Skip to main content
. 2023 Jun 27;15(7):1454. doi: 10.3390/v15071454

Table A5.

The Power and SiGMA models give the best fit if we fit the models to subsets of data experiment-wise. As we described in Materials and methods, each Datasets 1–4 has three experiments performed in duplicates. If we divide the data based on the three Experiments 1, 2 and 3 then the Power model gives the best fit for Experiment 1 and 3. For Experiment 2, the SiGMA model gives the best fit. The description of the table remain same as that of Table 1.

Experiment 1  Dataset   n=125
Models α r k h n g0 g1 g2 SSR AIC Δ w
MA 2.57 0.65 3.84 ×107 34 201 27 0
Sat 2.44 0.67 4.75 2.26 ×106 27.8 177 3 0.18
Power 2.39 0.67 0.003 0.44 27.15 174 0 0.8
SiGMA 2.43 3.22 ×107 9.6 ×108 0.7 12726 28.4 182 8 0.015
Experiment 2  dataset   n=126
Models α r k h n g0 g1 g2 SSR AIC Δ w
MA 3.47 0.84 3.84 ×107 32 191 29.2 0
Sat 3.32 0.86 4.8 2.78 ×106 27 174 12.2 0.002
Power 3.2 0.86 0.005 0.42 25 164 2.2 0.25
SiGMA 3.18 3.07 ×107 0.018 0.84 6448 24.2 161.8 0 0.75
Experiment 3  dataset   n=120
Models α r k h n g0 g1 g2 SSR AIC Δ w
MA 2.69 0.67 3.84 ×107 18 121 61.6 0
Sat 2.55 0.7 4.8 2.45 ×106 12.5 79.5 20.1 0
Power 2.47 0.7 0.005 0.41 10.6 59.4 0 0.86
SiGMA 2.50 3.22 ×107 1.08 ×107 0.72 8650 10.76 63 3.6 0.14