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Abstract: The detection of weld defects by using X-rays is an important task in the industry. It
requires trained specialists with the expertise to conduct a timely inspection, which is costly and
cumbersome. Moreover, the process can be erroneous due to fatigue and lack of concentration. In
this context, this study proposes an automated approach to identify multi-class welding defects by
processing the X-ray images. It is realized by an intelligent hybridization of the data augmentation
techniques and convolutional neural network (CNN). The proposed data augmentation mainly
performs random rotation, shearing, zooming, brightness adjustment, and horizontal flips on the
intended images. This augmentation is beneficial for the realization of a generalized trained CNN
model, which can process the multi-class dataset for the identification of welding defects. The
effectiveness of the proposed method is confirmed by testing its performance in processing an
industrial dataset. The intended dataset contains 4479 X-ray images and belongs to six groups: cavity,
cracks, inclusion slag, lack of fusion, shape defects, and normal defects. The devised technique
achieved an average accuracy of 92%. This indicates that the approach is promising and can be used
in contemporary solutions for the automated detection and categorization of welding defects.

Keywords: CNN; deep learning; multi-class classification; data augmentation; welding defects;
segmentation

1. Introduction

Welding plays an important role in various industries, including automobile, aerospace,
petrochemicals, mechanics, electrical, etc. Due to the welding process’s complexity, and the
welding parameters’ instability, welding flaws are predictable, for example, cracks, lack of
fusion, and cavity [1]. Thus, verifying the welds’ quality is essential to ensure the welding
morphology’s safety [2]. Non-destructive testing is an active procedure and a principal
technique to detect the inside quality of diverse weld joints. For the remarkable precision
welding segment, in demand for assessing the destructiveness of underage imperfections,
the goal is not solely to identify the presence of flaws but also to pinpoint their exact loca-
tion [3]. There are several NDT methods, such as the penetrant test, acoustic emission (AE),
visual test (VT), infrared thermography test (IRT), ultrasonic test (UT), and radiographic
test (RT), used to uncover welding flaws inside pipelines. The identification of thin flaws in
welded joints with traditional methods is still a major problem in the industry, along with
the waste of time, materials, and employment. Further, the results can be poor and require
the repetition of the operation several times. In this context, several researchers have used
deep learning to eliminate ancient problems and improve experimental results. The UT
method is used with the implementation of a deep learning algorithm to unconsciously
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detect and find the geometric components of welds [4], then, it is applied to detect the crack
welding defect in a gas pipeline [5]. The AE [6] control technique is employed to identify
and categorize the diverse weld flaws inside carbon steel. In addition, the integrity of the
welds can be inspected by NDT methods with the radiography test based on the X-ray
radiation passing through a specimen to detect any defects in the joint. X-ray radiation
is employed for slender materials, though gamma rays are applied for materials. The
findings of the testing can be evaluated using a range of methods, including computed
radiography, film, and CT scans [7,8]. Currently, these films are scanned to be treated on a
numerical computer. Subsequently, scanned images are categorized by little contrast and
badly off quality; inspecting weld defects can be difficult. Unfortunately, these qualities
affect explanation and classification. This categorization is a procedure of classification,
where they are identified and sorted accordingly. Admittedly, the categorization of images
is becoming a popular area of computer vision and is expected to be performed in the
upcoming years [9]. Figure 1 presents some X-ray weld defect images.

Figure 1. X-ray weld defect images.

Usually, this type of recommendation is founded on three stages: preliminary prepara-
tion, subdivision and characteristic extraction, and categorization. Normally, the character-
istic extraction phase is frequently performed by experts and hence is a long and imprecise
process. Certainly, this accuracy issue is mainly due to the variety of weld defect types.
Further, the generated features are insufficient for the recognition quality to detect errors
effectively [9,10]. Following, many studies have examined the general structure of machine
learning applications and the algorithms used for feature extraction and ML. However,
some artificial neural networks have simple applications, specialized classification, and
low accuracy. In recent times, there has been a notable rise in the utilization of deep
learning methodologies, driven by their ability to leverage extensive datasets and perform
automated feature extraction. These capabilities have proven to be highly valuable in the
efficient detection of defects within welds. Defect prediction plays a pivotal role in evalu-
ating the condition of a weld, and deep learning techniques have emerged as prominent
and effective tools for this purpose in welding processes. By harnessing the power of deep
learning, practitioners can significantly enhance their ability to predict defects, leading
to more accurate and reliable assessments of weld quality [11]. This integration of deep
learning techniques into welding processes holds great potential for improving overall
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welding performance and ensuring the integrity of critical components and structures.
Thus, computer vision and ML have been created to support experts in evaluating the out-
comes, with the use of an innovative method that combines laser profilometry and machine
learning algorithms to automatically detect defects in welds by utilizing high-throughput
3D data acquisition and lightweight machine learning techniques [12].

We aim to develop a model that is appropriate for our situation and can facilitate
the automated processing of the intended dataset with an appropriate level of accuracy.
The importance of the welding defect inspection is to improve the welding quality and
decrease the fault identification degree produced by human influences, such as incorrect
detection and incompetent manual examination. Researchers have suggested a diversity
of weld flaw identification approaches founded on computer vision, which can make
effective defect detection intelligent and standardized [7,8,13]. For this reason, we are
brought to work with this tendency industrial vision. Further, we use a particular deep-
learning architecture for welding verification with specific data that remains challenging.
Furthermore, to control the limitations of the preceding work and participate with our
dataset consisting of six types of defects—lack of fusion, cavity, cracks, inclusion, shape
defects, and normal defects—we use the X-ray images to evaluate the NDT method for
the weld imperfections. The approach of data augmentation results in an increase in the
dataset size, while simultaneously decreasing the occurrence of overfitting. However, we
apply the CNN model to achieve the classification of the six defects, then the results are
presented in a confusion matrix and curve form. Figure 2 presents some X-ray weld defect
images that we use to create our new dataset—based on the public “GDxray” dataset [14].

In many of the previous studies, as discussed in the related works section, the CNNs
were utilized with precise goals in mind. However, several researchers have devised new
and innovative methods to address the limitations of CNNs from dissimilar viewpoints.

This work aims to automate and improve the precision of the multiclass categorization of
welding defects in X-ray images. To achieve this, we present several contributions to this study:

• The automated and precise multi-class categorization of welding defects in X-ray images.
• Creation of a new dataset by segmenting and augmenting the original “GDXray”

dataset, the Grima Database of X-ray images that contains multiple welding defects [14].
The newly generated dataset serves as the foundation for our automated categorization
approach. In the future, it can be processed and explored by other potential researchers.

• Developing a CNN model that directly processes the augmented dataset for the
automated multiclass categorization of welding defects in X-ray images.

Section 2 details some research on weld detection and classification with traditional
methods, arriving at new models founded on deep learning. Then, in Section 3, welding
identification issues, mostly in the dataset, are presented and the moving-on performance
for the CNN is inspected and educated in detail. The outcomes are introduced in Section 4,
and Section 5 accomplishes our paper.

2. Related Works

Image classification is applied to identify weld flaws in X-ray images. The major
purpose is to classify radiographic images into different categories that would help localize
and evaluate defects. The quality classification is 71% and shows great application value.
The methods for detecting weld defects are the subject of extensive research. Shevchik
et al. [13] suggested a technique founded on a deep artificial neural network (ANN) that
could detect process instability defects in real-time. The quality categorization falls within
the range of 71% to 99% and displays a strong commitment to implementing values. Ajimi
et al. [9] proposed a new classification data improvement founded on a deep learning
network for the random transformation of images on data and used image preprocessing
and machine learning tools for traditional crack detection; this method proved that the
prototypical delivers exceptional performance within a limited time frame. Additionally,
the SVM and the ANN, applying four texture features assigned to defect detection and
classification, were judged and then required supplementary performance accuracy [15].
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Also, Ajimi et al. [16] developed a method for assessing the performance of deep learning
networks across a range of parameter and hyperparameter configurations. They also incor-
porated an improved learning process into the dataset, which led to a 3% increase in the
accuracy of the model. Hou et al. [17] advanced a deep learning model that could directly
analyze X-ray images using a neural network. They evaluated the model’s ability to classify
features and compared its performance to that of traditional techniques, using dissimilar
datasets; the model had 97.2% accuracy, which is much more advanced than feature extrac-
tion methods. The model was evaluated using the signal-to-noise ratio, origin mean square
error, entropy, and reliability of the model. Nacereddine et al. [18] proposed computer-
aided diagnostic software for welding defects and proposed unsupervised classification
based on a limited combination model of multivariate generalized Gaussian distribution.
Su et al. [19] recognized an automatic identification system of weld-joint defects by extract-
ing texture characteristics from weld defects. According to a new area of ML, deep learning
has considerable probability in the area of identifying imperfections, constantly decreasing
the measurement in the feature procedure to keep away from the effect of characteristic
extraction on the recognition outcomes, thus successfully refining the precision of the
flaw recognition. Zhang et al. [20] suggested a transfer learning classification technique
for training two deep neural networks on an improved image dataset. The images are
classified into different categories using a multi-model addition structure. In [21], the same
researcher devised an eleven-layer CNN model for the classification and identification
of weld defects. He proposed a non-pixel technique for a quantifiable evaluation and
visualization of the model performance. Jiang et al. [22] offered an enhanced pooling
approach that accounts for both the pooling region and characteristic map delivery, which
leads to a notable increase in identification precision. To further highlight the significance
of computer vision, Cardellicchio et al. [12] presented a pioneering method that combines
laser profilometry and machine learning algorithms to automatically detect defects in
welds. By leveraging high-throughput 3D data acquisition and employing lightweight
machine learning techniques, the proposed approach achieves remarkable accuracies of
99.79% for defect identification and 99.71% for defect categorization. This method exhibits
significant potential for implementation in real production lines, enabling cost reduction,
real-time monitoring, and the efficient evaluation of defects. The prediction of weld defects
is important for ensuring high-quality and safe welded structures. Baek et al. [11] pro-
posed a method based on deep learning to predict weld penetration depth in arc welding,
demonstrating its potential for real-time monitoring and the prediction of weld quality
using surface images of the weld pool. The developed prediction model achieved high
accuracy, with a mean absolute error of 0.0596 mm and an R2 value of 0.9974, utilizing
semantic segmentation and regression techniques.

In summary, the integration of deep learning, artificial intelligence, and specialized
methodologies, such as X-ray radiography, molten pool extraction, and 3D data analysis,
presents noteworthy advantages in enhancing the precision and automation of weld classi-
fication, detection, and quality control processes. These approaches yield notable benefits,
including precise and automated defect classification, the real-time monitoring of weld
quality, improved defect recognition through advanced strategies, and even the real-time
prediction of weld penetration depth. Nevertheless, it is essential to acknowledge the sub-
stantial resource requirements associated with training data, computational capacity, initial
investments, and technical expertise. Consequently, the meticulous consideration and
thoughtful implementation of automatic weld quality control methods must incorporate
these factors to ensure optimal outcomes and cost-effectiveness in industrial applications.

3. Methodology

In our study, the challenge of the curse of dimensionality emerged due to the scarcity
of training data. To surmount this obstacle, we employed two primary approaches: data
augmentation and modifications to the model’s architecture. Data augmentation involved
applying diverse transformations to the existing dataset, effectively expanding our training
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set artificially. This technique fostered dataset diversity, mitigated overfitting risks, and
improved the model’s ability to generalize. Simultaneously, we streamlined the model’s
complexity by reducing the number of layers and parameters. This architectural modifica-
tion aimed to counteract overfitting tendencies, enabling the model to better accommodate
the limitations of the available data and enhance its generalization capabilities. The com-
bination of these strategies enabled us to effectively address the curse of dimensionality,
optimize model training, and achieve superior results, despite the constraints imposed by
our limited dataset. In our research, we implemented transfer learning and fine-tuning
techniques specifically tailored to a convolutional neural network (CNN) model for the
classification of various types of weld defects in images. By adapting the model to our
specific task, our objective was to enhance its accuracy and efficacy in identifying and cate-
gorizing different types of weld flaws. Although we did not conduct explicit evaluations
of advanced layers, such as residuals or global average pooling, we explored alternative
models beyond the initial implementation of AlexNet. Through our experiments, we
assessed the performance of CNN, VGG16, random forest, and Inception V3 models, all
of which exhibited significantly improved results compared to AlexNet. As a result, we
redirected our focus toward these models for further analysis and refinement.

3.1. Dataset

In this research, we use a public experimental X-ray inspection database (GDXray
dataset) created for research and educational purposes. The dataset of primary X-ray
inspection includes a section of X-ray weld images that were gathered by BAM, the Federal
Institute for Materials Research and Testing in Berlin, Germany. The subset of welds
consists of 10 X-ray images that are 4K in length and have varying widths, known as
the W0001 series. Additionally, this subset includes explanations of bounding cases and
binary images that represent the actual data for weld flaws, referred to as the W0002 series.
The Welds W0003 sequence now includes more than 67 X-ray images to better support
network training [14].

The welding process has numerous kinds of imperfections (ISO6520-12007) [23]. The
key categories of welding imperfections are cavity, crack, inclusion slag, lack of fusion,
shape defects, and dimensions. Certain approaches deal with the identification of these
defects without categorizing them. However, the proposed approach not only deals with
the identification of these defects but also provides a deeper insight by categorizing the
welding defects.

Traditionally, X-ray inspection focuses on sub-superficial defects. However, in this
study, superficial defects such as cracks are also included. We believe that such an approach
provides valuable insights into the potential challenges and risks associated with the
welding process. The intended categories of defects are cracks, cavities, solid inclusion,
shape defects, lack of fusion, and normal defect (image without defect).

The crack defects are the rectilinear defectiveness of welds. These are produced
primarily when the internal welding stresses surpass the mechanical strength of the filler
metal, the base metal, or both. It is a crucial goal in the fabrication process. Among all
welding imperfections, cracks are considered the most severe and are generally deemed
unacceptable as per manufacturer specifications. It should be noted that cracks may not
always manifest immediately after welding but can gradually develop due to cyclic fatigue
loads during service. Forces like tension, bending, torsion, and shear, as well as thermal
expansion and contraction, have the potential to generate cracks long after the completion
of welding. Hence, it is essential to effectively manage welding stresses and employ
appropriate measures to minimize the occurrence of cracks in welds. In order to effectively
mitigate the occurrence of crack defects in welds, it is of paramount importance to employ
X-ray techniques for the early detection of such flaws in joints prior to any extension
processes. The cavity’s imperfections are produced by stuck gases or contractions. Holes
of gases considered by a circular shape are the most shared. Then, the solid inclusions
are non-metallic particles in the welded metal or at the interface. In addition, the lack
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of fusion is the absence of a union between the metal and base metal or between layers
of the weld metal. Furthermore, the term “normal defect” in X-ray images is the digital
representation that presents an object without any modification or undesirable visual
flaws. These images present the true essence of the subject without misrepresentations,
abnormalities, noise, and/or other imperfections. The standardized ISO5817:2014 [24] offers
an example of receipt heights for weld imperfections frequently used in manufacturing as
the base for additional case-specific recognition standards. Figure 2 shows the six classes
of welding defects.

Figure 2. Weld defects: 1 = cracks; 2 = cavity; 3 = shape defects; 4 = inclusion; 5 = lack of fusion;
6 = normal defect.

To evaluate our research, firstly a new dataset is created by applying manually a
cropping technique of the original X-ray images. Additionally, a data augmentation method
uses elevating the image quantity and splitting it to a train set and test set to train a CNN
model to classify the six defects weld.

3.2. Data Augmentation

Data augmentation is an important step before training and testing the intended
learning model [9,24,25]. The employed data augmentation steps are described below:

• Random rotation: This technique in the valves rotates an image by a certain number
of degrees around its original center point. The degree of rotation can be either to the
right or left and can range from 1 to 359 degrees. In many cases, the rotation process,
which is symbolized as R is combined with zero padding to fill out any missing pixels
as it is shown in Equation (1). We apply a random rotation of 40 degrees:

R =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(1)

• Shearing (shear range): The process of shearing involves applying a transformation,
denoted as H, to an image. This transformation moves each point in the image in a
particular direction, and the distance of the movement depends on the point’s distance
from a line that runs parallel to the selected direction and passes through the origin as
it is shown in Equation (2):

H =

[
1 hx
hy 1

]
(2)

The symbols hx and hy represent the shear coefficient along the x and y axes, respec-
tively. In our case, the shearing is equal to 20%.

• Zooming: This technique refers to the process of changing the image’s size to enhance
its visibility or to focus on a specific part of the image. It involves enlarging or reducing
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the image’s dimensions. The process S is given by Equation (3) and can be achieved
independently in diverse instructions. We apply a zoom range of 20%:

S =

[
Sx 0
0 Sy

]
(3)

• Brightness: This method is a quality of an image that indicates how light or dark it
is. This can refer to specific areas within the image or the overall illumination of the
scene. The luminosity of the image can be transformed by appending a 0.2 to all pixel
ethics. Yet, we apply the brightness range between 0.5 and 1.5.

• Flips: Flipping is a method of making a reflection from the original image. In a two-
dimensional image, the positions of the pixels are flipped or mirrored along one of the
axes, either horizontally or vertically. In our case, we use only horizontal flipping.
Even though some small changes are made to the images, their important meanings
remain the same, and the images are still labeled based on their original training
label. In other words, the modifications to the images do not affect their core semantic
content or the original classification they were given during training. Figure 3 presents
the different data augmentation techniques.

Figure 3. X-ray images data augmentation techniques: (a) rotation, (b) horizontal flipping,
(c) brightness, (d) shear, and (e) zoom.

3.3. Convolutional Neural Network (CNN) Architecture

In this study, CNN is used for automated categorization of the intended welding
defects. Its architecture contains four kinds of layers, which are input, convolution, pooling,
and fully connected, corresponding to the hidden layers of a CNN model [26,27].

One key advantage of the CNN is that it avoids the feature-extraction step in image
pre-processing and simplifies the classification process [26,28,29]. The CNN reduces the
intended images to a more trainable form, without losing the essential information which
is required for the classification [30]. These layers are described below. Figure 4 shows a
global architecture of a CNN.
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Figure 4. CNN architecture.

The layers are pre-prepared by fixing their number and types [31,32]. The input layer
presents the data settings (width, high, size, and channel) to the model. The convolutional
layer relates a usual of several separators applied to the images and executes a linear
function to the input. The filters extract features from the image and create an equivalent
map for each item. The convoluted data are then handled by an exchange capability
named rectified linear unit (ReLU) [33,34]. The ReLU presents non-linearity in the network;
subsequently, the greatest of the data in the CNN method is non-linear. The attribute maps,
generated by the convolving and ReLU, are the input to the pooling layers [32,35,36].

The pooling layer intends to rebuild samples of the feature map output. The concept
is to put on a filter and a stride of a similar distance on the convolutional layer output. The
precise character from the authentic input is recognized, and the comparative position near
other features is more important than its required position [23,35]. This principle of this
layer is depicted with the help of Figure 5.

2×2 Max-Pool

Figure 5. Example of the max-pooling with a 2 × 2 image.

The fully connected (FC) layer indicates that each junction in the preceding layer is
allied to each neuron in the presentation layer. To have the option to interface each hub on
the principal fully connected layer to the previous coat, the results of multi-layered exhibits
should be placed in a singular cluster. It is completed by putting on vectorization to the
matrix to achieve a linear transformation to a one-row vector. Each neuron in the FC coat
takes completely the output from the past layers as input [16,35].

The last CNN layer is the output. It is the last hidden layer that provides the predictions
of the network. The activation function applied in this stage is the softmax function. This
function bandages the output from the last hidden layer to probability values in all classes.
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Consequently, the combination of the outputs is continuously equivalent to 1. The output
of the classification layer agrees with the class with the maximum probability [9,21].

3.4. The Evaluation Metrics

One of the most common issues that training algorithms often encounter is the need
to prevent overfitting. In this study, regularization is used to overcome the overfitting
issue [16]. To measure the learning performance of the CNN model, the confusion matrix
is utilized as a conventional evaluation technique. In the field of image categorization, a
confusion matrix is applied to evaluate its predicted results to real values and measure its
degree of performance. Generally, by using the confusion matrix, we cannot just identify
accurate and inaccurate predictions, yet more importantly, we can gain insight into the
specific types of errors that are made. To calculate a confusion matrix, one needs a set of
test data and another of validation, which contains the values of the obtained results. The
attribution of six types of welding flaws can be immediately recognized by employing this
traditional method. The evaluated measure is illustrated in Figure 6.
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Figure 6. Performance evaluation of a confusion matrix.

The results are sorted into four groups:

• True positive (TP): The “true positive” in a confusion matrix is the number of occur-
rences where the model accurately predicts the positive class or event among all true
positives in the dataset.

• True negative (TN): in a confusion matrix, “true negative” refers to the number of
instances where the model correctly predicts the negative class out of all the true
negative instances in the data.

• False positive (FP): The “false positive” represents the error made by the model when
it wrongly predicts the presence of a specific condition or event, even though it is not
present in reality. This type of error is also known as a Type I error, and it can lead to
incorrect decisions if not properly managed.

• False negative (FN): A “false negative” in a confusion matrix is when the model
incorrectly predicts the absence of an event among all actual positive instances in
the data. It is a measure of the model’s tendency to miss positive cases or make
Type II errors.

The harmonic mean of precision and recall is provided by the F1-score. The number
of samples of the true response that belong to an intended class is known as the support.
The support in the realm of data analysis and machine learning represents the quantitative
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measure of the frequency or occurrence of an item, event, or class within a given dataset.
It encapsulates the prevalence of an item set or the significance of a class by quantifying
their respective frequencies in the dataset. Through the assessment of support, insights
are derived regarding the distribution of data and the evaluation of patterns or categories
within the dataset.

4. Results and Discussion
4.1. The Dataset Preparation

The community database (GDXray) supplied by BAM Federal Institute for Materials
Research and Testing in Berlin, Germany [14], was used as the data source for upcoming
experimental studies. This database’s “welding” defects contain 67 defect images of diverse
sizes and types.

Using previous knowledge, defects in cropping were identified by manually selecting
examples from images showing imperfections. These flaws were then classified and labeled
with class labels before being included in the ‘weld defects’ dataset as depicted in Figure 7.

Various defects

Figure 7. Founding of the weld defect dataset.

The overview of the suggested process is exposed in Figure 7. The proposed system
aims to address the limitations of existing systems by using a balanced dataset with X-ray
defect images from the GDXray dataset. The GDXray dataset contains various types of
weld defects, such as cavities (C), cracks (CR), inclusion (I), lack of fusion (LOF), shape
defects (SDs), and normal defects (NDs). The first step in the proposed system is the manual
segmentation of X-ray images to collect a new database. This segmentation process helps in
identifying and isolating the regions of interest (ROIs) containing the weld defects, which
are then used for further analysis. After segmentation, the technique of data augmentation
is applied to increase the size of the database. Data augmentation techniques, such as
rotation, scaling, flipping, and adding noise, can be used to artificially create more training
samples, thereby enhancing the volume and diversity of the dataset. The dataset is then
split into training (80%) and test sets (20%), which are used for training and evaluating
the CNN architectures for defect classification. The CNN models are trained using the
training dataset, and the accuracy and the loss are computed after each epoch to monitor
the model’s performance during training. Validation loss and accuracy are also calculated
to evaluate the model’s performance on the unseen data from the test set. The overall
system performance is measured using a confusion matrix, which provides insights into
the model’s classification performance for each class. Accuracy, precision, recall, and F1
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score are also calculated to assess the system’s performance in terms of correctly identifying
the weld defects. Figure 8 likely depicts the flowchart or schematic of the proposed system,
illustrating the steps involved in the defect classification process.

Figure 8. The proposed method of the CNN classification.

4.2. Proposed CNN Model

The proposed CNN model used in the classification of the X-ray image defects; it is
shown in Table 1.

Table 1. Summary of the proposed CNN model.

Layer (Type) Output Shape Param #

conv2d (Conv2D) (None, 124, 124, 32) 2432

max_pooling (MaxPooling2D) (None, 62, 62, 32) 0

conv2d_1 (Conv2D) (None, 60, 60, 64) 18,496

max_pooling2d_1
(MaxPooling2D) (None, 30, 30, 64) 0

conv2d_2 (Conv2D) (None, 28, 28, 128) 73,856

max_pooling2d_2
(MaxPooling2D) (None, 14, 14, 128) 0

conv2d_3 (Conv2D) (None, 12, 12, 128) 147,584

max_pooling2d_3
(MaxPooling2D) (None, 6, 6, 128) 0

conv2d_4 (Conv2D) (None, 4, 4, 256) 295,168

max_pooling2d_4
(MaxPooling2D) (None, 2, 2, 256) 0

dropout (Dropout) (None, 2, 2, 256) 0

Flatten (Flatten) (None, 1024) 0

Dense (Dense) (None, 512) 524,800

Dense_1 (Dense) (None, 6) 3078

The proposed model has five 2D convolutional layers, five ReLU activation layers,
five pooling layers, and one dropout layer. The dropout rate that is added to the model
is a method of regulation in the neural network that supports decreased interdependent
learning between the neurons. Dropout mentions overlooking units through the training
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stage of a confident set of neurons, which is selected at random. The first convolution layer
creates a 32-feature map, the second convolution layer makes 64 characteristic maps, the
third and the fourth have 128 feature maps, and finally, 128 feature maps are generated at
the last convolution layer. Python programming language is used for model creation with
Keras–TensorFlow as the backend. Figure 9 represents the proposed model for weld defect
detection. By applying to fine-tune the model parameters, for the proposed model, the first
convolutional layer has a kernel size of 5 × 5, then the other four convolutional layers have
convolutional filter size 3 × 3, pooling filter size 2 × 2 and a dropout rate of 0.5.

Figure 9. Designing a convolutional neural network (CNN): proposed architecture.

Adam is the optimizer applied in two diverse sets of research. They are set with a
training rate equivalent to 0.001, a batch size equivalent to 32, and several epochs equal to
100 epochs. Followed by that, checkpoints are introduced to serialize the model which has
the greatest validation accuracy. Later, the finest model weights can be protected from being
troubled while training. Lastly, the model is trained on 3452 images and tested through
867 images that are arbitrarily chosen from the dataset.

4.3. Discussion

In this topic of research, the multiclass classification method is designed to detect
different weld defects from the public dataset “GDXray” based on a CNN model. To
devise the model, all images are resized to 128 × 128. Additionally, the total dataset is
divided into training (80%) and testing (20%). Multiclass classification methods use a
CNN model, where the hyperparameters are applied to improve the accuracy of the weld
defect classification; for this algorithm, we use an epoch size equal to 100 and batch sizes
equal to 16 to advance the accuracy of several weld flaw detections. After that, mixing
the greatest optimizer (Adam) and a loss function is a categorical cross-entropy with a
multiclass classification; using the CNN model attained a better accuracy of 92%.

The utilization of a convolutional neural network (CNN) model for weld defect classi-
fication is well supported by scientific and formal justifications. CNNs have a strong track
record in image-based classification tasks, attributed to their capacity to extract relevant
features and capture spatial relationships. This makes them a suitable choice for accurately
identifying and classifying weld defects. Additionally, fine-tuning the hyperparameters of
the CNN model ensures optimal performance specific to weld defect classification, enabling
the capture of distinct defect characteristics. The selection of an epoch size of 100 and a
batch size of 16 strikes an effective balance between computational efficiency and model
optimization. Leveraging the Adam optimizer facilitates efficient parameter updates, partic-
ularly advantageous for CNN models dealing with large parameter spaces. Moreover, the
application of the categorical cross-entropy loss function effectively minimizes classification
errors in multiclass classification scenarios. Collectively, these considerations contribute to
the CNN model’s ability to deliver accurate and precise weld defect classification outcomes.
The value is utilized for an extra validation procedure and applied as a predictor. The
training and validation curve of the algorithm is presented in Figures 10 and 11.

Due to the variety of welding defects in the considered dataset, the accuracy score
alone may not provide a reliable evaluation of the performance. Therefore, other known
evaluation measures such as precision, recall, and F1-score, are also considered in this study.
The performance evaluations are summarized in Table 2.
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Figure 10. Accuracy curves for training and validation over 100 epochs.

Figure 11. Loss curve comparison between training and validation phases over 100 epochs.

Many parameters can influence the outcomes of a CNN model, including the number
of convolutional layers, the kernel size, and the number of filters. Other important parame-
ters include the learning rate, batch size, activation function, and pooling strategy. Each
of these parameters can impact the performance of the CNN in various ways; optimizing
them is critical for achieving the best accuracy.

We aim to create a convolutional neural network (CNN) capable of accurately clas-
sifying the different types of welding defects. To achieve this goal, we need to make a
careful choice of the parameters of the CNN model. It includes the choice of the number of
convolutional layers, the number of filters in each layer, and the size of the kernel used in
the filters. The size of the kernel refers to the dimensions of the convolutional filter used
to scan the input data; it can be 3 × 3, 5 × 5, or 7 × 7. These parameters play a critical
role in determining the performance of the CNN and can significantly impact the model’s
accuracy. To make well-informed decisions about these parameters, we conduct a thorough
review of the existing literature. We incorporate empirical evidence to choose values that
strike a balance between model complexity and performance. Ultimately, our goal is to
develop a CNN architecture that would effectively and efficiently classify images for our
particular task.

Although the training and validation results show stagnation after approximately
30 epochs, there are scientific justifications for continuing the network training. Persisting
with the training, the process holds the potential of achieving incremental enhancements in
the model’s performance, despite the improvements being modest. Extending the training
duration enables researchers to investigate diverse learning rates, regularization techniques,
and model architectures to optimize the model’s performance. Furthermore, prolonging the
training phase allows for the assessment of potential overfitting and the implementation of
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suitable strategies to mitigate its impact. This comprehensive approach ensures a thorough
exploration of the model’s capabilities, leading to maximized accuracy and improved
generalization capabilities.

Figure 12 presents various outcomes that suggest that modifying the number of convolu-
tional layers and filters in a CNN can affect the model’s accuracy, complexity, and computational
demands. Increasing these parameters can improve the ability to extract features and classify
data while decreasing them can lead to a simpler model with fewer computational requirements
but potentially lower accuracy and feature extraction capabilities. Selecting the best parame-
ters relies on the data complexity and the preferred balance between model performance and
computational efficiency. Based on the findings in Figure 12, the model attains 92% accuracy by
using a 5-layer convolutional approach with 32 filters and a 5 × 5 kernel size. These parameters
are determined through experimentation to achieve a desirable balance between accuracy and
computational requirements.
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Figure 12. Optimizing CNN model parameters for improved training and validation accuracy.

Table 2 presents the summary of evaluation metrics, used to evaluate the performance
of the proposed model. The choice of these evaluation measures is made based on their
extensive usage in literature for evaluating the performance of welding defect classifiers.

The precision measures the proportion of true positives (correctly predicted positive
samples) out of all positive predictions (true positives and false positives), while recall mea-
sures the proportion of true positives out of all actual positives. Using both precision and
recall can provide a more accurate understanding of the model’s performance, especially in
situations where there is a class imbalance in the data.

For a more comprehensive evaluation of the model’s performance, the F1 score can be
calculated based on precision and recall. The F1 score is a weighted average of precision and
recall and is particularly useful in situations where both precision and recall are important
for the problem being solved (the parameters are summarized in Figure 6).
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Table 2. Evaluation metrics.

A Model Trained and Compiled Using Adam

Precision Recall F1-score Support
C 0.97 0.79 0.87 98

CR 0.99 0.93 0.96 163
I 0.85 0.87 0.86 162

LOF 0.89 0.93 0.91 163
ND 0.99 0.99 0.99 120
SD 0.87 0.97 0.91 161

Accuracy 0.92 867
Macro avg 0.93 0.91 0.92 867

Weighted avg 0.92 0.92 0.92 867

In our research, we conduct an investigation using multiple models, namely Incep-
tionV3, random forest (RF), LeNet, and CNN, to address our research objectives. Following
rigorous simulations and experiments, we carefully evaluate and compare the performance
of these models. Among the evaluated models, the CNN model emerges as the most
promising and delivers excellent results. This finding suggests that the CNN architecture
possesses advantageous characteristics that enable it to effectively handle the complexities
and nuances of the dataset. To provide a comprehensive and quantitative representation of
our findings, we intend to present the detailed results in a tabular format. Table 3 displays
the various accuracy results of the models.

Table 3. Accuracy model’s results.

Model Accuracy

InceptionV3 88.58%

RF 86%

LeNet 85%

CNN 92%

In our research, we integrate the Optuna optimizer to perform hyperparameter tuning.
Optuna is an advanced optimization framework that utilizes intelligent search algorithms
and Bayesian optimization techniques to effectively explore the hyperparameter space
and discover the optimal configurations. Through leveraging Optuna’s capabilities, our
objective is to identify the most suitable values for hyperparameters, like batch size, num-
ber of epochs, and others, which significantly impact the learning process of our model.
This optimization process results in an impressive learning rate of 91% after conducting
20 trials, indicating the exceptional performance of our model. To provide a comprehensive
summary of our findings, Table 4 presents the various hyperparameter values.

Table 4. Optuna optimizer.

Filters Kernel_Size Units Dropout_Rate Batch_Size Accuracy

Optuna
optimizer 32 4 448 0.28 32 91%

Table 5 displays various accuracy results obtained through research on welding defect
classification in X-ray images. The studies conducted demonstrate that the CNN method
proposed in our research paper exhibits better accuracy than the method used in their
previous work. In recent years, several research studies have been conducted to classify
welding defects in X-ray images using different methods. The accuracy achieved by each
technique or model depends on several factors, such as the complexity of the problem,
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the size and quality of the dataset, the features extracted, and the choice of the algorithm
used. For instance, Jian et al. [24] used the SVM method to classify six welding defects and
achieved an accuracy of 90.4%. Also, Celia Cristina et al. [32] used Alexnet to identify also
six defects and achieved an F1-score of 70.7%. Meanwhile, a deep neural network (DNN)
pre-trained by the SAE method, used by Yang and Jiang [15], seems to have achieved the
highest accuracy among the mentioned studies, with an accuracy of 91.36%. Hou et al. [17]
used the histogram of oriented gradients (HOG) technique to classify five defects, achieving
an accuracy of 81.60%.

HOG is a popular feature extraction technique that captures the gradient information
in an image, which can be useful in differentiating between different defects. Furthermore,
Kumaresan et al. [25] used a convolutional neural network (CNN) to identify ten defects
and achieved an accuracy of 89%. Finally, Dong et al. [37] used random forest to classify
four defects with an accuracy of 80%. Random forest is an ensemble learning algorithm
that combines multiple decision trees to improve accuracy and reduce overfitting.

Our main contribution to this research is the creation of a new dataset through manual
segmentation of the original X-ray images. This process allows us to extract the relevant
portions of the images that contain welding defects, resulting in a more focused and
representative dataset for training our CNN model. This approach not only improves the
accuracy of our model but also ensures that the training data are more robust and diverse,
thus making them more suitable for real-world applications. For more comprehension,
the creation of a new dataset for training a CNN model can be beneficial in many ways.
For example, it can lead to better accuracy by providing more relevant and representative
data, which can reduce the number of false positives and false negatives in the model’s
predictions. Additionally, a new dataset can increase diversity by including a wider range
of variations, such as different types and sizes of welding defects, which can improve
the robustness of the model. By overcoming the limitations of the original dataset, a new
dataset can also provide customization by selecting specific types of welding defects or
adjusting the size and resolution of the images to optimize the model’s performance. Finally,
a new dataset can offer reusability for future projects by serving as a foundation for other
similar applications or projects, thus saving time and resources.

Based on the methodology we employ, including the creation of a new dataset through
manual segmentation and the use of data augmentation and fine-tuning strategies, our
CNN model achieves a significantly better accuracy rate of 92% in detecting welding defects
in X-ray images. This result indicates that our approach is successful in improving the
performance of the model and overcoming the limitations of previous studies that used
different methods, such as SVM or Alexnet. Therefore, we can confidently state that our
model achieves better results, which can have important implications for the detection and
prevention of welding defects in various industries. The CNN approach is more effective
and has important implications for future research.

The the incorporation of the event-driven and adaptive rate approach can be beneficial
in terms of compression, computational cost, and latency [38]. Moreover, the optimization-
based feature selection can further enhance the precision and computational effectiveness [39].
The feasibility of integrating these methods, in the proposed solution, can be investigated in
the future.

Table 5. Comparison of different weld defect detections.

Method Number of Defect Classes Accuracy

DNN pre-trained by SAE [15] 5 91.36%

HOG [17] 5 81.60%

CNN [25] 10 89%
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Table 5. Cont.

Method Number of Defect Classes Accuracy

SVM [24] 6 90.4%

AlexNet [32] 6 F1-score (70.7%)

Random Forest (RF) [37] 4 80%

Proposed method 6 92%

5. Conclusions

In our research, we perform a multi-class classification method to detect weld flaws in
X-ray images by employing a CNN model. The model’s creation relies on GDX-ray image
databases that are publicly available. This database contains only a minimum number
of samples. Therefore, we extract the sub-images and create our dataset, which is used
for the training and test process. The technique of data augmentation and fine-tuning
strategies helps to achieve the appropriate performance of the model. The multi-class
classification is combined with the optimizer algorithm. The model achieves an accuracy
score of 92% for the case of the CNN classifier. This performance is comparable or superior
compared to its counterparts. The applicability of the proposed method is only tested for the
intended dataset. In the future, the performance of the proposed approach will be studied
for extended datasets in order to achieve the automated categorization of weld defects.
Also, its application to other industrial problems like packaging inspection, defect detection
in fabric and textiles, and printed circuit board inspection will be investigated. Another
future work is to investigate the possibilities of enhancing the precision of our approach by
incorporating feature extraction, feature selection and ensemble learning techniques.
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DNN Deep Neural Network
SVM Support Vector Machines
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