Skip to main content
. 2023 Jul 5;11(7):1759. doi: 10.3390/microorganisms11071759
1. Feng, J.; Leone, J.; Schweig, S.; Zhang, Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front. Med. 2020, 7, 6, https://doi.org/10.3389/fmed.2020.00006.
2. Feng, J.; Shi, W.; Miklossy, J.; Tauxe, G.M.; McMeniman, C.J.; Zhang, Y. Identification of Essential Oils with Strong Activity against Stationary Phase Borrelia burgdorferi. Antibiotics 2018, 7, 89, https://doi.org/10.3390/antibiotics7040089.
3. Feng, J.; Zhang, S.; Shi, W.; Zubcevik, N.; Miklossy, J.; Zhang, Y. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi. Front. Med. 2017, 4, 169–169, https://doi.org/10.3389/fmed.2017.00169.
4. Ma, X.; Shi, W.; Zhang, Y. Essential Oils with High Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 246, https://doi.org/10.3390/antibiotics8040246.
5. Li, T.; Feng, J.; Xiao, S.; Shi, W.; Sullivan, D.; Zhang, Y. Identification of FDA-Approved Drugs with Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 50, https://doi.org/10.3390/antibiotics8020050.
6. Goc, A.; Rath, M. The anti-borreliae efficacy of phytochemicals and micronutrients: an update. Ther. Adv. Infect. Dis. 2016, 3, 75–82, https://doi.org/10.1177/2049936116655502.
7. Feng, J.; Weitner, M.; Shi, W.; Zhang, S.; Sullivan, D.; Zhang, Y. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library. Antibiotics 2015, 4, 397–410, https://doi.org/10.3390/antibiotics4030397.
8. Zheng, X.; Ma, X.; Li, T.; Shi, W.; Zhang, Y. Effect of different drugs and drug combinations on killing stationary phase and biofilms recovered cells of Bartonella henselae in vitro. BMC Microbiol. 2020, 20, 87–9, https://doi.org/10.1186/s12866-020-01777-9.
9. Feng, J.; Wang, T.; Shi, W.; Zhang, S.; Sullivan, D.; Auwaerter, P.G.; Zhang, Y. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg. Microbes Infect. 2014, 3, 1-8, https://doi.org/10.1038/emi.2014.53
10. Goc, A.; Niedzwiecki, A.; Rath, M. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J. Appl. Microbiol. 2015, 119, 1561–1572, https://doi.org/10.1111/jam.12970.
11. Feng, J.; Eshi, W.; Ezhang, S.; Esullivan, D.; Auwaerter, P.G.; Ezhang, Y. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library. Front. Microbiol. 2016, 7, 743, https://doi.org/10.3389/fmicb.2016.00743.
12. Feng, J.; Zhang, S.; Shi, W.; Zhang, Y. Activity of Sulfa Drugs and Their Combinations against Stationary Phase B. burgdorferi In Vitro. 2017, 6, https://doi.org/10.3390/antibiotics6010010.
13. Zhang, Y.; Alvarez-Manzo, H.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front. Cell. Infect. Microbiol. 2021, 11, https://doi.org/10.3389/fcimb.2021.624745.
14. Theophilus, P.A.S.; Victoria, M.J.; Socarras, K.M.; Filush, K.R.; Gupta, K.; Luecke, D.F.; Sapi, E. Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferi in vitro. Eur. J. Microbiol. Immunol. 2015, 5, 268–280. https://doi.org/10.1556/1886.2015.00031
15. Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLOS ONE 2017, 12, e0176883, https://doi.org/10.1371/journal.pone.0176883.
16. Zhang, Y.; Bai, C.; Shi, W.; Manzo, H.A.; Zhang, Y. Identification of Essential Oils Including Garlic Oil and Black Pepper Oil with High Activity against Babesia duncani. Pathogens 2020, 9, https://doi.org/10.3390/pathogens9060466.
17. Hutschenreuther, A.; Birkemeyer, C.; Grötzinger, K.; Straubinger, R.; Rauwald, H.W. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Die Pharm. 2010, 65.
18. Rauwald, H.W.; Liebold, T.; Grötzinger, K.; Lehmann, J.; Kuchta, K. Labdanum and Labdanes of Cistus creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling. Phytomedicine 2019, 60, 152977, https://doi.org/10.1016/j.phymed.2019.152977.
19. Batiha, G.E.-S.; Magdy Beshbishy, A.; Adeyemi, O.S.; Nadwa, E.H.; Rashwan, E.K.M.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical Screening and Antiprotozoal Effects of the Methanolic Berberis Vulgaris and Acetonic Rhus Coriaria Extracts. Molecules 2020, 25, 550, https://doi.org/10.3390/molecules25030550.
20. Goc, A.; Niedzwiecki, A.; Rath, M. Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia sp. J. Appl. Microbiol. 2017, 123, 637–650, https://doi.org/10.1111/jam.13523.
21. Elkhateeb, A.; Yamada, K.; Takahashi, K.; Matsuura, H.; Yamasaki, M.; Maede, Y.; Katakura, K.; Nabeta, K. Anti-Babesial Compounds from Berberis Vulgaris. Nat. Prod. Commun. 2007, 2, https://doi.org/10.1177/1934578x0700200213.
22. Brorson, O.; Brorson, S.-H. Grapefruit Seed Extract is a Powerful in vitro Agent Against Motile and Cystic Forms of Borrelia burgdorferi sensu lato. Infection 2007, 35, 206–208, https://doi.org/10.1007/s15010-007-6105-0.
23. Goc, A.; Niedzwiecki, A.; Rath, M. Anti-borreliae efficacy of selected organic oils and fatty acids. BMC Complement. Altern. Med. 2019, 19, 1–11, https://doi.org/10.1186/s12906-019-2450-7.
24. Salama, A.A.; AbouLaila, M.; Terkawi, M.A.; Mousa, A.; El-Sify, A.; Allaam, M.; Zaghawa, A.; Yokoyama, N.; Igarashi, I. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol. Res. 2013, 113, 275–283, https://doi.org/10.1007/s00436-013-3654-2.
25. Subeki; Matsuura, H.; Takahashi, K.; Yamasaki, M.; Yamato, O.; Maede, Y.; Katakura, K.; Suzuki, M.; Trimurningsih; Chairul; et al. Antibabesial Activity of Protoberberine Alkaloids and 20-Hydroxyecdysone from Arcangelisia flava against Babesia gibsoni in Culture. J. Veter- Med Sci. 2005, 67, 223–227, https://doi.org/10.1292/jvms.67.223.
26. Batiha, G.E.-S.; Beshbishy, A.M.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352, https://doi.org/10.3390/biom10030352.
27. Batiha, G.E.-S.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick-borne Dis. 2019, 10, 949–958, https://doi.org/10.1016/j.ttbdis.2019.04.016.
28. Goc, A.; Niedzwiecki, A.; Rath, M. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp. Int. J. Biol. Sci. 2016, 12, 1093–1103, https://doi.org/10.7150/ijbs.16060.
29. Batiha, G.E.-S.; Beshbishy, A.M.; Guswanto, A.; Nugraha, A.; Munkhjargal, T.; Abdel-Daim, M.M.; Mosqueda, J.; Igarashi, I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules 2020, 25, 996, https://doi.org/10.3390/molecules25040996.
30. Rauwald, H.W.; Liebold, T.; Straubinger, R.K. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. roots against Borrelia burgdorferi s. s. in vitro. 2011, 628–630, https://doi.org/10.1691/PH.2011.0887.
31. Ma, X.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines With Activity Against Stationary Phase Bartonella henselae. Infect. Microbes Dis. 2021, 3, 158–167, https://doi.org/10.1097/im9.0000000000000069.
32. Rizk, M.A.; El-Sayed, S.A.E.-S.; Igarashi, I. Ascorbic acid co-administration with a low dose of diminazene aceturate inhibits the in vitro growth of Theileria equi, and the in vivo growth of Babesia microti. Parasitol. Int. 2022, 90, https://doi.org/10.1016/j.parint.2022.102596.
33. Potula, H.-H.S.K.; Shahryari, J.; Inayathullah, M.; Malkovskiy, A.V.; Kim, K.-M.; Rajadas, J. Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics 2020, 9, 633, https://doi.org/10.3390/antibiotics9090633.
34. Liegner, K.B. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics 2019, 8, 72, https://doi.org/10.3390/antibiotics8020072.
35. Carvalho, L.J.M.; Tuvshintulga, B.; Nugraha, A.B.; Sivakumar, T.; Yokoyama, N. Activities of artesunate-based combinations and tafenoquine against Babesia bovis in vitro and Babesia microti in vivo. Parasites Vectors 2020, 13, 1–9, https://doi.org/10.1186/s13071-020-04235-7.
36. El-Sayed, S.A.E.-S.; Rizk, M.A.; Yokoyama, N.; Igarashi, I. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasites Vectors 2019, 12, 37, https://doi.org/10.1186/s13071-019-3296-z.