Skip to main content
. 2023 Jul 16;23(14):6434. doi: 10.3390/s23146434
Algorithm 3 ICA based denoising of EEG signals
Input: X: EEG data matrix
Input: n_components: number of independent components to estimate
Output: S: matrix of independent components
Output: A: estimated demixing matrix
    Center and whiten the X.
    Initialize A randomly.
    repeat
        Update A by exploiting non-Gaussianity of independent sources.
    until convergence
    Compute S from A and X.
    Identify artifact components in S.
    Remove artifact components from S.
    Reconstruct cleaned data from S.
    return S, A