Table A5.
The Power and SiGMA models give the best fit if we fit the models to subsets of data experiment-wise. As we described in Materials and methods, each Datasets 1–4 has three experiments performed in duplicates. If we divide the data based on the three Experiments 1, 2 and 3 then the Power model gives the best fit for Experiment 1 and 3. For Experiment 2, the SiGMA model gives the best fit. The description of the table remain same as that of Table 1.
Experiment 1 Dataset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | r | k | h | n | SSR | AIC | w | |||||
MA | 2.57 | 0.65 | 3.84 | 34 | 201 | 27 | 0 | |||||
Sat | 2.44 | 0.67 | 4.75 | 2.26 | 27.8 | 177 | 3 | 0.18 | ||||
Power | 2.39 | 0.67 | 0.003 | 0.44 | 27.15 | 174 | 0 | 0.8 | ||||
SiGMA | 2.43 | 3.22 | 9.6 | 0.7 | 12726 | 28.4 | 182 | 8 | 0.015 | |||
Experiment 2 dataset | ||||||||||||
Models | r | k | h | n | SSR | AIC | w | |||||
MA | 3.47 | 0.84 | 3.84 | 32 | 191 | 29.2 | 0 | |||||
Sat | 3.32 | 0.86 | 4.8 | 2.78 | 27 | 174 | 12.2 | 0.002 | ||||
Power | 3.2 | 0.86 | 0.005 | 0.42 | 25 | 164 | 2.2 | 0.25 | ||||
SiGMA | 3.18 | 3.07 | 0.018 | 0.84 | 6448 | 24.2 | 161.8 | 0 | 0.75 | |||
Experiment 3 dataset | ||||||||||||
Models | r | k | h | n | SSR | AIC | w | |||||
MA | 2.69 | 0.67 | 3.84 | 18 | 121 | 61.6 | 0 | |||||
Sat | 2.55 | 0.7 | 4.8 | 2.45 | 12.5 | 79.5 | 20.1 | 0 | ||||
Power | 2.47 | 0.7 | 0.005 | 0.41 | 10.6 | 59.4 | 0 | 0.86 | ||||
SiGMA | 2.50 | 3.22 | 1.08 | 0.72 | 8650 | 10.76 | 63 | 3.6 | 0.14 |