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Abstract: Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphe-
nolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-
products. The objective of this review was to assess the potential health risks associated with the
oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering
both acute and chronic exposure. An electronic literature search was conducted, revealing that
5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic
acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal
and human studies were available for the assessment, which indicated no significant evidence of
toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that
long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to
pose a risk to human health when observed at doses within the normal range of dietary exposure. As
a result, the intake of CQAs from coffee by-products can be considered reasonably safe.

Keywords: novel foods; coffee by-products; chlorogenic acid; CQA; risk assessment; caffeic acid;
quinic acid; caffeoylquinic acid; dicaffeoylquinic acid; toxicology

1. Introduction

Coffee is one of the best-selling and most consumed beverages worldwide [1]. In
Germany, the coffee consumption per person is four cups a day, which corresponds to 6.7 kg
of coffee beans per year [2]. There are several thousand varieties of the Coffea genus, with
Coffea arabica and Coffea canephora being the most important species. Coffee is particularly
cultivated and produced in tropical and subtropical regions along the equator (the so-called
“coffee belt”), where ideal growth is possible due to the constantly warm temperatures and
humid climate without extreme weather fluctuations. The most important coffee producers
include Brazil, Vietnam, Colombia, Indonesia, Ethiopia, and India [2–4]. In addition to
the main ingredient, caffeine (1a), the purine alkaloids theophylline (1b) and theobromine
(1c), the diterpenes kahweol (2), cafestol (3a), and 16-O-methylcafestol (3b), as well as the
flavonoid epigallocatechin gallate (4) and the polyphenolic chlorogenic acids (5) are present
in coffee; these are shown in Figure 1 [4–6].

Due to the global climate crisis, the weather has changed to more extreme temperatures
and less rainfall all over the planet. Hotter temperatures and extended dry periods in
summer and extreme unusual frosts in winter have caused enormous coffee harvest losses
over the last few years, which have also increased the price of coffee worldwide. Attempts
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are now being made to use all components of the coffee plant (the so-called “coffee by-
products”) in addition to the coffee bean itself to increase sustainable coffee production
and to reduce its carbon footprint.
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Furthermore, the process of coffee production generates much waste (in the form of
by-products) and wastewater. Especially with the many washing steps during production,
large amounts of contaminated water with high carbon loading accumulate, which in turn
represents a high environmental burden [7,8]. One of the most promising options to reduce
the environmental impact of coffee production and make the process more sustainable is to
utilize the resulting by-products by using the biologically active substances; for example,
as functional food, novel food ingredients, or food supplements [8,9].

Before coffee by-products can be marketed in the food sector within the European
Union (EU), it is of great importance that they acquire approval as novel foods. Novel
foods are foods and/or food ingredients that are relatively new to the European market
and therefore have no history of use as safe foods for human consumption [10]. The
European legal framework for novel foods intends to protect human health and consumer
interests. Regulation (EU) No. 2015/2283 defines “novel food” as any food that was
not used for human consumption to a significant extent within the Union before 15 May
1997 [11,12]. Both the classification as traditional food from non-EU countries and the full
application for authorization as a novel food require data of sufficient quantity and quality,
including a description of the novel food, its manufacture, chemical analysis methods, and
analytical and toxicological data to demonstrate that there is no safety risk to human health.
The European Commission is responsible for the authorization of novel foods, which is
often supported by the European Food Safety Authority (EFSA) since the EFSA carries
out toxicological risk assessments to ensure (food) safety. Common coffee by-products,
defined as any product derived from coffee production other than roasted coffee, are coffee
flowers (blossoms), leaves, coffee cherry materials (husks, cascara, dried or fresh coffee
cherries, and coffee pulp or mucilage), silver skin, parchment, green unroasted beans,
and spent coffee grounds (Figure 2) [10,13–15]. This review deals with the fundamental
aspects of the substance class of chlorogenic acids—their structural diversity, natural
occurrence, and biological activities—and provides an insight into biosynthetic and totally
synthetic approaches. This review also highlights the concentrations of chlorogenic acids in
known coffee by-products and whether this poses a risk to human health and whether the
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consumption of these coffee by-products is safe and toxicologically harmless. In addition, a
recommendation for the maximum daily intake in relation to chlorogenic acids in coffee
by-products is suggested.
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2. Literature Research

For this review, electronic searches of the literature were conducted, including of the
databases PubMed (National Library of Medicine, Bethesda, MD, USA) and Google Scholar
(Google LLC, Mountain View, CA, USA). A broad scope of search terms (and combinations
thereof) was used, including coffee by-products, chlorogenic acid, caffeoylquinic acid, and
toxicology of chlorogenic acid. In addition, standard works of literature were used to
provide knowledge of the historical, botanical, biochemical, and synthetic background.
Furthermore, databases such as the US Department of Agriculture (USDA) database as well
as the EFSA homepage were searched for terms such as chlorogenic acid, caffeoylquinic
acid and dicaffeoylquinic acid. No specific time restrictions were imposed for the selection
of the literature in this review, as the rationale was to include a comprehensive overview
and because much of the available literature on the topic comprises older publications.

3. Chlorogenic Acids

The quinic acid derivatives shown in this review conform to the IUPAC nomenclature.
Unfortunately, there are many publications depicting structures that are not numbered
according to the IUPAC system, or that do not specify the applied numbering system. The
authors have diligently aligned the nomenclature in all reviewed papers to conform with
IUPAC usage.

3.1. Structures, Properties, and Natural Occurrence

Originally, the naturally occurring esters of trans-configurated caffeic acid (6) and
(–)-quinic acid (7) were known by the trivial name chlorogenic acid (CQA, singular). In
1846, Payen used the term “chlorogen acid” for the first time and isolated the crystalline
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potassium caffeine chlorogenate complex from green coffee (Coffea arabica) [16,17]. The
name chlorogenic acid comes from the Greek χλωρóς (khloros, light green) and γένoς
(ghenos, producing) and refers to the intense green color that results when chlorogenic acids
are oxidized [2]. The origin of the name may also be due to a green color that appears
when chlorogenic acid is treated with an aqueous solution of ammonia in the presence of
atmospheric oxygen [18]. The prefix “chloro” is misleading in that the substances have
no chlorine atoms in their chemical structure. The first time that pure chlorogenic acid
was obtained in crystalline form with a melting point of 206–207 ◦C was in 1907, with
evidence being provided by the formation of caffeic acid and quinic acid after alkaline
hydrolysis [19]. Twenty-five years later, Freudenberg confirmed that chlorogenic acid is a
caffeic acid–quinic acid conjugate [20].

Today, several structurally similar compounds belong to the class of chlorogenic acids
(CQAs, plural), which also includes esters of other hydroxycinnamic acids such as ferulic
acid (8) and p-coumaric acid (9) [21–25]. Chlorogenic acids are secondary metabolites and
belong to the biologically active dietary polyphenols with a phenylpropanoid moiety. They
are found in numerous plants, fruits, and vegetables [26] and play an important role as
an intermediate in the biosynthesis of lignin [27,28]. Figure 3 shows an overview of the
chemical structures of the main chlorogenic acids (10–13).
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It was not until 1932 that Fischer and Dangschat suggested that the substance isolated
by Freudenberg must be 3-caffeoylquinic acid (3-CQA, 10a) [29]. According to today’s
IUPAC nomenclature, the 3-CQA postulated by Fischer and Dangschat is 5-caffeoylquinic
acid (5-CQA, 11a). Various publications on further structural analogues followed in the
subsequent years.

To date, over 80 different chlorogenic acids have been identified exclusively in green
coffee [30], and more than 400 CQAs are currently known [31]. The structural diversity of
chlorogenic acids results from the fact that the hydroxycarboxylic acid has four hydroxy
groups that are arranged differently in space. According to the IUPAC nomenclature, the
two hydroxy groups at C3 and C4 of (–)-quinic acid (7) are arranged equatorially, while
the OH group at position 5 is axial (see Figure 4) [32,33]. Each of these OH functions of
(–)-quinic acid can form corresponding esters with the hydroxycinnamic acid derivatives 6,
8, and 9. In addition to the chlorogenic acids shown in Figure 3, other hydroxycinnamic
acid–quinic acid conjugates are also known, e.g., those made from sinapinic acid or 3,4,5-
trimethoxycinnamic acid and (–)-quinic acid (7) or multiple mixed esters such as caffeoyl-
feruloylquinic acids (CFQAs) [7,15,34].
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Among the configurational/conformational/regio-isomers 3-CQA (10a), 4-CQA (12a),
5-CQA (11a) and 1-CQA (13), 5-CQA (11a) is the most prevalent chlorogenic acid in cof-
fee [15,35]. The epimer 1-CQA (13) occurs in nature very rarely and in very small amounts.
Parejo et al. were able to identify 1-CQA in fennel (Foeniculum vulgare) using LC-DAD-ESI-
MS/MS as the chromatographic method [36].

In addition, the chlorogenic acids can be converted into one another by transesteri-
fication (Figure 5). The solvent used in the extraction process also has an impact on the
transesterification reaction. For example, the chlorogenic acid 1-caffeoylquinic acid (13),
which tends to be underrepresented in plants, can be formed via acyl migration being
accelerated by an increased amount of water in the organic extractant or in the plant ma-
terial [37–39]. Transesterification reactions are also possible with FGAs and p-CoGAs in
order to obtain the other structural isomers.

In addition to caffeine, chlorogenic acids occur as an ingredient in green and roasted
coffee [40]. However, the content of chlorogenic acids in green coffee is greater than in
roasted coffee [41–44]. During the roasting process, CQAs can be converted by dehydration
into chlorogenic acid lactones such as 3-O-caffeoylquinic-1,5-γ-lactone (3-CGL, 14) and
5-O-caffeoylshikimic acid (dactylifric acid, 15), which results in a decreased amount of
classic CQAs [29,45,46]. Figure 6 shows examples of possible roasted products based on
monocaffeoylquinic acids.
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The monocaffeoylquinic acids can be found in numerous plants, such as valerian (Vale-
riana officinalis) [47], sunflower (Helianthus annuus) [48], bamboo (Phyllo-stachys edulis) [49],
heather (Calluna vugaris from Ericaceae) [50], lemon balm (Melissa officinalis) [51], nettle
(Urtica dioica) [52], and Japanese honeysuckle (Lonicera japonica) [53], but also in the pulp
of blueberries (Vaccinium corymbosum) [54], apples (Malus domestica) [55], grapes (Vitis
vinifera) [56], eggplant (Solanum melongena) [57], peaches (Prunus persica) [58] and dried
plums (Prunus domestica) [59], and in the roots of chicory (Cichorium intybus) [60]. Chloro-
genic acid (11a), cryptochlorogenic acid (12a), and neochlorogenic acid (10a) can also be
detected in the leaves of the African mallow (Hibiscus sabdariffa from Malvaceae) [61] and in
walnuts (Juglans regia) [62].

Structures having more than one caffeic acid residue are called dicaffeoylquinic acids
or isochlorogenic acids and can be found, e.g., in coffee and in plants of the family Aster-
aceae [63]. Prominent isochlorogenic acids are shown in Figure 7. The most abundant
isochlorogenic acid in extracts from Indian pennywort (Centella asiatica from Apiaceae) and
other plant sources is 3,5-DCQA (16a) [64,65]. In 1954, the dicaffeoylquinic acid 1,3-DCQA
(16b) was isolated and characterized as the first 1-acyl quinic acid from the artichoke
(Cyanara cardunculus) [21,66]. Also called cynarine, 1,3-DCQA (16b) has antioxidant and
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anticholinergic effects. Other isochlorogenic acids have also been found in the leaves of
sweet potato (Ipomoea batatas) and white and green tea (Camellia sinensis) [67].

Molecules 2023, 28, x FOR PEER REVIEW 8 of 37 
 

 

 

Figure 7. Cont.



Molecules 2023, 28, 5540 8 of 35Molecules 2023, 28, x FOR PEER REVIEW 9 of 37 
 

 

 
Figure 7. Structures of di-, tri- and tetra-caffeoylquinic acids. 

Chlorogenic and isochlorogenic acids have demonstrated various effects in several 
studies. CQAs have antioxidant [68], antibacterial [69], antiviral [70], antidiabetic [71], 
neuroprotective [72,73], anti-inflammatory [74], and cytostatic effects [75,76]. CQAs have 
been used therapeutically in some clinical treatments as well, e.g., in the treatment of car-
diovascular diseases [77] and arterial hypertension (high blood pressure) [78]. The broad 
scope of bioactivities and pharmacological applications have attracted much attention 
from research scientists. Novel synthetic chlorogenic-acid amide analogues have shown 
both higher chemical stability compared with classic chlorogenic acids and biological ac-
tivity against the hepatitis C virus [79]. Several other chlorogenic acid derivatives have 
also been made synthetically accessible and have other promising properties; for example, 
they have an antifungal effect and effectively inhibit the HIV integrase/protease [80]. 

In addition to chlorogenic acid and isochlorogenic acid, there are other quinic acid 
conjugates with a higher number of caffeoyl residues. Figure 7 shows the chemical struc-
tures of known tri- and tetracaffeoylquinic acids. The ubiquitous occurrence of 
tricaffeoylquinic acids (TCQAs) in the plant kingdom has been known for a long time. 
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Chlorogenic and isochlorogenic acids have demonstrated various effects in several
studies. CQAs have antioxidant [68], antibacterial [69], antiviral [70], antidiabetic [71],
neuroprotective [72,73], anti-inflammatory [74], and cytostatic effects [75,76]. CQAs have
been used therapeutically in some clinical treatments as well, e.g., in the treatment of
cardiovascular diseases [77] and arterial hypertension (high blood pressure) [78]. The broad
scope of bioactivities and pharmacological applications have attracted much attention from
research scientists. Novel synthetic chlorogenic-acid amide analogues have shown both
higher chemical stability compared with classic chlorogenic acids and biological activity
against the hepatitis C virus [79]. Several other chlorogenic acid derivatives have also been
made synthetically accessible and have other promising properties; for example, they have
an antifungal effect and effectively inhibit the HIV integrase/protease [80].

In addition to chlorogenic acid and isochlorogenic acid, there are other quinic acid con-
jugates with a higher number of caffeoyl residues. Figure 7 shows the chemical structures
of known tri- and tetracaffeoylquinic acids. The ubiquitous occurrence of tricaffeoylquinic
acids (TCQAs) in the plant kingdom has been known for a long time. Bates et al. character-
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ized and identified 3,4,5-TCQA (17a) for the first time in 1983 from methanolic extracts of
black-banded rabbitbrush (Chrysothamnus paniculatus of the Compositae family) [81].

In 1993, Agata et al. detected 1,3,5-TCQA (17b) in the fruits of the common cocklebur
(Xanthium strumarium) [82]. A year earlier, Merfort reported the discovery of 1,4,5-TCQA
(17c) from the flowers of Arnica montana and Arnica chamissonis by extraction with ethyl
acetate [83]. In 2018, Liu et al. demonstrated the occurrence of 1,3,4-TCQA (17d) in
Duhaldea nervosa chromatographically and spectroscopically [84]. Since then, the number
of tricaffeoylquinic acids in different plants with a variety of biological activities has
increased significantly. Kim et al. reported the interesting observation that sunlight
significantly increases the amount of CQAs when isolating and quantifying 1,3,4-TCQA
and 1,3,5-TCQA from Ligulara fischeri [85]. The antihyperglycemic effect of 3,4,5-TCQA
was confirmed in a study with a water-soluble fraction of Brazilian propolis [86]. In 1994,
Scholz et al. discovered 1,3,4,5-O-tetracaffeoylquinic acid (18) from the aerial parts of
Pluchea symphytfolia [87], which showed significant inhibition on the growth of bacterial
strains such as Escherichia coli, Bacillus subtilis, and Micrococcus luteus and had a weak
anthelmintic effect in in vitro studies [88]. In addition to the TetraCQA (18) isolated by
Scholz et al., cyclobutane structural analogues have also been found, which formally result
from a pericyclic reaction via the [2+2]-cycloaddition between two neighboring caffeoyl
residues [60]. It is particularly impressive that 1,3,4,5-O-tetracaffeoylquinic acid (18) inhibits
Trypanosoma brucei RTPase Cet1 (TbCet1) extraordinarily effectively but is, on the other
hand, necessary for the proliferation of procyclic cells [89]. Using a colorimetric high-
throughput screening (HTS) assay, the inhibitory activity (IC50) of TetraCQA was found to
be in the submicromolar range at 13 nM and is the most effective inhibitor compared with
around 20 other TbCet1 inhibitors. Isochlorogenic acid A (16a) is also effective at inhibiting
TbCet1, with an IC50 of 70 nM. The number of naturally occurring derivatives of the CQA
family could be determined as follows: DCQA > TCQA > TetraCQA [7].

3.2. Biosynthetic Pathways and Totally Synthetic Approaches

Plants can biosynthesize chlorogenic acids through a combination of the shikimic acid
pathway and the phenylpropanoid pathway (Figure 8), with CQAs being an important in-
termediate in the biosynthesis of lignin [16,81,90]. The shikimic acid pathway starts with the
enzyme-catalyzed cyclization of phosphoenolpyruvate (PEP, from glycolysis) and erythrose
4-phosphate (E4P, from the pentose phosphate pathway), in which 3-dehydroquinic acid is
formed via 3-deoxyarabinoheptulosanate-7-phosphate (DAHP). Following the dehydratase-
catalyzed elimination of water, 3-dehydroshikimic acid is then formed, which reacts by
redox reaction under the influence of NADPH to form shikimic acid. The key intermediate,
shikimic acid, is then converted into chorismic acid by ATP-dependent kinase-catalyzed
phosphorylation and subsequent phosphate elimination. The cyclohexadiene prephenic
acid is then formed by the enzymatically catalyzed Claisen rearrangement, which, after
decarboxylation and subsequent transamination, results in the product of the shikimic
pathway, L-phenylalanine. L-phenylalanine is the starting point of the phenylpropanoid
pathway [91]. In the first step, ammonia is split off via phenylalanine ammonia lyase (PAL),
resulting in cinnamic acid as a reaction product. Then, via p-coumaric acid, cinnamate
4-hydroxylase (C4H) and 4-hydroxycinnamoyl-CoA ligase (4CL) generate caffeic acid as
another important key intermediate in the biosynthetic pathway of CQAs. Starting from
caffeic acid (6), for example, 5-CQA (11a) can be formed in two different ways: (a) by 4CL
via caffeoyl-CoA with a subsequent transferase-catalyzed (HCT/HQT) reaction and (b) by
UGT84 via caffeoyl glucoside with a subsequent hydroxycinnamoyl D-glucose: quinate
hydroxycinnamoyl transferase (HCGQT)-catalyzed reaction [92,93]. Also known is the
synthesis of 5-CQA by (c) the enzymatic reaction of p-coumaric acid (9) to p-coumaroyl-
CoA and the subsequent formation of p-coumaroylquinic acid. A subsequent reaction
with the enzyme coumarate 3-hydroxylase (C3H) then allows biosynthetic access to 5-CQA
(11a) [94]. How plants produce DCQAs or even TCQAs biosynthetically has not yet been
fully elucidated, but it is likely that the acylation of monocaffeoylquinic acids with caffeoyl-
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CoA is catalyzed by HCT/HQT, which has already been demonstrated in tomatoes and
sweet potatoes [95,96].
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However, since plants always contain mixtures of many secondary metabolites, the
isolation of CQAs from the corresponding plant extracts involves a great deal of effort.
When extracting CQAs from plant material, chlorogenic acids can undergo various degra-
dation reactions and/or isomerization under the influence of temperature, pH, and light,
so the original CQA ratio can be strongly influenced and even falsified [97]. In addition
to the storage conditions of plant materials, problems are also caused by thermal process
steps that have an impact on the amount and ratio of chlorogenic acids. As mentioned
before, the proportion of chlorogenic acids in thermally treated, and thus roasted, coffee is
significantly reduced compared with green coffee [98]. Chemical conversion processes such
as epimerization, acyl migration, and dehydration are responsible for this [99]. In order to
adequately investigate the diverse biological activities of CQAs, chemical syntheses for the
preparation of larger amounts of CQAs in pure form have come into focus. To date, there
are only a few totally synthetic strategies starting from differently protected quinic acid and
caffeic acid derivatives with moderate to good yields. An overview of possible synthesis
strategies for 5-CQA (11a) starting from quinic acid acetals is shown in Figure 9 [100–102].
In 1955, Panizzi et al. reported the first synthesis of 5-CQA (11a). However, the synthesis
from quinic acid was only possible in seven steps, with a low yield of <5% [103,104]. The
choice of the protecting group and its removal as quantitatively as possible in the final step
of the synthesis proved to be a major challenge. During the synthesis, it is important to
keep in mind that deprotection under basic conditions should be avoided, since CQAs
have been shown to be sensitive to oxidation reactions. Synthetic strategies should there-
fore exclusively rely on protecting groups that can be removed under acidic conditions.
Hemmerle et al. were able to produce 5-CQA in a 5-step synthesis with an overall yield
of 20–32%, starting from a quinic acid acetal and using acid-labile-protecting groups [91].
Sefkow was the first to be able to increase the yield in the synthesis of 5-CQA in 2001 to 65%,
when he presented a 4-step synthesis strategy starting from quinic acid (7) that proceeded
via a fully silyl-protected isolable intermediate and that also used acid-labile-protecting
groups [92]. Fourteen years later, Kadidae et al. reported a short total synthesis of 5-CQA,
but this synthetic approach was not quite as successful (with 35% over four steps) as that
of Sefkow [93]. From the point of view of sustainability, the synthesis route of Hemmerle
et al. was the best, as predominantly inexpensive and stable reagents were used. To date,
however, the synthesis of 5-CQA according to Sefkow’s synthetic protocol is the most
promising route, with the fewest number of synthetic steps and the highest yield. Sefkow
et al. also reported synthetic strategies for the synthesis of 1-CQA, 3-CQA, and 4-CQA
via quinic acid acetals with differently protected caffeic acid derivatives [105]. In addition,
synthesis routes for the preparation of isochlorogenic acids are also known in the literature;
however, these synthesis routes have not yet been able to surpass the synthesis protocol of
Sefkow, and they are only associated with low to moderate yields [106–109].

The synthesis of tri-O-caffeoylquinic acids (TCQAs) from acetal-protected quinic acid
lactones by acylation has been successfully demonstrated several times using a variant of
the Schotten–Baumann method and via Steglich esterification [81,110].
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4. Amounts of CQA in Coffee By-Products

As already mentioned, chlorogenic acids are found in a variety of plants. In coffee, the
level of CQAs can vary widely depending on the degree of roasting and the geographical
origin. The CQA content in roasted coffee ranges from 0.4–3.4 g/100 g (C. arabica) and
2.1–6.4 g/100 g (C. canephora) [44,111–113], while the amount of 5-CQA in green coffee has
been shown to be higher at 6.0–9.0 g/100 g [114,115]. Processing, especially roasting, modifies
dramatically the phenolic composition of coffee, but creates the characteristic aroma, flavor,
and color of coffee beverages. In comparison with coffee and Prunus spp. cherry juice
(85 mg/L), parts of the potato plant (leaves, sprout, root material) and the uncooked potato
tuber contain very little amounts of 5-CQA, about 0.02–0.75 g/100 g [116,117]. Table 1 shows
the amounts of monocaffeoylquinic acids and dicaffeoylquinic acids (isochlorogenic acids
A–C) from coffee by-products with reference to the literature. It is noticeable that the respective
values for CQAs in all coffee by-products vary quite widely. This is due to a number of factors,
such as species and variety, different post-harvest processing methods, degree of ripeness,
extent of environmental conditions, agricultural practices, and region of origin. What is also
striking is that 5-caffeoylquinic acid (11a) is the most frequently occurring monocaffeoylquinic
acid in all coffee by-products in terms of quantity, and the amounts of 3-CQA and 4-CQA
are comparatively low. For this reason, the total amount of polyphenolic compounds is
often given in the literature, with 5-CQA making up the largest proportion. Based on the
amount of 5-CQA, the following sequence of coffee by-products can be formulated according
to the amounts in Table 1: coffee husks > coffee pulp > silver skin > spent ground coffee >
green unroasted beans > coffee leaves > coffee flowers (blossoms) > parchment. From the
dicaffeoylquinic acids, 3,5-DCQA (16a) is mostly found in coffee by-products, although not all
coffee by-products have been shown to contain DCQA in the literature.
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Table 1. Amounts of chlorogenic acids in coffee by-products.

Coffee
By-Product

Chlorogenic Acid Content, Expressed in [g/100 g] (unless Otherwise Stated) *
Ref.3-CQA

(10a)
4-CQA
(12a)

5-CQA
(11a)

3,4-DCQA
(16d)

3,5-DCQA
(16a)

4,5-DCQA
(16c)

coffee flowers
(blossoms)

n.r. n.r. 0.13–2.64 0.01–0.25 0.19–5.84 n.r. [118]

0.01–0.07 (in total) [119]

coffee leaves
0.04–0.30 0.09–0.84 1.39–5.58 0.03–0.18 0.01–1.13 0.01–0.12 [120]

1.1–18.0 mg/L 4.2–30.0 mg/L 1.0–190.0 mg/L ** n.r. n.r. n.r. [121]

coffee pulp

n.r. n.r. 0.03–0.13 n.r. n.r. n.r. [122,123]

n.r. n.r. 2.3 n.r. n.r. n.r. [124]

0.03 0.04 0.22 0.05 0.06 0.03 [125]

n.r. n.r. 0.13–2.44 n.r. n.r. n.r. [126]

n.r. n.r. 2.40 n.r. n.r. n.r. [127]

coffee husk

n.r. n.r. 13.3 n.r. n.r. n.r. [124]

0.01 0.02 0.57 0.08 0.15 0.04 [125]

n.r. n.r. 2.50 n.r. n.r. n.r. [127]

n.r. n.r. 0.04–0.17 n.r. n.r. n.r. [128]

n.r. n.r. 0.17 n.r. n.r. n.r. [129]

n.r. n.r. 0.02–0.17 n.r. n.r. n.r. [128]

n.r. n.r. 69.9 mg/L ** n.r. n.r. n.r. [130]

silver skin

1.80–5.16 2.38–6.02 7.33–8.98 0.93–1.04 0.55–1.00 0.79–1.06 [131]

0.15 0.09 0.20 n.r. n.r. n.r. [132]

n.r. n.r. 2.2 n.r. n.r. n.r. [133]

n.r. n.r. 0.94–2.13 n.r. n.r. n.r. [129]

n.r. n.r. 0.39 n.r. n.r. n.r. [134]

n.r. n.r. 20–30 mg/L ** n.r. n.r. n.r. [130]

n.r. n.r. 0.02–0.04 n.r. n.r. n.r. [134]

n.r. n.r. 3.00 n.r. n.r. n.r. [127]

parchment
n.r. n.r. 0.61 n.r. n.r. n.r. [129]

n.r. n.r. 0.40 n.r. n.r. n.r. [135]

spent coffee grounds

1.50 1.62 1.87 0.29 1.00 1.70 [131]

n.r. n.r. 2.30 n.r. n.r. n.r. [127]

0.62–1.32 (in total) 3.31–5.79 (in total) [136]

green unroasted beans
1.25 1.94 13.4 0.66 1.10 0.63 [131]

n.r. n.r. 3.6–4.4 n.r. n.r. n.r. [135]

* n.r. = not reported; ** data reported for a beverage prepared from the material. For standardization and for a
better comparison of the values among each other, the values found in the literature were converted into the unit
[g/100 g].

Wirz et al. determined a maximum content of 5-CQA in coffee flowers (blossoms) of
2.64 g/100 g, whereas the amounts of 3-CQA and 5-CQA were negligibly small or little
investigated. A concentration of up to 5.84 g/100 g 3,5-DCQA and only 0.25 g/100 g 3,4-
DCQA was found in coffee flowers. The concentration of 3,5-DCQA is about twice as high as
the concentration of 5-CQA. A similarly high concentration of up to 5.79 g/100 g DCQAs was
also found in spent coffee grounds. Even if the information relates to the total amount of all
dicaffeoylquinic acids, it can be assumed that 3,5-DCQA (isochlorogenic acid A) is the main
isochlorogenic acid in terms of quantity. Using HPLC, a concentration of up to 5.58 g/100
g 5-caffeoylquinic acid could be determined from coffee leaves [118]. The content of 3-CQA
and 4-CQA and especially the concentration of isochlorogenic acids were extremely low in
comparison. Rodriguez-Gomez et al. determined the concentration of 5-CQA in coffee leaves
using LC-EC and LC-qToF-MS to be 1.0–190 mg/L [121], with the different concentrations
often varying greatly for reasons already explained. At 0.13–2.44 g/100 g, 5-CQA is also
the monocaffeoylquinic acid in coffee pulp with the highest concentration. According to
Esquivel et al., 3,4- and 3,5-DCQA are represented 2 to 40 times less abundantly than 5-CQA
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at 0.06 g/100 g [125]. In contrast, in coffee husks, Palomino Garcia et al. found a 5-CQA
concentration of 13.3 g/100 g. A similarly high concentration of 5-CQA (13.4 g/100 g) was
found by Regazzoni et al. in green unroasted coffee beans using HPLC-UV for quantification.

In silver skin, the concentration of 5-caffeoylquinic acid (5-CQA) determined from the
literature is between 0.02 (minimum) and 9.0 g/100 g (maximum). Only Regazzoni and
co-workers were able to extract and quantify the other mono- and dicaffeoylquinic acids by
liquid chromatography [131]. In comparison with the other coffee by-products, the deter-
mined concentrations of 3-CQA (up to 5.16 g/100 g) and 4-CQA (up to 6.02 g/100 g) come
very close to the concentration of the main chlorogenic acid 5-CQA (up to 8.89 g/100 g),
while in other by-products 3-CQA and the 4-CQA occur in low concentrations compared
with 5-CQA. The concentration of dicaffeoylquinic acids in silver skin, on the other hand, is
largely equally distributed among the three DCQAs in a ratio of about 1:1:1 (each with up to
1.00 g/100 g) [131]. On the contrary, the concentration of 5-CQA in the coffee by-products
parchment and spent coffee grounds is quite low at 0.4–0.61 g/100 g and 1.32–2.30 g/100 g,
respectively [127,129,131,136]. However, it is interesting that the monocaffeoylquinic acids
3-CQA, 4-CQA, and 5-CQA in spent coffee grounds occur in a ratio of about 1:1.1:1.3 and
differ less in terms of quantity than in other coffee by-products [131].

According to Murthy and Naidu, coffee by-products in total contain about 2.3–3.0%
chlorogenic acids as the phenolic compound [137]. To verify this statement, the concen-
trations from the literature (from Table 1) for each coffee by-product were listed using the
unit g/100 g, which allows the direct conversion into a percentage (%). Table 2 shows the
results. The literature concentrations result in a concentration range of 0.8–5.5% (min–max)
chlorogenic acids, with a total average value of 3.1%. The determined range is a bit wider
than given by the authors, but the calculated total average value fits very well.

Table 2. Amounts of 5-caffeoylquinic acid in coffee by-products.

Coffee By-Product Min (%) Max (%) Average (%)

coffee flowers (blossoms) 0.01 2.60 1.31

coffee leaves 1.39 5.60 3.50

coffee pulp 0.03 2.40 1.22

coffee husk 0.02 13.3 6.66

cascara 0.01 0.01 0.01

silver skin 0.02 8.98 4.50

parchment 0.40 0.61 0.51

spent coffee grounds 1.32 2.30 1.81

green unroasted beans 3.60 13.4 8.50

total 0.76 5.47 3.11

For comparison, Belitz et al. reported that green coffee from C. arabica contains 3.0–5.6%
and C. canephora 4.4–6.6% chlorogenic acid (based on dry matter), while the chlorogenic
acid content in roasted coffee is 2.7% for C. arabica and 3.1% for C. canephora, based on the
dry matter [138]. Perrone et al. describe a chlorogenic acid content of 4–12% in the raw
coffee components in the mass [139], which can be attributed to the transformation into
related compounds (see Figure 6).

5. Absorption, Distribution, Metabolism, and Excretion

How a substance is absorbed in the body, distributed, metabolized, and then elimi-
nated (ADME) depends largely (but not exclusively) on the physical and chemical proper-
ties of the substance. Important physical and chemical properties of 5-CQA and 3,5-DCQA
are shown in Table 3. The pharmacokinetics of phytochemical hydroxycinnamic acids
(including chlorogenic acids) have been extensively studied over the last few years. In
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terms of quantity, 5-CQA and 3,5-DCQA are the most frequently occurring chlorogenic
acids in coffee by-products, which is why only these two representatives are considered in
more detail below.

Table 3. Chemical and physical properties of 5-CQA and 3,5-DCQA [140] *.

Parameter 5-Caffeoylquinic Acid
(5-CQA)

3,5-Dicaffeoylquinic Acid
(3,5-DCQA)

CAS 327-97-9 2450-53-5

chemical formula C16H18O9 C25H24O12

molecular weight 354.31 g/mol 516.45 g/mol

solubility
soluble in hot water

(40 mg/mL at 25 ◦C),
ethanol and acetone

soluble in DMSO (slightly)
and methanol (slightly)

form solid, white crystals hygroscopic solid,
off-white to pale yellow

pKa 3.33 [141] 3.54 (predicted)

logP −0.4 1.0

MP 210 ◦C 170–172 ◦C

LD50 4000 mg/kg (rat, i.p.) 2154 mg/kg (rat, p.o.) [142]
* Data from the National Library of Medicine (NIH) at PubChem and MSDS from Merck (unless otherwise stated).

The positive health effects triggered by chlorogenic acids after oral intake correlate with
their bioavailability in the body. The overall oral bioavailability depends on certain factors,
including water solubility and (chemical) stability but also physicochemical properties
(summarized in Table 3). Water solubility plays a major role, since substances must be
dissolved in order to be absorbed in the gastrointestinal tract [143]. According to Horter
et al., chlorogenic acid as well as hydroxycinnamic acids such as caffeic acid, ferulic acid,
rosmarinic acid, and p-coumaric acid have a water solubility of >0.1 mg/mL, characterizing
them as water-soluble compounds [141].

In all gastrointestinal assays, it could be shown that CQAs have a stability of 48% [144].
A study by Ren et al. showed that the gastric and intestinal phases chemically affected the
stability of CQAs [145]. The stability is due to the structure of CQAs: the ester function is a
reactive part and a good target for nucleophilic substrates such as amino acids, peptides,
and proteins and can lead to secondary products. Furthermore, it is already known
that CQAs undergo pH-dependent isomerization reactions. It was shown that 5-CQA is
converted into the isomer in rats, human plasma, and phosphate buffer at 37 ◦C and a pH
of 7.4 [146].

In in vitro studies, the intracellular accumulation of hydroxycinnamic acids was de-
termined to be <2%, and the rate of transport, defined as the amount permeating toward
the basolateral membrane, for 5-CQA was 0.1–0.3%. In comparison with other prominent
hydroxycinnamic acids such as caffeic acid, coumaric acid, and rosmarinic acid, the rate of
transport of CQAs was the lowest [147]. In the acidic pH of gastric cells (pH = 3.0), 50% of
5-CQA exists in its uncharged form, whereas the remaining 50% negatively charged, exists
in Caco-2 cells (pH = 7.4) [143,148].

The metabolism of 5-CQA is formally divided into phase 1 (functionalization) and
phase 2 (conjugation), and the enzymes mainly involved and responsible for the degrada-
tion of drugs are the cytochrome P450 isoenzymes (CYP), catechol-O-methyltransferase
(COMT), sulfotransferases (SULTs), and UDP-glucuronosyltransferases (UGTs). These
enzymes metabolize 5-CQA by isomerization, hydrolysis (forming caffeic acid), methyla-
tion (forming 5-feruloylquinic acid, 5-FQA), glucuronidation (forming CQA glucuronide),
and sulfonation. The microbial metabolism in the intestinal tract with human fecal mi-
crobiota revealed that 5-CQA was undetectable over a time interval of 0.5–2.0 h and that
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3-hydroxyphenylpropionic acid (3-HPPA) was identified as a metabolite [149]. Ludwig
et al. reported in an in vitro study that after 6 h incubation of 5-CQA with human fecal
microbiota, 11 metabolites were formed, with 3-HPPA, dihydroxycaffeic acid, and dihy-
droxyferulic acid making up 75–83% [150]. Additionally, it is known from ex vivo studies
that the amount of 5-CQA absorbed in the porcine jejunal segment is less than 1.5% and that
5-CQA is more permeable in the duodenum than in the ileum, jejunum, and colon [151]. In
an in situ study by Lafay et al., when 5-CQA was administered into the stomach of rats,
9.4% of 5-CQA was recovered in the gastric vein and 4.6% of 5-CQA was recovered in the
aorta in its intact form, with no evidence of metabolite formation [152].

In order to obtain further pharmacokinetic data and in particular, information on
distribution, experiments were carried out on Wistar rats, Sprague-Dawley rats, and Kun-
ming mice with oral doses of 1–1200 mg/kg body weight (bw) [143]. At an oral dose of
50 mg/kg bw in Wistar rats, a volume of distribution (VD) of 97.5 L/kg and a clearance
(CL) of 39.0 L/h/kg could be determined. The low VD value of 5-CQA also indicates a
tissue distribution since the values were superior to the real animal body volume [153].
In low doses of 1.0–8.0 mg/kg in Sprague-Dawley rats, the clearance was determined at
the maximum time of Tmax = 0.25–1.50 h to be 0.62–0.73 L/h/kg [154]. Considering the
physicochemical characteristics of hydroxycinnamic acids, ferulic acid is the most lipophilic
compound with a plasma protein-binding value of 73.5%, while 5-caffeoylquinic acid has a
plasma protein-binding value of only 25.6% [155]. According to studies by De Oliveira et al.,
specific tissues reached by 5-CQA were the kidney, liver, and muscle [156]. Quantitative
tissue distribution analyses were carried out by Chen et al. with the result that 5-CQA was
distributed in the body in the following order: liver > kidney > heart > spleen > lung (based
on the observed area under the curve, AUC) [157]. The excretion rate of 5-CQA (free form)
in the urine over a period of 6–48 h was only 0.04% and is therefore negligible [158]. How-
ever, studies with a reduced time (8–24 h) showed even higher values than the 48 h study,
with 0.07–0.50% for 5-CQA [159,160]. The 5-CQA renal clearance (CL = 0.15–0.29 L/h/kg)
demonstrated that the hepatic extraction ratio was responsible for 23.1–28.2% of the 5-CQA
elimination [154,161] and implied that 5-CQA underwent renal metabolism [143].

Not much is known about the pharmaco-/toxicokinetics of 3,5-dicaffeoylquinic acid
compared with 5-CQA. Wang et al. reported in a study that 3,5-DCQA is metabolized
to CQA and caffeic acid and excreted with a clearance of 1.07 L/h/kg [162]. The same
group undertook in-depth investigations into the excretion of 3,5-DCQA in an in vivo
study with Sprague-Dawley rats, in which they collected urine at intervals of 0–24 h and
measured the concentration of 3,5-DCQA using LC/ESI-MS [163]. Bile samples were
collected at intervals of 0–2, 2–4, 4–6, 6–8, 8–10, 10–12, and 12–24 h after administration, and
a concentration of 1.9 ± 0.8% was determined, with 1.6 ± 0.9% already being eliminated
after 4 h (simultaneous analysis of CQA, CA, and DCQAs). Excretion at <10% is very low,
and these results may indicate that some DCQA was converted to CQA and excreted in the
urine, consistent with the literature results. The excretion phase half-life was within the
range of 0.3–0.6 h, which suggests that phenolic acids were rapidly eliminated throughout
the organism, and the volume of distribution VD was 1.8–3.9 L/kg.

Mehta et al. examined the VD after the oral administration of A. fragrans to rats at
a dose of 0.16 g/kg (n = 6) and determined it to be 4.29 × 105 mL/kg [164]. DCQAs,
determined using UHPLC-MS/MS, were mainly absorbed in the small intestine and their
isomers were also absorbed quickly. In comparison, MCQAs were chiefly found in tissues,
not in plasma, and DCQA as well as MCQA isomers were found in the ovary and uterus,
while some could pass through the blood–brain barrier [165].

6. Toxicological Information

As already mentioned, human exposure occurs from the ingestion of medicinal or
dietary plants containing chlorogenic and isochlorogenic acids. To come to an assessment
of the toxicology of chlorogenic acids and isochlorogenic acids, the acute and chronic
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toxicity, but also the genotoxicity, cytotoxicity, and neurotoxicity as well as the mutagenic,
teratogenic, and carcinogenic effects must be evaluated.

6.1. Acute and Subchronic Toxicity

Acute toxicity, also known as short-term toxicity, refers to the harmful effects that a
substance can have on an organism when it is exposed to a high dose for a short period
of time. Chronic toxicity refers to the long-term adverse effects of a substance on living
organisms, typically resulting from repeated or continuous exposure over an extended
period. Both are critical aspects of toxicological risk assessment, as they can provide
valuable information on the potential hazards of a substance and help to establish safe
exposure levels. There have been several studies conducted on the acute and subchronic
toxicity of 5-CQA and 3,5-DCQA in animals.

In 1983, Schafer et al. found that the oral LD50 of chlorogenic acid in red-winged
blackbirds (Agelaius phoeniceus) was greater than 100 mg/kg bodyweight (bw), equivalent
to 0.28 mmol/kg, but did not report the sex and strain of the animal models [166]. In a
study on female non-pregnant Wistar rats, a single-dose of 5-CQA at 2000 mg/kg was
administered orally, and it was observed that the rats did not show any clinical signs
of toxicity or mortality [167]. All test animals showed normal body weight gain at the
end of the experiment, and the study concluded that the oral median lethal dose (LD50)
of 5-CQA was greater than 2000 mg/kg in rats (p.o.). This suggests that 5-CQA has a
low acute toxicity and is relatively safe when consumed in small amounts. In the same
publication, the group also performed a 90-day subchronic toxicity study in compliance
with the OECD guideline 408 with 100 healthy Wistar rats (50 male, 50 female). Here, the
animals were orally administered 250, 500 and 1000 mg/kg of a CQA extract. The intake
did not cause any toxic symptoms or abnormalities, but there were significant alterations
in parameters such as food consumption, relative organ weight of the brain and spleen,
and some biochemical parameters in comparison with the control group. These changes
were toxicologically insignificant and within the physiological range.

Additionally, a study on mice showed similar results, with an LD50 of >2000 mg/kg.
In that study, the maximum dosage was 5000 mg/kg body weight, which caused tonic
convulsion followed by very rapid death [168]. Changes in body and organ weight are
a clear indication of damage caused by the ingestion of a toxic substance. It was found
that 5-CQA did not induce any significant changes in body weight, food consumption, or
organ weights, indicating that it does not have any toxic effects. Furthermore, no adverse
effects were shown in the subacute toxicity test with the oral administration of 1000 mg/kg
(highest dose) over a period of 30 days. The highest dose of 1000 mg/kg bw therefore was
taken as a no-observed-adverse-effect level (NOAEL) to estimate a human equivalent dose
of 189 mg/kg bw per day or 13.2 g/day (for a 70 kg adult) [168].

In a sub-chronic toxicity study conducted in humans, doses of 330 mg CQAs dissolved
in 100 mL of water were administered orally for 6 months [169]. The study used healthy
people of both sexes, and the participants ingested one 100 mL bottle daily before bedtime.
In terms of composition, the CQAs consisted of ~58% CQAs (total of 3-CQA, 4-CQA,
and 5-CQA), ~22% DCQAs (total of 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA) and ~20%
feruloylquinic acids. The results showed that there was no significant toxicity induced
by the ingestion of CQAs. Incidentally, the authors of the study were able to detect
an improvement in cognitive function through repeated neurocognitive testing of the
participants. Four other sub-chronic toxicity studies have been conducted in animals. In
1994, Kitts and Wijewickreme reported that the exposure of 9–12 female mice for 10 weeks
to chlorogenic acid in the diet (0.2%, 2000 ppm) did not induce any clinical symptoms
of toxicity, and the treatment did not affect body, liver, or intestinal weights [170]. Five
male Sprague-Dawley rats exposed to 1% chlorogenic acid in the diet for 3 weeks showed
reduced adrenal and kidney weights, while 2% chlorogenic acid in the diet for 4 weeks
induced forestomach hypoplasia in a study with six male Fischer-344 rats [171,172]. Chaube
et al. reported in 1976 that treatment with a daily injection (i.p.) of chlorogenic acid of up



Molecules 2023, 28, 5540 18 of 35

to 500 mg/kg per day in 9-week-old Wistar rats over a period of 8 days did not induce
lethality [173].

Limited data are available on the chronic toxicity of CQA in humans, as most of the
studies conducted so far have focused on its potential health benefits rather than its toxic
effects. However, some human studies have provided insights into the safety of CQA when
consumed over prolonged periods. In a randomized, controlled trial conducted in healthy
human subjects, an instant coffee containing green-coffee extract with a high content of
chlorogenic acid (90–100 mg of chlorogenic acids per 200 mg of green-coffee extract, with
equal amounts of 3-CQA, 4-CQA and 5-CQA) was administered orally for 12 weeks [174].
The study found no significant adverse effects on body weight, blood pressure, heart rate,
blood lipid levels, and liver or kidney function parameters. The study concluded that CQA
supplementation was safe and well tolerated in healthy human subjects.

In another randomized, placebo-controlled human intervention study, green-coffee
extract (200 mg of extract per capsule, containing 90–100 mg per capsule, with equal
amounts of the MCQAs 3-CQA, 4-CQA and 5-CQA) vs. maltodextrin-placebo was provided
to overweight and obese subjects [175]. Thirty participants consumed two capsules of green-
coffee extract daily for 60 days. The study found no significant adverse effects of CQA
intake on the risk of chronic diseases, and the authors concluded that CQA intake from
coffee consumption was not associated with increased health risks. Overall, most animal
studies on the chronic toxicity of CQA have shown that it has a low toxicity profile, with no
significant adverse effects observed at doses within the normal range of dietary exposure.

In animal studies, acute oral toxicity of 3,5-DCQA has been investigated using different
animal models and doses. For instance, a study by Simeonova et al. (2019) examined the
acute oral toxicity of 3,5-DCQA in spontaneously hypertensive rats (SHRs) [142]. In this
in vivo study, two phases were performed to determine acute oral toxicity. In the first
phase, animals were treated orally with of 3,5-DCQA at 10, 100, and 1000 mg/kg bw. The
surviving SHRs were observed for significant signs of toxicity and/or death (up to 24 h).
In the second phase, nine SHRs were administered (p.o.) with higher doses (1600, 2900
and 5000 mg/kg, three SHRs for each concentration) of 3,5-DCQA. No mortality could be
detected at 1600 mg/kg 3,5-DCQA but one of the three animals died (33% mortality) after
a dose at 2900 mg/kg. At an acute dose of 5000 mg/kg, the mortality was 100%. According
to Derelanko et al., therefore, 3,5-DCQA with an LD50 of 2154 mg/kg bw could be classified
as “slightly toxic” in the acute oral toxicity test administered orally to SHRs [176].

Acute dermal toxicity refers to the adverse effects that occur after direct skin contact
with a toxic substance. No study could be found on the acute dermal toxicity of 3,5-DCQA.
However, a patent from Seo et al. (2021) describes the application of 3,5-DCQA as an active
ingredient in a cosmetic or pharmaceutical composition for improving human skin barrier
damage and/or alleviating skin inflammation [177]. This indicates that 3,5-DCQA has low
acute dermal toxicity. Inhalation toxicity studies on 5-CQA and 3,5-DCQA are limited,
as they are not commonly administered through inhalation routes. Most of the available
toxicological data focused on acute oral toxicity, as these are the primary routes of exposure
for humans and animals.

6.2. Genotoxicity and Mutagenicity

Various test methods with their respective advantages and disadvantages are available
for testing genotoxicity/mutagenicity. Usually, the test battery starts with tests for adduct
formation (by direct action on the DNA), and then experiments on microorganisms and
mammalian cells follow before animal experiments are used (tier concept). The results from
the literature are summarized in Table 4. To determine the genotoxicity of chlorogenic acid,
in vitro experiments were carried out independently by different research groups on isolated
DNA [178–181]. Chlorogenic acid (250 µM) was found to induce DNA double-strand breaks
on isolated λ DNA in acellular systems. In the presence of copper(II) ions, DNA damage
by chlorogenic acid could also be observed in phage DNA. Yoshie et al. showed that CQA
did not lead to strand breaks in plasmid DNA at a concentration of 100 µM CQA; this
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could only be observed in combination with NO-releasing compounds [180]. Genotoxicity
tests were also carried out on prokaryotic systems (bacteria). In contrast to the acellular
assays, chlorogenic acid is non-mutagenic in bacterial mutagenicity assays. Tests on Salmonella
typhimurium with and without metabolic activation on different strains were carried out,
with different chlorogenic acid concentrations being examined [182–186]. One reason for
the lack of mutagenic activity in tests with prokaryotes is probably because, unlike isolated
DNA, they have DNA repair mechanisms. The sole consideration of mutagenicity tests at the
molecular level on isolated DNA is interesting, but living beings have intact cells and organs
that have the appropriate repair mechanisms and can repair occurring DNA strand breaks,
gene mutations, and/or cytotoxic damage. In contrast, in lower eukaryotic systems such as
Saccharomyces cerevisiae (strain D7), chlorogenic acid at a concentration of 3 mM (1 mg/mL)
induced mitotic gene conversion in alkaline medium at pH 10 without metabolic activation
(absence of S9 mix) [187].

Table 4. Results for CQA in different genotoxicity and mutagenicity test systems (from summary
of [179] with reference to the original literature and with the inclusion of further studies).

Test System Strains
Metabolic
Activation

with S9 Mix
Dose of CQA Result Ref.

isolated λ DNA - - 250 µM
(89 µg/mL) positive [179]

isolated plasmid
DNA (pBR322) - - 100 µM

(35 µg/mL)

positive
(in the presence of

NO-releasing
compounds)

[180]

phage DNA
(øX174 RF I) - - n.p. positive

(in the presence of Cu2+) [181]

S. typhimurium assay TA98 +/− 0.17 or 1.7 µmol/plate
(58.8 or 588 µg/plate) negative [182]

S. typhimurium assay TA98 + 1, 3, 6 or 9 mg/mL
(3, 9, 20 or 30 mM) negative [183]

S. typhimurium assay TA98,
TA100 +/− 19 or 28 mg/plate

(53 or 79 µmol/plate)

positive (in the presence
of Mn2+); negative (in

the presence and
absence of S9 mix and
in the presence of Cu2+

only)

[184]

S. typhimurium assay
TA98, TA100,

TA1535, TA1537,
TA1538

+/− 0.33–10 mg/plate
(0.94–28 µmol/plate) negative [185]

S. typhimurium assay BA13 - 0.3–28 µmol/plate
(0.1–9.9 mg/plate) weakly positive [186]

S. cerevisiae assay D7 +/− 20, 40 or 80 mg/mL
(56, 110 or 230 mM)

positive (w/o S9 mix);
negative (w/S9 mix) [184]

S. cerevisiae assay D7 - 1 mg/mL (3 mM) positive [187]

Chinese hamster
V79-6 cells - - 500 nmol/mL

(177 µg/mL) negative [188]

Chinese hamster
V79 cells - - 0.07 mg/mL positive [189]

Mouse lymphoma
L5178Y cells - +/− 6.5–10 mg/mL

(18.5–28 mM)
positive (w/S9 mix);

negative (w/o S9 mix) [185]

CHO cells
(chromosomal
aberration test)

- +/− 10–40 µg/mL
(29–110 µM)

positive (w/o S9 mix,
but in the presence of

Mn2+ and Cu2+);
negative (w/S9 mix)

[184]

CHO cells
(chromosomal
aberration test)

- +/− 125, 150 or 250 µg/mL
(353, 420 or 706 µM)

positive (w/o S9 mix);
negative (w/S9 mix) [190]

HL-60 or Jurkat cells - n.a. 1–100 µM negative [191]

Micronucleus test in
bone marrow (rats) - n.a. 150 mg/kg (420

µmol/kg, p.o., 24 h) negative [192]

Micronucleus test in
bone marrow (mice) - n.a. 100 mg/kg (i.p.) negative [193]

Abbreviations: n.p. = not provided; n.a. = not applicable; w/ = with or “+”; w/o = without or “−”.
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However, in vitro assays with polyphenols like chlorogenic acid show controversial
results. Wood et al. reported that chlorogenic acid (500 µM; 177 µg/mL) did not induce
8-azaguanine resistance in Chinese hamster V79-6 cells (in the absence of S9 activation),
and the observed dose was not cytotoxic [188]. Fung et al. achieved a positive result with
Chinese hamster V79 cells with a dose of 0.07 mg/mL chlorogenic acid. Chlorogenic acid
was also mutagenic when tested with mouse lymphoma L5178Y cells but was negative in
the absence of S9 mix (without metabolic activation) [185]. In vitro studies have shown that
chlorogenic acid has clastogenic effects on mammalian cells. Treatment with chlorogenic
acid resulted in the induction of chromosomal aberrations in Chinese hamster ovary (CHO)
cells, as observed in studies conducted by Whitehead et al. and Stich et al., even in the
absence of S9 activation enzymes [184,190]. However, it should be noted that the addition
of S9 activation enzymes eliminated the clastogenic activity of chlorogenic acid. Unlike
the clastogenic effects observed in vitro for chlorogenic acid, in vivo studies showed no
induction of chromosomal damage. When male Sprague-Dawley rats were administered
two oral doses of chlorogenic acid at 150 mg/kg (420 µmol/kg) bw with a 24 h interval, there
were no increases in the frequencies of micronucleated polychromatic or normochromatic
erythrocytes in the bone marrow, as reported by Hossain et al. in 1976 [192]. A recent
intraperitoneal study by Alarcón-Herrera et al. (2017) in mice with 100 mg/kg CQA
also showed no visible signs of genotoxicity/mutagenicity and thus confirmed the non-
mutagenic effect of CQA [193]. In silico toxicity model calculations conducted in current
research predict that both 5-caffeoylquinic acid and 3,5-dicaffeoylquinic acid are non-
mutagenic (p = 0.93 and p = 0.85) [194], and there are even numerous studies in which
chlorogenic acids are linked to antigenotoxic properties [195–198]. On the other hand, there
are no known studies on the genotoxic/mutagenic potential of 3,5-DCQA. However, the
cytotoxicity of 3,5-DCQA on human erythrocytes was evaluated by a hemolytic assay, which
confirmed that 3,5-DCQA exhibited a low cytotoxicity against human erythrocytes [199].

6.3. Carcinogenicity, Reproductive Toxicity, and Teratogenic Effects

In 1976, Chaube et al. conducted an intraperitoneal study on pregnant female Wistar
rats and reported that chlorogenic acid (5–500 mg/kg per day, total of 8 injections) was
non-toxic and had no effects on the reproduction of the rats [173]. Furthermore, the authors
suggested that CQA did not induce fetal central nervous system defects or maternal or fetal
mortality. Three publications even indicate that CQA has a protective effect on reproductive
toxicity. In a study by Mentese et al., in thirty Sprague-Dawley rats, 5-fluorouracil-induced
toxicity was significantly reversed with CQA administration in a dose-dependent manner,
and CQA acted as a modulator in attenuating xenobiotic-induced ovotoxicity [200]. In
another publication, scientists were able to show that CQA counteracted arsenic-induced
testicular dysfunction in adult male Swiss mice [201]. In an in vivo study in mice, CQA
significantly suppressed zearalenone-induced ovarian granulosa cell death at doses ranging
from 250 to 1000 µg/mL [202]. Carcinogenicity studies have also been carried out. In a
study with 49 Swiss albino mice, CQA in purified cholesterol pellets was introduced into
the urinary bladder and the mice were observed for one year [203]. Surprisingly, no bladder
carcinomas could be found in the mice, from which it can be deduced that CQA is not
carcinogenic. This was also proven by scientists in a study with male and female Syrian
golden hamsters administered 0.025% CQA in the diet over 24 weeks, where CQA did
not induce liver or large intestine tumors [198]. In another study, Swiss mice received
CQA (25 mg/kg) intragastrically five times per week over a period of 10 weeks [204]. It
could be shown that CQA attenuated early-stage colorectal carcinogenesis induced by
1,2-dimethylhydrazine/deoxycholic acid. To the best of the authors’ knowledge, no studies
on the carcinogenicity of 3,5-DCQA are known; however, using an in silico computation
prediction model [194], 3,5-DCQA was found to be non-carcinogenic (p = 0.63).
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6.4. Neurotoxicity

Neurotoxicity describes any adverse effect on the nervous system (e.g., paralysis
or loss of function) resulting from exposure to potentially toxic substances. A search of
the literature did not find any evidence of neurotoxic effects of chlorogenic acids. On
the contrary, scientific studies even show that chlorogenic acids and isochlorogenic acids
have neuroprotective effects. Mikami et al. reported on a neuroprotective effect of 5-
CQA in glutamate-induced neuronal cell death using primary cultures of mouse cerebral
cortex [205]. Herein, CQA prevented the increase in intracellular concentration of Ca2+

caused by the addition of glutamate and protected neurons by regulating Ca2+ entry.
Aluminum compounds are also potent neurotoxins that cause oxidative stress and cog-

nitive damage and have shown to be associated with Alzheimer’s disease. In experiments
by Wang and colleagues on aluminum-induced neurotoxicity in mice, the chronic adminis-
tration of CQA (i.g.) in doses of 50–200 mg/kg bw (aluminum chloride (AlCl3), 35 mg/kg
bw per day) weakens aluminum-induced Al3+-accumulation, oxidative stress, mitochon-
drial damage, and nuclear pyknosis in the hippocampus [206,207]. Extracts containing
5-CQA, quercetin and other polyphenols have also been used successfully against the neu-
romuscular blockage caused by the venoms of Bothrops jararacussu (pit viper) and Dabioa
russelii (Russell’s viper) in in vitro studies [208,209]. To obtain detailed information about
the signaling pathway, Yao et al. induced oxidative damage in rat pheochromocytoma cells
using hydrogen peroxide (H2O2) [210]. Herein, 5-caffeoylquinic acid showed robust free-
radical-scavenging activity in vitro and rescued cells from oxidative insults by activation of
the transcription factor Nrf2. Furthermore, it was found that chlorogenic acid increased
the recovery of synaptic transmission upon reoxygenation in an in vitro ischemia model
after exposure to β-amyloid peptide 1–42 (2 nmol, administered intracerebroventricularly
(i.c.v.)) [211].

Several in vivo studies have demonstrated the neuroprotective properties of 5-CQA.
These studies showed that 5-CQA can improve the pathological damage of hippocam-
pal neurons, reduce neuronal death and apoptosis, alleviate epilepsy-like seizures and
cognitive impairment, and ameliorate hippocampal neuronal degeneration and neuroin-
flammation [212–216]. Rebai and colleagues also found that 5-CQA has the potential
to protect against AMPA-mediated excitotoxicity and may be a promising candidate for
the prevention of neurodegenerative disorders associated with the loss and damage of
oligodendrocytes, which play a major role in the myelination of axons [217]. Furthermore,
another publication revealed the neuroprotective effect of DCQAs. Specifically, the study
showed that 3,5-DCQA (as well as 4,5-DCQA and 1,5-DCQA) can alleviate stress-hormone-
induced depressive behavior, including memory loss, in corticosterone-treated ICR mice by
reducing reactive oxygen species (ROS) and inhibiting the activity of monoamine oxidase
(MAO) type A and B in neurons and astrocytes. The study also discovered that 3,5-DCQA
can protect against neuronal/dendritic atrophy and synaptic glutamatergic transmission in
the hippocampus [218]. In summary, 5-CQA and 3,5-DCQA are not neurotoxic, and they
even have possible neuroprotective properties.

6.5. Immunotoxicity and Allergenicity

As early as 1961, Freedman and colleagues reported that CQA was found to be an
important allergenic constituent in green coffee beans, castor beans and oranges, and that
coffee workers were occupationally exposed to finely dispersed coffee dust, which caused
asthma, rhinitis, and dermatitis [219]. Additional studies in coffee workers showed positive
wheal and erythema responses to intradermal injections [220–224]. The aim of those studies
was also to investigate the immunotoxic potential of emulsions of CQA (1 mg/mL in
physiological saline) in albino rabbits and guinea pigs immunized by the intravenous route.
After six hours, the animals showed an immunological response, with antibody formation
and evidence of erythema and induration. No severe central necrosis of the lesion was
visible after twelve hours, and the intradermal response to CQA was Arthus-type.
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The administration of 1 mg/mL CQA to guinea pigs by intracardiac injections causes
death after 20–25 min (asphyxia), which is evidence of active systemic anaphylaxis, and
CQA also induced complete hemagglutination. Although Freedman et al. found that CQA
in plant materials appeared to cause allergic reactions in rabbits and humans, particularly
when administered by injection, Layton et al. believed that pure CQA was not an allergen
and that the allergic reactions described by Freedman and co-workers were mediated
by the proteins in plant materials (as impurities or contaminants from the moiety of the
seed) [225,226]. They concluded that CQA does not show any allergenic activity in clinical
tests and is therefore to be rated as nonallergenic. This led to a discrepancy between the
results of the two research groups and thereafter caused some public discussions [227].
More than 20 years later, De Zotti et al. reported that 14% of occupationally exposed coffee
workers complained of allergenic symptoms in the eye, nose, and bronchial system [228].
The sensitization of workers (10%) was confirmed by the skin prick test, and they concluded
that eliminating environmental dust during shipping operations was the most important
preventive measure.

Recent studies indicate that CQA may not pose a safety risk to humans, as it does
not elicit immunoreactivity even after a single subcutaneous exposure, as demonstrated
by the reporter antigen popliteal lymph node assay (RA-PLNA) in BALB/c mice [229].
In addition, Li et al. cast doubt on Freedman’s findings, stating that “the subcutaneous
administration of CQA into the footpad deviates from the normal routes of exposure, and
drug or chemical metabolism in vivo may impact its bioavailability” [230]. In 2012, Lin
and co-workers found that both 5-CQA and 3,5-DCQA significantly enhanced the secretion
of trinitrophenyl ovalbumin-specific immunoglobulin IgG in an intravenous exposure
mouse model [231]. The results suggest that the strength and type of immune effects of
the sensitization response may correlate with structural differences in the CQA family,
and the scientists were able to confirm the immunostimulatory activity of CQA by QSAR
analysis in silico. Interestingly, the immunotoxicity for both 5-CQA and 3,5-DCQA was
also predicted to be positive (p = 0.99) using the in silico tool from Banerjee et al. [194]. In
apples, Unterhauser et al. recently demonstrated that the interaction of CQA with proteins
(formation of adducts as a hapten–protein conjugate) via reactive o-benzoquinone in vitro
causes a loss of conformational epitopes and a decrease in the IgE-binding capacity by the
direct reaction of CQA with the cysteine moiety of IgE [232]. Interestingly, the high content
of CQA in apples results in a lower allergenic potential. Other scientific research groups
have observed the covalent interaction of CQA with proteins as well, and they also found
low allergenic activity [224,233,234].

There has been a long-standing debate regarding whether CQA exhibits antigenic and
allergenic activities, with two opposing views. However, as per drug metabolism theories,
small-molecule drugs can initiate an immune response by forming stable adducts with
proteins. Such protein adducts can form through direct chemical reactions or by producing
electrophilic metabolites, acting as an antigenic signal and triggering an immune response.

Based on the publications cited here, and to the best of the authors’ knowledge, it
can be concluded that CQA and 3,5-DCQA in their pure form (without interaction with
proteins) are likely to have a low immunotoxic effect, while the direct interaction of CQA
with proteins is likely to induce a greater immune response. However, further studies on
the effects of isolated chlorogenic acid should be undertaken to conclusively determine
whether CQA has effects on the immune system.

6.6. Other Adverse Effects

Chlorogenic acid has been found to counteract the effects of metformin, a pharmaceu-
tical drug used to manage elevated blood sugar levels. This interaction is only observed at
high levels of chlorogenic acid, which is unlikely to occur in humans and thus may not have
a significant impact [235,236]. So far, no other adverse effects for 5-CQA and/or 3,5-DCQA
have been documented.
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7. Regulatory and Nutritional Information

Currently, due to a lack of data, the EFSA has not yet derived any health-based
guidance values, such as tolerable or acceptable daily intake levels (TDI/ADI), for both
5-caffeoylquinic acid and 3,5-dicaffeoylquinic acid. Thus, to the best of the authors’ knowl-
edge, there are currently no specific regulations in place in the EU or other regions world-
wide. Nevertheless, an application to authorize the placing on the market of an infusion
from the coffee leaves of Coffea arabica and/or Coffea canephora as a traditional food from
a non-EU country under Regulation (EU) 2015/2283 of the European Parliament and of
the Council has been approved, and the EU Commission has stated a maximum permitted
level of 5-CQA of <100 mg/L in tea-like infusions prepared with 20 g of dried leaves in 1 L
of hot water [237].

8. Exposure and Risk Assessment

While the direct consumption of large amounts of coffee by-products is unlikely,
it is important to recognize the various ways in which individuals can be exposed to
chlorogenic and isochlorogenic acids. These compounds can enter the body through a
variety of sources, including food, health products, medications, or processed products
that contain coffee by-products as ingredients [4,10,15,22]. For example, coffee by-products
may be used in the production of dietary supplements, functional foods, or pharmaceutical
formulations [35,51,118]. In addition, coffee by-products can be processed and extracted
to produce concentrated forms of chlorogenic and isochlorogenic acids for use in the food
and beverage industry [15]. By considering these additional routes of intake, the following
risk assessment aims to provide a comprehensive understanding of potential exposure
scenarios and to make the scope of the evaluation as broad as possible.

8.1. Theoretical Maximum Daily Intake (TMDI) and Limitations

In order to determine the oral exposure of the general population in the EU to 5-CQA
and 3,5-DCQA from coffee by-product beverages, information on daily consumption is
needed. In the absence of representative data on the daily per capita consumption of coffee
by-products in the EU, a realistic worst-case scenario was assumed.

It is known that tea-like infusions can be made from coffee by-products [4,10,15].
Recently, the EU Commission approved the placing on the market of an infusion made
from the coffee leaves of C. arabica and/or C. canephora according to Regulation (EU)
2015/2283 [11,237]. The consumption of coffee by-products as an aqueous infusion is
therefore considered a plausible scenario. The following assumptions were made for con-
sidering the worst-case scenario: a single serving is prepared with 2 g of the relevant
coffee by-product and 200 mL of cold water, in accordance with the method of Steger
et al. and the application on the risk assessment of other ingredients in coffee and cof-
fee by-products [238,239]. This assumption was made because chlorogenic acids and
isochlorogenic acids are sensitive to the influence of pH and temperature and can undergo
degradation and conversion reactions that could significantly affect the actual levels of
5-CQA and 3,5-DCQA (as already described in Section 3.1). Furthermore, 5-CQA and
3,5-DCQA are sufficiently soluble in water that full extraction from coffee by-products can
be expected (see Section 5 and Table 3).

From a large epidemiological study in Germany (“Nationale Verzehrsstudie II” from
Max-Rubner Institute (MRI)) with about 19,000 participants (~9000 males, ~10,000 females,
aged from 14 to 80 years), representative data on dietary consumer habits and daily food
consumption of tea-like infusions could be obtained [240]. In the category “alcohol-free
beverages” and the subgroup “herbal/fruity tea”, the results of the study (95th percentile)
show that women consume 1300 g of herbal/fruity tea daily (in comparison, males only
consume 800 g/day). Therefore, a maximum consumption of 1300 g is considered as the
worst-case scenario. To simplify the calculation of the Theoretical Maximum Daily Intake
(TMDI), a density of 1000 kg/m3 (from water) for an aqueous infusion is assumed, so
that 1300 g is equivalent to 1300 mL. Table 5 shows the calculated TMDIs of the coffee by-
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products, bearing in mind that coffee parchment and spent grounds are not yet commonly
used alimentarily, such as in tea-like infusions.

Table 5. Theoretical maximum daily intake (TMDI) of 5-CQA and 3,5-DCQA from coffee by-products
via tea-like aqueous infusions.

Coffee
By-Product

Consumption
of Infusions

(mL/day)

5-CQA 3,5-DCQA

Content Per
Serving

(g/200 mL) *

TMDI
(g/day)

Content Per
Serving

(g/200 mL) *

TMDI
(g/day)

coffee
flowers

(blossoms)
1300 0.052 0.338 0.117 0.759

coffee leaves 1300 0.112 0.728 0.023 0.147

coffee pulp 1300 0.048 0.312 0.001 0.008

coffee husk 1300 0.266 1.729 0.003 0.020

Cascara
beverage 1300 0.000 0.001 n.d. n.d.

silver skin 1300 0.180 1.167 0.020 0.130

coffee
parchment 1300 0.012 0.079 n.d. n.d.

spent coffee
grounds 1300 0.046 0.299 0.020 0.130

green
unroasted

beans
1300 0.268 1.742 0.022 0.143

total average 0.109 0.711 0.029 0.191
* The content per serving in g/200 mL was calculated using the maximum amount of 5-CQA and 3,5-DCQA,
respectively, found in coffee by-products from Table 1; n.d. = no data.

The results show that the TMDI of coffee husks and green unroasted beans for 5-CQA
is 1.74 g/day, the highest among all coffee by-products. For 3,5-DCQA, however, the
TMDI of coffee flowers (blossoms) has the highest value at 0.76 g/day. The TMDIs of
5-CQA and 3,5-DCQA in coffee parchment and cascara are very small in comparison and
can therefore be ignored. In summary, the TMDI of 5-CQA for all coffee by-products is
0.71 g/day, whereas the total TMDI of 3,5-DCQA is 0.19 g/day, which is 3.7 times lower
than that of 5-CQA. In relation to coffee, containing a maximum of 9.0 g/100 g 5-CQA
(see Section 4 and [114,115]), the content per serving results in 0.18 g/200 mL and in a
theoretical maximum daily intake of 1.17 g/day.

8.2. Acute Oral Exposure

For the acute oral exposure assessment of 5-CQA and 3,5-DCQA from coffee by-
products, only the experimentally established LD50 (p.o.) values were used as a toxi-
cological threshold. This procedure was introduced by Gold and co-workers [241] as a
recognized procedure, in which the LD50 values were extrapolated to the lower 99% one-
sided confidence limit of the benchmark dose values (BMDL10). In this simple and quick
estimate, the BDML10 can be obtained when the LD50 value is divided by a factor of 10.2,
assuming a linear dose–response relationship and no other dose–response information
is available. Various LD50 values were determined for 5-CQA (see Section 6.1). An LD50
value of 2000 mg/kg bw is assumed to determine the BMDL10, which was carried out in
experiments on rats and mice [167,168]. The higher LD50 value of 4000 mg/kg bw from
the PubChem database [140] was not used to determine the acute oral exposure, as this
value was determined in rats by intraperitoneal administration (and not by oral treatment).
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The LD50 of 2000 mg/kg bw results in a BMDL10 of 196 mg/kg bw for 5-CQA. For an
average person who weighs 70 kg, the extrapolated BMDL10 corresponds to an intake of
13.7 g of 5-CQA per day. Interestingly, Costa Silva Faria et al. determined an LD100 of
5000 mg/kg bw and derived a NOAEL of 1000 mg/kg/day for mice, which corresponds to
a NOAEL of 13.2 g/day for a 70 kg human adult. By comparing the BMDL10 (13.7 g/day)
with the NOAEL (13.2 g/day), it is noticeable that both values are very similar. There
are also different lethal doses for 3,5-dicaffeoylquinic acid. For safety reasons, the lowest
LD50 value of 2154 mg/kg bw resulting from a study with rats by oral administration was
used [176]. For 3,5-DCQA, a BMDL10 result of 211 mg/kg bw is in accordance with Gold
and colleagues [241], which is equivalent to an intake of 14.8 g of 3,5-DCQA per day for an
average person weighing 70 kg.

The results in Table 6 show that humans would have to consume unlikely amounts of
tea-like infusions of coffee by-products per day to induce a toxic effect. Such calculated
values are unrealistic (i.e., even well above excessive total daily fluid intake) and beyond
any amount of coffee by-products that could be expected to be consumed by an individual
in a day. Therefore, no adverse or toxic effects are expected from acute oral exposure to
5-CQA or 3,5-DCQA from the consumption of coffee by-products.

Table 6. Beverage volume (in L) for reaching the oral BMDL10 for 5-CQA and 3,5-DCQA *.

Coffee By-Product

5-CQA 3,5-DCQA

Beverage Volume
(in L/day) for Reaching

Oral BMDL10 of
196 mg/kg bw

Beverage Volume
(in L/day) for Reaching

Oral BMDL10 of
211 mg/kg bw

coffee flowers (blossoms) 53 25

coffee leaves 24 131

coffee pulp 57 2467

coffee husk 10 987

Cascara beverage 13,700 n.d.

silver skin 15 148

coffee parchment 225 n.d.

spent coffee grounds 60 148

green unroasted beans 10 135
* Estimation of BMDL10 obtained from LD50 values (2000 mg/kg bw for 5-CQA and 2154 mg/kg bw for 3,5-DCQA)
using method B described by Gold et al. [241]; n.d. = no data.

8.3. Chronic Oral Exposure

People who consume 5-caffeoylquinic acid (5-CQA) or 3,5-dicaffeoylquinic acid (3,5-
DCQA) daily through the consumption of coffee by-products are chronically exposed. Sub-
chronic studies showed that 5-CQA and 3,5-DCQA demonstrated no significant adverse
effects at doses within the normal range of dietary exposure. The logP value and good
water solubility (see Table 3), and metabolism and the pharmacokinetic parameters such as
the volume of distribution (VD) and clearance indicate (see Section 5) that both the main
representative of the monocaffeoylquinic acids, 5-CQA, and also the main representative of
dicaffeoylquinic acids, 3,5-DCQA, cannot be accumulated in the human body. Forestomach
hyperplasia was only observed in one study on rats [171,172], but it is pathologically
harmless and disappears in the absence of the stimulus. No CQA-induced toxic or adverse
effects have been observed in animals or humans in studies on carcinogenicity, reproductive
toxicity, teratogenic effects, and neurotoxicity. Conducted in vivo and in vitro genotoxicity
tests were also negative, which is why 5-CQA and 3,5-DCQA are classified as non-genotoxic.
CQA-induced DNA mutations in genotoxicity tests were observed on isolated DNA, but
tests on isolated DNA are not informative for risk assessment because they do not take
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into account any type of repair mechanisms that exist in living beings. Studies showed
ambivalent results for the immunotoxicity of 5-CQA and 3,5-DCQA (see Section 6.5). A
few studies reported allergenic reactions, particularly in occupational exposed workers.
While chlorogenic acids are natural plant compounds found in a variety of foods, including
fruits, vegetables, coffee and coffee by-products, for individuals with a known allergy to
one or more of these foods, exposure to chlorogenic acids may trigger an allergic reaction.
Further research is needed to determine whether chlorogenic and isochlorogenic acids are
immunotoxic to the human population. When chlorogenic acids are consumed with food
in normal amounts as a component of coffee by-products, no adverse health effects from
this class of compounds appear to be possible (see Table 6).

9. Conclusions

The present review evaluated the potential health risks associated with the oral con-
sumption of chlorogenic and isochlorogenic acids from coffee by-products, based on current
pharmacokinetic and toxicological knowledge and the available consumption data for the
general population in the EU. No significant signs of toxicity or adverse effects were ob-
served after acute oral exposure. Based on current knowledge, long-term exposure to
chlorogenic and isochlorogenic acids at levels typically found in coffee by-products does
not appear to pose a health risk to humans. Consumption of CQAs from coffee by-products
can therefore be considered safe based on the currently available literature. Due to the lack
of more recent literature, including some of the issues noted above, the authors acknowl-
edge that additional research is needed, particularly if exposure to chlorogenic acids or
coffee by-products is expanded beyond currently expected levels.
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