Skip to main content
. 2023 Jul 16;23(14):6434. doi: 10.3390/s23146434
Algorithm 1 Pipeline of EEG signal analysis
  • Input: EEG signal eeg(t).

  •  

  • procedure Acquisition (eeg(t)):
    •      Sampling equipment selection.
    •      Choose invasive or noninvasive acquisition.
    •      Choose the best reference electrode.
    •      Return: EEG data eeg(t).
  •  

  • procedure Denoising (eeg(t)):
    •      Using different denoising methods to process EEG signals.
    •      Return: Denoised EEG signal eeg(t)new.
  •  

  • procedure Feature_Engineering (eeg(t)):
    •      Perform time–frequency, high-order spectrum analysis or nonlinear analysis.
    •      Return: More expressive features, eeg(t).
  •  

  • procedure Classification (eeg(t), choice):
    •      Perform classification tasks based on choice:
    •      If choice equal traditional approach do
      •           Using KNN, SVM, ... to classify.
    •      If choose the same deep learning approach do
      •           Using CNN, GAN, ... to classify.
    •      Return: Accuracy, precision, etc.