiGMA model
gives the best fit. The description of the table remain same as that of Table 1.

Experiment 1 Dataset n = 125
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 2.57 0.65 3.84 ×10−7 34 201 27 0
Sat 2.44 0.67 4.75 2.26 ×106 27.8 177 3 0.18
Power 2.39 0.67 0.003 0.44 27.15 174 0 0.8
SiGMA 2.43 3.22 ×10−7 9.6 ×10−8 0.7 12726 28.4 182 8 0.015

Experiment 2 dataset n = 126
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 3.47 0.84 3.84 ×10−7 32 191 29.2 0
Sat 3.32 0.86 4.8 2.78 ×106 27 174 12.2 0.002
Power 3.2 0.86 0.005 0.42 25 164 2.2 0.25
SiGMA 3.18 3.07 ×10−7 0.018 0.84 6448 24.2 161.8 0 0.75

Experiment 3 dataset n = 120
Models α r k h n g0 g1 g2 SSR AIC ∆ w
MA 2.69 0.67 3.84 ×10−7 18 121 61.6 0
Sat 2.55 0.7 4.8 2.45 ×106 12.5 79.5 20.1 0
Power 2.47 0.7 0.005 0.41 10.6 59.4 0 0.86
SiGMA 2.50 3.22 ×10−7 1.08 ×10−7 0.72 8650 10.76 63 3.6 0.14
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A Dataset 4 n = 90

Models α r k h n g0 g1 g2 SSR AIC ∆ w

MA 1.94 0.048 4.78 ×10−7 9.67 63 11.5 0

Sat 1.94 0.31 8.64 7.42 ×106 8.35 51.5 0 0.5

Power 1.94 0.31 8.16 ×10−5 0.68 8.35 51.5 0 0.5

SiGMA 1.94 4.75 ×10−7 6.98 ×10−9 0.23 445106 9.26 63 11.5 0
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Figure A4. The phenomenological Power and Sat models equally well describe the data for
Dataset 4. Dataset 4 describes dynamics of B16 tumor cells within first 24 h after inoculation into
collagen–fibrin gels and has n = 90 data points. Parameter estimates are shown in panel A, and q-q
plot for the the residuals for the models is shown in panel (B). The table details in (A) are similar to
Table 1.

Table A6. Both the alternative models fit the data better than the EG model for the growth only
subset of the data in the Dataset 4. We selected the data on B16 tumor growth with OT1 = 0 resulting
in n = 30 data points and fit the EG, Alt 1, and Alt 2 models (Equations (3), (8) and (9), respectively)
to these data (see Figure 4B for model fits). We show the results of the Shapiro-Wilk (SW) normality
test of the residuals. Other details are similar to those in Table 1.

Dataset 4 OT1 = 0 n = 30

Models α r t’ d fd SSR AIC ∆ w SW p

EG 2.22 0.5 2.24 13.4 12.8 0 0.46

Alt 1 2.48 1.13 8 1.37 0.6 0 0.59 0.6

Alt 2 1.79 3.12 1.03 0.95 1.3 1.3 0.7 0.41 0.43
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Figure A5. Statistical power to detect a difference in fit quality between alternative mathematical
models depends on experimental design. We performed simulations of 3 experimental designs
measuring impact of CTLs on B16 tumor dynamics (see Figure 5 and Main text for details). For
designs D1 and D2 we show that the experiment type A and B are significantly different from each
other. With permutation test, however, for D3 we fail to reject the null hypothesis that the experiments
are similar. For three simulated experimental designs D1, D3 and D3 we simulated 100 identical
replicas for investigation Type A and B from a model while choosing the errors randomly and then
fit them with models. This allowed us to get matrices like the ones in the left 2 panels. The red
diagonal entries show fraction of replicas generated by the a model is also best fit by the same model
where as the off diagonal entries present fraction of replicas generated by a model but best fit by a
different model. The experimental Type A or B with heavier diagonal terms would indicate a better
experiment. In this plot we did a permutation test to compare the observed |∆D|obs in a permutated
distribution of |∆D|per to obtain a p-value, whereD is a determinant of the matrices. This test allowed
us to statistically comment on the structural difference of the design Types A and B. The details of the
test is discussed in the end of Results section. See Equation (12) for test statistic measure.
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