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Abstract: Forest fires are an important disturbance factor in forest ecosystems, and obviously change
the soil environment. Arbuscular mycorrhizal fungi, as a medium and bridge between vegetation and
soil, play a crucial role in mediating plant nutrient uptake and regulating the productivity, stability,
and succession of vegetation–soil systems. To investigate the effects of forest fires on the community
structure and diversity of arbuscular mycorrhizal fungi in cold-temperate Larix gmelinii forests, we
collected soils from light, moderate, and heavy fire disturbance forests and a natural forest as a control
forest in Greater Khingan Larix gmelinii forests, in the northeast of China. The community structure
and diversity of arbuscular mycorrhizal fungi was sequenced using Illumina MiSeq technology and
we analyzed the correlation with the soil physicochemical characteristics. The results showed that
the contents of microbial biomass content (MBC), moisture content (MC), total nitrogen (TN), and
available phosphors (AP) increased significantly (p < 0.05) with increasing fire intensity (from Light
to heavy fire), but available potassium (AK) decreased significantly (p < 0.05). These changes were
not significant. A total of 14,554 valid sequences from all sequences were classified into 66 ASVs that
belonged into one phylum, one order, four families, and four genera. The genera included Glomus,
Ambispora, Paraglomus, and Acaulospora, and Glomus was the dominant genus (the genera with the
five most relative abundances) in the control and heavy-fire forests. Non-metric multidimensional
scaling (NMDS) analysis showed that forest fires significantly affected the community structure of
arbuscular mycorrhizal fungi (p < 0.01). Redundancy analysis (RDA) showed that MBC, SOC, and
AP contents significantly affected the composition structure and diversity of arbuscular mycorrhizal
fungi communities. This study indicated that forest fires affected the composition and diversity of soil
arbuscular mycorrhizal fungi communities through changing the soil physicochemical parameters
(MBC, SOC, and AP) in cold-temperate Larix gmelinii forests. The study of soil physicochemical
properties and arbuscular mycorrhizal fungi diversity in cold-temperate Larix gmelinii forests in the
Greater Khingan Mountains after forest fires provides a reference basis for the revegetation and
reconstruction of fire sites.

Keywords: arbuscular mycorrhizal fungi; diversity; Greater Khingan Mountains; Larix gmelinii forest;
fire sites

1. Introduction

Forest fires are one of the most important environmental factors affecting biodiversity
and play a crucial role in maintaining the structure and function of forest ecosystems [1].
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The impact of forest fires on soils is due to the high temperature, residual ash, and alteration
of the original soil matrix and microclimate conditions, resulting in drastic changes in the
soil physicochemical factors and causing significant disturbances in the soil environment [2].
Forest fires are capable of releasing elements from the soil in gaseous form and erosion [1],
causing changes in the rate and flow of nutrient cycling in the soil [3]; forest fires alter the
soil and also affect the composition and community dynamics of microorganisms [4], with
consequent changes in the rate of decomposition and return of litter [5] and the function of
forest ecosystems [6].

Arbuscular mycorrhizal fungi are abundantly distributed in the soil [7] and can form
reciprocal symbioses with most plant roots in the ecosystem [8]. On the one hand, they ob-
tain nutrients from plants to complete their own growth and development [9]; on the other
hand, they can also improve the host plant, improve the root surface area and inter-root
absorption range of the host plant, and increase the ability to absorb water and nutrients
from the soil, playing an important role in plant growth and development [5]. Previous
studies showed that environmental factors obviously affected arbuscular mycorrhizal fungi
growth and distribution [10–12]. Forest fires, as an important disturbance factor in forest
ecosystems, have a profound effect on arbuscular mycorrhizal fungi composition and func-
tion though changing soil nutrients, e.g., forest fires have a significant effect on arbuscular
mycorrhizal fungi infestation rate, species composition, density, and reproduction [13–16].
Moura [15] found that arbuscular mycorrhizal fungi composition and diversity was in-
fluenced by soil pH and other nutrients; Pattinson [17] found that forest fires reduced
arbuscular mycorrhizal fungi density in the top soil layer. After forest fires, arbuscular
mycorrhizal fungi mycorrhizal symbionts can change the root morphology and improve the
nutritional status of plants, thus promoting the growth and development of host plants, im-
proving stress and disease resistance [18,19], participating in many physiological metabolic
processes of plants [20], and indirectly contributing to forest restoration by regulating the
inter-root microenvironment and microbial community structure of plants [21,22].

Forest fires can alter the structure and diversity of arbuscular mycorrhizal fungi
communities, but the response of arbuscular mycorrhizal fungi communities was not
consistent in different geographical and climatic conditions, as well as forest types and soil
conditions. Lots of studies on forest fires affecting soil arbuscular mycorrhizal fungi have
been carried out in temperate and tropical forests, such as in Brazil [15], Australia [17], and
Iran [16], but studies on soil arbuscular mycorrhizal fungi in different forest fire intensities in
cold-temperate Larix gmelinii forests are still lacking. Therefore, we set forests with different
forest fire intensities in Huzhong National Nature Reserve of China to investigate the
changes in soil physicochemical properties and arbuscular mycorrhizal fungi community
structure diversity under different fire intensities.

Huzhong National Nature Reserve is located in the Greater Khingan Mountains of
China, and is a typical representative of the cold-temperate forest ecosystem, where Larix
gmelinii forests are the climax zonal vegetation. Forest fires caused by lightning strikes
are frequent in this reserve and cause forest succession and soil environment changes. At
present, studies on post-fire forestry in the Greater Khingan Mountains have mainly focused
on forest carbon storage [23], the restoration of above-ground vegetation [24], effects of
soil bacterial communities [25], and soil black-carbon content [26]. However, studies on
the changes of the structural composition of arbuscular mycorrhizal fungi communities
and soil physicochemical properties on arbuscular mycorrhizal fungi diversity in fire
sites are still limited. Therefore, we used high-throughput technology to sequence soil
arbuscular mycorrhizal fungi in Huzhong National Nature Reserve, and analyzed the
changes in arbuscular mycorrhizal fungi community structure and diversity with different
fire intensities. The aim was to investigate the influence of forest fires on the structure and
diversity of arbuscular mycorrhizal fungi communities in conifer forest soils, to disclose
the key factors affecting arbuscular mycorrhizal fungi in different fire intensities, and to
provide a reference basis for forest revegetation and reconstruction during fire disturbance.
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2. Materials and Methods
2.1. Sample Site Overview

This study was located at Huzhong National Nature Reserve (122◦12′16.3′′–122◦21′7.8′′ E,
53◦26′30.6′′–53◦28′6.3′′ N; Figure 1) in the Greater Khingan Mountains, which is the largest
cold-temperate Larix gmelinii forest ecosystem in China. It is a continental monsoon climate
with an average temperature of −2 to −5.5 ◦C and a record low of −52.3 ◦C [27]. The
average annual precipitation is 480 mm, and the rainfall period is mostly concentrated in
July–August, accounting for about 50–60% of the annual precipitation, with a frost-free
period of about 130 d and an average altitude of 600–800 m [28]. The sample sites were
selected from flat terrain undisturbed by anthropogenic activities and with complete vege-
tation restoration. The sample sites were selected from the fire sites with flat topography,
undisturbed by human activities and with intact vegetation recovery.
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Figure 1. The asterisk indicates the study site in Heilongjiang Province and China.

2.2. Sample Plot

Light- (L), Moderate- (M), and Heavy (H)-fire forests were selected in the Huzhong
Reserve in 2010, and adjacent forests with the same stand type without disturbances from
fire were selected as control forests. Each forest set up three replicates and an area of
20 m × 20 m for each forest. The basic information of each forests is shown in Table 1.

Table 1. Basic situation of fire sites with different intensities. L, M, and H indicate Light, moderate,
and heavy fire intensities, respectively [29].

Fire Intensity Burning Dead Wood Ratio Changes in Surface Vegetation

L (Light fire) ≤30% Only some of the vegetation was burned

M (Moderate fire) 30–70% Trees were partially burned, shrubs, herbs, and other
vegetation were completely burned

H (Heavy fire) ≥70% Trees, shrubs, herbs, and other vegetation were completely
burned to death
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2.3. Soil Sample Collection and Experimental Method

Ten soil samples were collected from 0 to 10 cm in each forest after removing humus
and then mixed together into one soil sample (approximate 500 g per plot). The mixed soil
samples passed through 2 mm sieve to remove plant roots and stones, and then placed in
ziplock bags, backstroked in an ice box, and immediately brought to the laboratory. The
soil samples were divided into two sub-parts in the laboratory, one stored at −80 ◦C for
DNA extraction and another for determination of soil physicochemical properties.

2.4. Soil Physical and Chemical Properties Analysis

Soil microbial biomass carbon (MBC) was determined using the carbon and nitrogen
analyzer method [30], soil pH was determined using the potentiometric method [31],
soil moisture content (MC) was determined with the drying method [32], soil available
potassium (AK) was determined with the ammonium acetate leaching flame photometer
method [33], Elementarvario ELIII (Germany) automatic carbon and nitrogen analyzer
was used to determine soil organic carbon (SOC) and total nitrogen (TN) contents [34],
soil available phosphorus (AP) was determined using the molybdenum antimony anti-
colorimetric method [33], and soil alkaline available nitrogen (AN) was determined with
the alkaline diffusion method [33].

2.5. DNA Extraction and Arbuscular Mycorrhizal Fungi Sequencing

Total DNA was extracted from fresh soil samples by weighing 0.25 g and following
the procedure of E.Z.N.A.® Soil DNA Kit DNA (Omega Bio-Tek, Norcross, GA, USA).
Using diluted genomic DNA as a template, specific primers with Barcode AML1F (5′-
ATCAACTTTCGATGGTAGGATAGA-3′) and AML2R (5′-GAACCCAAACACTTTGGGTTTCC-
3′) were selected as the first pair of primers; AMV4.5NF (5′-AAGCTCGTAGTTGAATTTCG-
3′) and AMDGR (5′-CCCAACTATCCCTATTAATCAT-3′) were used as the second pair of
primers to amplify the fungal 18S rRNA region. In the second round of PCR, the barcode
primers (AMV4.5NF/AMDGR) were used to distinguish the different PCRs. The PCR
reaction volumes were: 10 × Buffer 2.5 µL, template DNA (20 ng·L−1) 2.0 µL, dNTPs
(2.5 mmol·L−1) 1.5 µL, specific dNTPs (2.5 mmol·L−1) 1.5 µL, Tag enzyme 1.0 µL. The PCR
reaction conditions were as follows: 95 ◦C for 3 min; 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C
for 45 s, 30 cycles; 72 ◦C for 10 min. The amplified PCR products were quantified using
Picogreen fluorometer, homogenized and mixed, and then sequenced by IlluminaMiseq on
PE300 platform with 3 replicates for each sample. The raw data were uploaded to NCBI
SRA database (sequence number: PRJNA945502).

2.6. Data Processing

The raw sequences were identified using Qiime2 [35] software, the raw downstream
data of sequencing were initially screened according to sequence quality, the double-end
sequences that passed the initial quality screening were pairwise concatenated according
to overlapping bases using the software FLASH (V1.2.7), and the DADA2 [36] plug-in was
used to optimize the sequences after quality control splicing. These were subjected to noise
reduction, and species annotation was performed using the Naive bayes classifier with the
Maarj AM database to obtain taxonomic information and to identify arbuscular mycorrhizal
fungi species. The diversity cloud analysis platform (Qiime2 process) (cloud.majorbio.com,
accessed on 13 March 2023) of Shanghai Meiji Biomedical Technology Co., Ltd. (Shanghai,
China) was used for subsequent data analysis.

Microbial community alpha diversity was characterized using Chao1 index (Chao1
richness estimator), Shannon–Wiener index (Shannon–Wiener index), and Simpson index
(Simpson index) [34]. Data were organized and analyzed using Excel 2003 and SPSS 17.0.
Two-sample t-test was used to analyze alpha diversity, NMDS ranking analysis based on
Bray–Curtis distance was used to analyze beta diversity, and RDA analysis and Pearson’s
method were used for environmental factor association analysis. All statistics were con-
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ducted with the “microeco” package R language and the figures were also finished using
the “ggplot2” R language.

3. Results
3.1. Analysis of the Difference in Physicochemical Properties of Soils in the Fire Intensities

The soil physicochemical properties (MBC, SOC, pH, AK, TN, SOC, AP, and AN)
changed significantly in different fire intensities (p < 0.05) compared with the control forest
(Table 2). Soil MBC, SOC, and MC in Light, moderate, and heavy fire intensities were
higher than those in control forest; soil AK in Light, moderate, and heavy fire intensities
was significantly lower compared with that in the control forest. Soil TN in Light and
moderate did not change significantly compared to the control forest and only that in heavy
fire intensities significantly increased compared with that in the control forest (p < 0.05).

Table 2. Physical and chemical properties of arbuscular mycorrhizal fungi in forest soils with three
different fire intensities. All results are reported as mean ± standard deviation (n = 3). Different
letters within a row indicate significant differences (p < 0.05; ANOVA) among the different intensities
of fire in this study.

Intensity MBC mg/kg MC% pH AK mg/kg TN g/kg SOC g/kg AP mg/kg AN mg/kg

CK
(Control—blank) 149.97 ± 33.56 c 0.04 ± 0.004 c 6.79 ± 0.03 a 213.05 ± 19.19 a 1.69 ± 0.01 b 97.05 ± 3.41 b 11.74 ± 0.69 c 96.14 ± 11.33 b

L (Light fire) 268.37 ± 23.67 b 0.16 ± 0.002 b 6.64 ± 0.02 a 140.07 ± 5.2 b 1.95 ± 0.06 b 122.98 ± 5.96 a 46.9 ± 0.83 a 89.37 ± 12.31 b
M (Moderate fire) 847.07 ± 369.5 a 0.12 ± 0.006 b 6.53 ± 0.05 a 80.43 ± 6.38 c 1.71 ± 0.06 b 93.16 ± 6.49 b 18.21 ± 0.66 c 82.13 ± 24.22 b

H (Heavy fire) 349.99 ± 12.5 b 0.27 ± 0.03 a 5.84 ± 0.4 b 80.97 ± 11.17 c 2.96 ± 0.43 a 76.06 ± 3.24 c 27.48 ± 1.57 b 148.16 ± 17.29 a

3.2. Differential Analysis of Soil Arbuscular Mycorrhizal Fungi Diversity in the Fire Sites

As shown in Figure 2, Light, moderate, and heavy fire intensities significantly de-
creased the Chao1 and Shannon indices of soil arbuscular mycorrhizal fungi compared
with those in the control forest (p < 0.05), but increased the Simpson index (p < 0.05) in the
three fire intensities. Moreover, the Chao1, Shannon, and Simpson indices of soil arbuscular
mycorrhizal fungi did not change within the different fire intensities (p > 0.05) (Figure 2).
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Figure 2. Alpha diversity of arbuscular mycorrhizal fungi communities in soils with different fire
intensities. All results are reported as mean ± standard deviation (n = 3). Different letters within
a row indicate significant differences (p < 0.05; ANOVA) among the different intensities of fire in
this study.

The result of NMDS analysis is shown in Figure 3, and the stress value was 0.042,
lower than 0.05, indicating that the result was well representative. The Adonis analysis
showed that the arbuscular mycorrhizal fungi community structures were significant
different (R = 0.9475, p < 0.01) in different forest fire intensities. From the Figure 3, heavy
fire intensity was relatively distant from Light and moderate, where the overlap between
the elliptical areas of L (Light-fire) and M (Moderate-fire) forests was higher, indicating that
the diversity and composition of arbuscular mycorrhizal fungi were more similar under
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these two treatments, and also indicating that fire of different intensities had significant
effects on arbuscular mycorrhizal fungal community composition.
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As shown in Figure 4, the Bray–Curtis distance showed that the minimum distance of
L (Light fire) and M (Moderate fire) was 0.56, indicating that the arbuscular mycorrhizal
fungi community composition of L (Light fire) and M (Moderate fire) was similar, but the
distance between CK (Control—blank) and L (Light fire), M (Moderate fire), and H (Heavy
fire) groups was between 0.97 and 0.99, indicating that the arbuscular mycorrhizal fungi
community composition between these fire treatments was significantly different.
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3.3. Analysis of Differences in the Structural Composition of Arbuscular Mycorrhizal Fungi
Communities in Fire Trails

As seen in Figure 5, the total number of ASVs of the different fire intensities were
20 (Light fire), 16 (Moderate fire), and 20 (Heavy fire), which was lower than that in the
control forest, and the numbers of ASVs specific to the forest were L (Light fire) > M
(Moderate fire) > H (Heavy fire). The number of ASVs jointly owned with the control forest
between fire groups were M (Moderate fire) > H (Heavy fire) > L (Light fire), the highest
number of ASVs were jointly owned by L (Light fire) and M (Moderate fire) between fire
groups, and the lowest number of ASVs were jointly owned by M (Moderate fire) and
H (Heavy fire).
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From Figure 6 and Table S1 in Supplementary Material, the dominant genus of arbus-
cular mycorrhizal fungi in the fire sites of different intensities was Glomus (91.6~94.76%),
followed by Ambispora (13.37~13.86%). The relative abundance of Glomus decreased in
the fire group compared with the control group, while the relative abundance of Glomus
increased after decreases between fire groups. In addition, Glomus was not detected in M
(Moderate fire), and Acaulospora was detected only in CK (Control—blank). This shows
that the community structure of L (Light fire) and M (Moderate fire) was more affected
after the forest fire.
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3.4. Correlation Analysis of Factors Influencing the Structure and Diversity of Arbuscular
Mycorrhizal Fungi Communities at the Fire Sites

The results of Pearson correlation analysis (Table 3) showed that the Chao1 diversity
index was significantly negatively correlated with AP (p < 0.05), the Shannon diversity index
was significantly negatively correlated with MBC (p < 0.01), and the Simpson diversity
index was significantly positively correlated with MBC (p < 0.01) and negatively correlated
with AK (p < 0.01), indicating that AP, MBC, and AK are important soil environmental
factors affecting arbuscular mycorrhizal fungi alpha diversity.

Table 3. Correlation coefficients of arbuscular mycorrhizal fungi alpha diversity indices and soil
chemical factors. If the p-value is less than 0.05, it is marked with an * sign, * 0.01 < p ≤ 0.05,
** 0.001 < p ≤ 0.01.

Name MBC MC pH AK TN SOC AP AN

Chao1 −0.531 −0.422 0.16 0.446 −0.4078 −0.109 −0.629 * −0.134
Shannon −0.741 ** −0.348 0.228 0.692 * −0.321 0.021 −0.416 0.006
Simpson 0.727 ** 0.369 −0.179 −0.734 ** 0.251 −0.007 0.391 −0.119

Redundancy analysis (RDA) was performed on the soil physicochemical properties
for the community composition of arbuscular mycorrhizal fungi at the ASV. The first and
second axes explained 91.91% and 2.16%, respectively, with a total explanation of 94.07%
(Figure 7). The arbuscular mycorrhizal fungi communities of L (Light fire) were positively
correlated with AP, SOC, pH, MC, and MBC and negatively correlated with TN, AK, and
AN. Arbuscular mycorrhizal fungi communities of M (Moderate fire) were positively
correlated with AP, SOC, pH, and MBC, and negatively correlated with MC, TN, AK, and
AN. Arbuscular mycorrhizal fungi communities of CK (Control—blank) and H (Heavy
fire) were positively correlated with MC, TN, AK, and AN and negatively correlated with
AP, SOC, pH, and MBC.
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As shown in Table 4, soil AP, SOC, and MBC had significant (p < 0.05) effects on soil
arbuscular mycorrhizal fungi community composition, indicating that AP, SOC, and MBC
were important factors affecting soil arbuscular mycorrhizal fungi communities.

Table 4. Significance tests between soil physicochemical properties and arbuscular mycorrhizal fungi
community structures. If the p-value is less than 0.05, it is marked with an * sign, * 0.01 < p ≤ 0.05,
** 0.001 < p ≤ 0.01.

Soil Factors R2 p-Value

MBC 0.7839 0.004 **
MC 0.0871 0.681
pH 0.1062 0.604
AK 0.1806 0.414
TN 0.2325 0.3

SOC 0.5492 0.035 *
AP 0.7023 0.006 **
AN 0.3329 0.158

Heatmap analysis of the correlation between genus and environmental factors at the
genus level showed that Ambispora was significantly negatively correlated with soil MC
content (p < 0.05) and significantly negatively correlated with soil TN content and soil AP
content (p < 0.01), indicating that MC, TN, and AP were important factors affecting the
genus composition of soil arbuscular mycorrhizal fungi(Figure 8).
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* 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01.

4. Discussion
4.1. Effect of Fire on Soil Nutrient Content

After forest fires, some physical and chemical properties of forest soils, such as pH
and organic carbon, were affected [37]. This result showed that there were significant
differences in soil physicochemical properties between different fire intensities (Table 1),
and the trend of increasing and then decreasing MBC and SOC with increasing fire intensity
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was consistent with previous reports [5,38], which may be due to the fact that moderate and
Light fires can increase soil temperature, promote soil microbial activity, and accelerate soil
organic matter formation [39], while high temperatures under heavy fires cause thermal
decomposition of surface soil SOC, resulting in a decrease in organic matter input and,
thus, a decrease in SOC content. As the intensity of a forest fire increases, the fire changes
from a disturbance to a destructive factor and plant roots undergo apoptosis, leading to
the disappearance of mycorrhizae, which reduces soil MBC and makes SOC depleted in
gaseous form [40].

After the Light-intensity forest fires, the surface was exposed due to the burning of the
surface litter and vegetation, which led to enhanced external erosion of the soil, causing
weathering and scouring under the action of rainwater, resulting in a significant decrease
in soil AK content [41]. The results of this study are consistent with the results of previous
related studies [42]. In contrast, there was no significant difference between moderate
and heavy fires in the results of this study, which may be due to the loss of K through
particulate or non-particulate matter during combustion, and there was no longer enough
AK released [43].

In the present study, soil AP content was elevated in all the fire sites, which is consistent
with the results of a previous [44] related study, due to the positive response of soil from
the conversion of some organic phosphorus compounds into inorganic phosphorus caused
by forest fires [45,46].

The significant increase in soil MC changes, contrary to the results of Hart [1,47], could
be attributed to the massive plant mortality due to the collapse of trees after forest fires. On
the one hand, it can reduce plant transpiration and rainwater retention by the canopy [48],
and on the other hand, with the decomposition of fallen trees, the density of fallen trees
becomes smaller and the porosity increases to absorb more water [49], so it causes the soil
MC value to increase.

4.2. Effect of Fire on Soil Arbuscular Mycorrhizal Fungi Diversity

It has been shown that fire has a large effect on the alpha diversity of arbuscular
mycorrhizal fungi [50]. In the present study, we found that the arbuscular mycorrhizal fungi
Chao1 index of forest soil gradually increased with the increase in fire intensity (Figure 2).
There may be four reasons: Firstly, arbuscular mycorrhizal fungi have a faster growth
rate [50,51]. Although fire reduces its biomass, the faster growth rate can make arbuscular
mycorrhizal fungi recover quickly or even exceed the previous biomass; Secondly, forest
fires can accelerate the decomposition of apoplastic matter, releasing more nutrients; Thirdly,
forest fires can accelerate the decomposition of apoplankton, releasing more nutrients to
arbuscular mycorrhizal fungi, resulting in a rapid increase in arbuscular mycorrhizal
fungi biomass [52,53]; Fourthly, forest fires change soil physicochemical properties to
indirectly affect arbuscular mycorrhizal fungi survival [16], and it has been suggested
that the alpha diversity of arbuscular mycorrhizal fungi is significantly correlated with
soil physicochemical properties, which is consistent with the results of this study [53,54].
In this study, Shannon and Simpson indices were found to be significantly correlated
with MBC and AK, suggesting that changes in alpha diversity may be influenced by soil
physicochemical factors. The Simpson index of arbuscular mycorrhizal fungi was the
highest in moderate fire, while there was no significant difference between the Simpson
index of heavy and Light fire (p > 0.05); this might be because the MBC values of the two
soils of heavy and Light fire were closer, providing a more similar soil nutrient environment
for the development and reproduction of arbuscular mycorrhizal fungi, resulting in no
significant difference in the diversity of arbuscular mycorrhizal fungi.

Many studies have shown [16,55] that arbuscular mycorrhizal fungi abundance and
diversity vary with soil nutrient availability, and in the present study, we found that AK,
MBC, and AP directly influenced the alpha diversity of arbuscular mycorrhizal fungi in
soils with different fire intensities and were the main drivers, which is consistent with
previous studies [16,54,55]. In our study, we found no significant correlation between the
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Chao1 index and Shannon index of arbuscular mycorrhizal fungi in soils with different
intensities of fire (Figure 2, p > 0.05), which may be due to the wide ecological niche of
clumping mycorrhizal fungi, which can rapidly adapt to environmental changes under
different fire levels [56,57].

4.3. Effect of Different Intensities of Fire on the Structural Composition of Arbuscular Mycorrhizal
Fungi Communities

It has been shown that fire can change the fungal species composition and promote the
dominance of specific species or enhance the spectrum [15]. In the present study, Paraglomus
were all present in soils burned at different intensities of fire, while Glomus, Ambispora,
Acaulospora, and Archaeospora were not evenly distributed (Figure 6), which is consistent
with other studies [58]. The most abundant Glomus was due to its strong environmental
adaptability and unique reproductive characteristics, with a high spore production rate that
allowed it to colonize different environments and be highly adaptable [59]. Their lighter
relative abundance in the soil of moderate to Light fire sites may be due to the fact that Light
fires reduce the number of Glomus propagules surviving on the soil surface [17], decreasing
the species abundance and density of Glomus [16]; the heat increased during Moderate fire
and was transferred to the soil, leading to the death of Glomus by scorching [60], while
in the case of Heavy fire, a large amount of soil surface humus was burned out, which
released a large amount of nutrients and was able to provide Glomus with the nutrients
needed for growth and accelerate its growth [61].

It has been shown that physicochemical properties such as SOC, C/N, and MBC have
significant effects on fungal community composition [62–64], and similar results were
observed in the present study, where the community structure composition of arbuscular
mycorrhizal fungi in the soil of the fire sites was significantly or highly correlated with MBC,
SOC, and AP. The relative abundance of Ambispora was negatively correlated with MC, TN,
and AP, probably because Ambispora is more sensitive to changes in soil physicochemical
properties [65], which is consistent with the results reported in the literature [27,65,66].

5. Conclusions

Different intensities of fire affected both the community structure and diversity of soil
arbuscular mycorrhizal fungi. Fire significantly reduced the alpha diversity of arbuscular
mycorrhizal fungi in cold-temperate forest soils, and MBC, SOC, and AP were the main
influencing factors in soil physicochemical properties. Fire altered the beta diversity of
arbuscular mycorrhizal fungi in cold-temperate forest soils, Glomus was the dominant taxon
in the arbuscular mycorrhizal fungi of the fire sites, and MC, TN, and AP were important
soil physicochemical factors affecting the community structure composition of arbuscular
mycorrhizal fungi.

Supplementary Materials: The following supporting information can be downloaded at: https://
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