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Abstract: Around 50% of patients with Alzheimer’s disease (AD) may experience psychotic symp-
toms after onset, resulting in a subtype of AD known as psychosis in AD (AD + P). This subtype is
characterized by more rapid cognitive decline compared to AD patients without psychosis. Therefore,
there is a great need to identify risk factors for the development of AD + P and explore potential
treatment options. In this study, we enhanced our deep learning model, DeepBiomarker, to predict
the onset of psychosis in AD utilizing data from electronic medical records (EMRs). The model
demonstrated superior predictive capacity with an AUC (area under curve) of 0.907, significantly
surpassing conventional risk prediction models. Utilizing a perturbation-based method, we identi-
fied key features from multiple medications, comorbidities, and abnormal laboratory tests, which
notably influenced the prediction outcomes. Our findings demonstrated substantial agreement with
existing studies, underscoring the vital role of metabolic syndrome, inflammation, and liver function
pathways in AD + P. Importantly, the DeepBiomarker model not only offers a precise prediction of
AD + P onset but also provides mechanistic understanding, potentially informing the development
of innovative treatments. With additional validation, this approach could significantly contribute
to early detection and prevention strategies for AD + P, thereby improving patient outcomes and
quality of life.

Keywords: Alzheimer’s disease; dementia; psychosis; deep learning; electronic medical records;
comorbidity

1. Introduction

Alzheimer’s Disease (AD) is the most common neurodegenerative disease affecting
50 million people worldwide [1]. Its presence is associated with a substantial decline in
the quality of life [2]. It is estimated that the cost of AD is $604 billion worldwide per
year and will triple by the year 2050 [3]. Psychosis, defined by the occurrence of delusions
and/or hallucinations, is observed as a common complication of AD. Approximately 50%
of patients are likely to suffer from psychotic symptoms after the onset of AD (AD with
psychosis, or AD + P) [4]. AD + P patients have more severe cognitive impairments and
a quicker cognitive decline than AD patients without psychosis (AD-P) [5,6]. AD + P is
also associated with higher rates of co-occurring agitation, aggression, and depression
compared to AD-P [5]. These non-cognitive symptoms create burdens not only for people
with AD or other dementias but also for their caregivers and are associated with poor
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outcomes in terms of function, quality of life, disease course, mortality, and economic
cost [7–9].

The occurrence of psychosis in AD has been shown to be familial, with an estimated
heritability of 61%. This suggests that it arises from distinctive biology that could be
effectively targeted pharmacologically [10]. More recent studies have helped to elucidate
some of the underlying biologic risks of psychosis. A small proportion of the risk is
conferred by a greater burden of hyperphosphorylated tau, one of the hallmark pathologies
of Alzheimer’s disease. Other pathologies that are often comorbid in AD, such as Lewy
bodies, TDP-43 inclusions, and vascular lesions, show less consistent and/or smaller
contributions to the risk of psychosis in AD patients [11]. More recent data have highlighted
a role for the excess vulnerability of excitatory neurons and synapses in psychosis risk in
AD [11–13].

The use of pharmacotherapy-based treatment options for AD + P has been
limited [14–16]. Currently, the Food and Drug Administration (FDA) has not approved any
specific medication for AD + P. Second-generation antipsychotics (SGAs) are frequently
employed and endorsed by geriatric specialists for managing AD + P. However, their
application is significantly constrained due to an elevated risk of adverse events and the
potential for co-existing health conditions. This led the FDA to issue a “black-box” warning
in 2005 to emphasize the heightened risk of mortality for dementia patients receiving
SGAs [17]. Simultaneously, antipsychotics have shown only moderate effectiveness in
managing psychosis, aggression, and agitation in individuals with dementia. Furthermore,
the accelerated cognitive decline present in AD + P (relative to AD without psychosis) is
present years before the onset of AD and of psychosis [18], suggesting that there is a win-
dow of opportunity to intervene if AD + P can be accurately predicted and if preventative
treatments can be identified. This emphasizes the urgent need to discover and develop
more effective and safer therapeutic alternatives for AD + P and or agents that may prevent
its development [19].

Drawing from our previous research, the limited effectiveness of antipsychotics in
treating AD + P can be attributed to their failure to effectively target the underlying biology
of the condition [20]. Another study performed a large genome-wide association meta-
analysis on 12,317 AD subjects with or without psychosis [21]. The authors reported that
AD + P is not significantly genetically correlated with schizophrenia, but it is negatively
correlated with bipolar disorder and positively correlated with depression. These findings
serve as a reminder to broaden our horizons in search of better treatment options for
AD + P.

Deep Neural Networks (DNNs) represent the pinnacle of current machine learning and
big data analytics, with a wide array of applications that span from defense and surveillance
to human–computer interaction and question-answering systems [22]. DNN architectures
can be further categorized into more subtypes for different tasks and data types, including
Feed-forward Neural Networks, Convolution Neural Networks (CNNs), and Recurrent
Neural Networks (RNNs) [23]. Recently, self-attention-based DNN architecture, transform-
ers, and their variations have been reported to have better model performance than other
DNNs [24]. The integration of deep learning in healthcare offers physicians precise disease
analysis, leading to improved treatment strategies and, consequently, enhanced medical
decision-making. By incorporating deep learning technologies into hospital management
information systems, multiple benefits can be achieved: reduction in costs, minimization
of hospital stays and their duration, prevention of insurance fraud, detection of changes
in disease patterns, improvement in healthcare quality, and more efficient allocation of
medical resources [25].

Deep learning/data mining algorithms can translate data into information for
hypothesis generation through deep hierarchical feature construction to capture long-
range dependencies in EMR data. Recently, a variety of deep learning techniques and
frameworks have been applied to information extraction, representation learning, outcome
prediction, phenotyping, and de-identification [26–30] and yielded better performance than
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traditional methods and required less time-consuming preprocessing and feature engineer-
ing. Specifically, deep learning techniques learn optimal features directly from the data
itself, without any human guidance, allowing for the automatic discovery of latent data
relationships that might otherwise be unknown or hidden [31]. The proposed research aims
to identify potential therapeutic drugs for preventing, delaying, or treating AD + P through
an examination of the EMR of AD patients. We predict that drugs capable of minimizing
the risk of psychosis development would be beneficial for AD + P management. The deep
learning model’s capacity to discern intricate patterns among a multitude of longitudinal
features provides us with a comprehensive view of how these variables intersect with
AD + P [32]. This, in turn, facilitates the identification of possible novel therapeutic options.

In our previous study, we built a deep-learning-based model, DeepBiomarker,
through modification of an established deep-learning framework, Pytorch_EHR [33,34]. In
DeepBiomarker, we used diagnosis, medication use, and lab tests as the input, implemented
data augmentation technologies to improve the model performance, and also integrated a
perturbation-based approach [35] for risk factor identification. In this study, we showed the
application of DeepBiomarker on the prediction of AD + P in AD patients for risk/beneficial
factor identifications. Compared to the previous version, we have updated the calculation
of relative contribution for feature importance.

2. Results
2.1. The Performance of DeepBiomarker in AD + P Patients

We have identified 16,294 AD patients from the University of Pittsburgh Medical
Center (UPMC) EMR data. We further identified 3535 cases of patients who developed
AD + P and 3535 controls who did not develop AD + P within 3 months after the index dates,
and all of whom had more than 1 year of EMR data before the index dates. Among the
3535 cases, the average age is 81.9 years old with a standard deviation of 9.06, and the
average for the control group is 83.9 years old with a standard deviation of 8.26. There are
2368 female and 1167 male patients in the case cohort and 2333 female/1202 male in the
control cohort. The index date for each individual was the date of any encounter after the
diagnosis of AD but before the diagnosis of AD + P. Those samples were split into an
8:1:1 ratio for training, validation, and test sets. The validation datasets were used
to optimize the parameters in the DeepBiomarker model, and the test datasets were
used to evaluate the performance of the established models. The performance of the
DeepBiomarker can be found in Table 1. The higher AUC (area under the receiver operat-
ing characteristic curve) indicates that the model demonstrates greater accuracy in making
accurate predictions. We can see that the two deep-learning-based models implemented in
DeepBiomarker, TLSTM, and RETAIN, both achieved high accuracy with an AUC above
0.90 in the validation dataset and test dataset, while the traditional machine learning ap-
proach, such as logistic regression, only yielded prediction accuracy with an AUC of 0.837
and 0.822 in the validation dataset and the test dataset, respectively.

Table 1. Performance of three AD + P predicting models.

Validation AUC Test AUC Validation AUC Std. Test AUC Std.

T-LSTM 0.921 0.903 0.006 0.005

RETAIN 0.935 0.907 0.004 0.002

LR 0.837 0.822 0.009 0.012

AUC: Area under the receiver operating characteristic curve. Std: Standard deviation. T-LSTM: Temporal
information enhancing long short-term memory. RETAIN: Reverse time attention model. LR: Logistic regression.

2.2. Risk Factors Identified by the DeepBiomarker Model with Significant Contributions

As previously mentioned, we used a perturbation-based estimation to determine the
relative contribution (RC) of each feature in predicting AD + P. Out of the 65 features that
demonstrated significant effects in our results, 23 were diagnoses; 36 were drugs, and 6
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were lab tests. To enhance the reliability of our findings, we only included diagnoses that
appeared in more than 10% of the entire population.

To provide a more comprehensive understanding of the significant features, we have
provided three tables (Tables 2–4) that detail their specific effects. The RC values in these
tables indicate the association of each feature with AD + P. An RC above 1 indicates that
the feature contributes more to cases than controls, suggesting a hazardous effect, while an
RC below 1 suggests a protective effect. These results shed light on the critical features that
contribute to the development of AD + P and can be used to improve the accuracy of our
predictive model. By identifying the specific risk factors associated with AD + P, we can
design more targeted treatment and prevention strategies to improve patient outcomes.

Table 2. Relative contributions of diagnosis features that showed significant association (Q < 0.05)
with AD + P, listed in order of increasing RC value.

Feature RC CI95up CI95down Q Value *

Hypoxemia 0.718 0.85 0.606 0.002

Arthropathy, unspecified, site unspecified 1 0.747 0.831 0.672 <0.001

Pain in joint, shoulder region 0.764 0.898 0.651 0.01

Activities involving walking, marching, and hiking 0.782 0.876 0.699 0.001

Acute kidney failure, unspecified 1 0.86 0.945 0.783 0.014

Unspecified osteoarthritis, unspecified site 1 0.877 0.944 0.814 0.006

Esophageal reflux 1.112 1.174 1.054 0.002

Depressive disorder, not elsewhere classified 1.117 1.195 1.045 0.01

Hypothyroidism, unspecified 1 1.136 1.234 1.045 0.02

Disorientation, unspecified 1 1.148 1.268 1.039 0.039

Atherosclerotic heart disease of native coronary artery
without angina pectoris 1.154 1.228 1.085 <0.001

Abnormality of gait 1.171 1.292 1.061 0.014

Type 2 diabetes mellitus without complications 1.191 1.261 1.125 <0.001

Obstructive sleep apnea 1.207 1.354 1.076 0.012

Central pain syndrome 1.221 1.397 1.067 0.025

Diabetes mellitus without mention of complication, type II
or unspecified type, not stated as uncontrolled 1 1.234 1.328 1.147 <0.001

Aortic valve disorders 1.274 1.506 1.077 0.03

Atrial fibrillation 1.358 1.477 1.249 <0.001

Dependence on renal dialysis 1.361 1.602 1.156 0.003

Hypocalcemia 1.417 1.689 1.189 0.002

Long term (current) use of insulin 1.582 1.722 1.454 <0.001

Primary hypercoagulable state 1.582 1.722 1.454 <0.001

Acute venous embolism and thrombosis of unspecified deep
vessels of lower extremity 1.687 2.325 1.223 0.012

* FDR-adjusted p-value. 1 The term “unspecified” is used in ICD9 and ICD10 codes when the available medical
record information is not sufficient to assign a more specific code. RC: relative contribution; CI: confidential interval.

Table 2 highlights several common comorbid diseases among AD patients, such as
Diabetes, Esophageal Reflux, Atrial Fibrillation, Depression, and Primary Hypercoagulable
State. These diseases have RC values greater than 1, indicating that they are associated with
an increased risk of AD + P. Conversely, a few of the comorbidities, such as hypoxemia,
pain in the joint/shoulder region, arthropathy, and osteoarthritis, have RC values less
than 1, indicating that they are associated with a lower risk of AD + P.
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Table 3. Relative contributions of medication features that showed significant association (Q < 0.05)
with AD + P, listed in order of increasing RC value.

Feature Indication/Drug Class RC CI95up CI95down Q Value *

Glucosamine–Chondroitin Osteoarthritis, reduce joint
pain and inflammation 0.359 0.7 0.184 0.02

Dextromethorphan–Guaifenesin Cough suppressant 0.439 0.757 0.255 0.022

Fish Oil Dietary supplement 0.456 0.73 0.285 0.01

Sucralfate Gastrointestinal ulcers 0.472 0.716 0.311 0.005

Midodrine Alpha-adrenergic agonist
for hypotension 0.477 0.65 0.35 <0.001

Irbesartan Angiotensin receptor blocker
for hypertension 0.509 0.769 0.338 0.012

Esomeprazole Magnesium Proton pump inhibitor 0.538 0.698 0.414 <0.001

Cyclobenzaprine Skeletal muscle relaxant 0.572 0.734 0.445 <0.001

Budesonide–Formoterol
Corticosteroid/beta2-
adrenergic receptor

agonist
0.578 0.763 0.437 0.002

Lactulose Constipation and portal
systemic encephalopathy 0.599 0.835 0.429 0.019

Duloxetine Antidepressant 0.606 0.757 0.485 <0.001

Ezetimibe Hyperlipidemia 0.624 0.854 0.457 0.022

Magnesium Hydroxide Laxative and antacid 0.66 0.823 0.529 0.003

Famotidine Histamine H2
receptor antagonist 0.672 0.823 0.548 0.002

Nitroglycerin Nitrate vasodilator 0.679 0.84 0.549 0.005

Alprazolam Anxiety disorders and
panic disorders 0.692 0.857 0.56 0.008

Isosorbide Mononitrate Prevent and treat angina in
coronary artery disease 0.719 0.89 0.582 0.018

Quetiapine Antipsychotics 0.726 0.875 0.603 0.008

Glipizide Type 2 diabetes 0.732 0.923 0.581 0.046

Memantine Alzheimer’s disease 0.749 0.83 0.676 <0.001

Triamcinolone Acetonide Corticosteroid 0.751 0.923 0.612 0.038

Losartan Angiotensin receptor blocker
for hypertension 0.766 0.869 0.676 0.001

Clopidogrel Antiplatelet 0.777 0.918 0.658 0.022

Docusate Sodium Stool softener 0.78 0.907 0.671 0.011

Calcium Carbonate-Vitamin D3 Calcium
supplement/osteoporosis 0.781 0.902 0.676 0.008

Cephalexin Antibiotics 0.793 0.917 0.686 0.014

Tramadol
Opioid agonist and

serotonin/norepinephrine
reuptake inhibitor

0.795 0.937 0.674 0.037
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Table 3. Cont.

Feature Indication/Drug Class RC CI95up CI95down Q Value *

Aspirin Antiplatelet/Non-steroidal
anti-inflammatory drugs 0.808 0.904 0.721 0.003

Pantoprazole Proton pump inhibitor 0.835 0.95 0.734 0.036

Warfarin Anticoagulated/vitamin K
antagonist 1.289 1.478 1.124 0.004

Fluconazole Antifungal medication 1.58 2.175 1.147 0.032

Allopurinol
Xanthine oxidase

inhibitor/reduce uric acid
concentrations

1.639 2.157 1.245 0.005

Cholestyramine–Aspartame Lower cholesterol levels 1.642 2.233 1.207 0.013

Terazosin Alpha-1 adrenergic
antagonist/hypertension 1.842 2.633 1.288 0.009

Metoclopramide Antiemetic agent and
dopamine D2 antagonist 1.879 2.697 1.309 0.007

Clobetasol High potency corticosteroid
topical medication 2.054 3.043 1.387 0.004

* FDR-adjusted p-value. RC: relative contribution; CI: confidential interval.

Table 4. Relative contributions of lab test features that showed significant association (Q < 0.05)
with AD + P.

Feature RC CI95up CI95down Q Value *

Aspartate Aminotransferase (AST) Test 0.704 0.864 0.574 0.008

Alkaline Phosphatase (ALP) Test 0.826 0.924 0.739 0.009

Urea Nitrogen 0.84 0.909 0.776 0.001

Anion Gap 0.863 0.944 0.789 0.012

Glucose 0.871 0.941 0.806 0.006

Chloride (Cl) 0.886 0.952 0.825 0.01

* FDR-adjusted p-value. RC: relative contribution; CI: confidential interval.

Table 3 reveals several medications with RC values of less than 1 that are associated
with reduced rates of onset of AD + P. These include hypertension medications, such
as losartan and irbesartan, the hypotension drug midodrine, antidiabetic drug glipizide,
anti-gastroesophageal reflux drugs pantoprazole, famotidine, sucralfate, and esomepra-
zole, laxatives docusate and lactulose, pain medications, such as aspirin, tramadol, and
glucosamine-chondroitin, medications for chest pain, nitroglycerin and isosorbide mononi-
trate, cholesterol-lowering medication ezetimibe, asthma or chronic obstructive pulmonary
disease drug budesonide-formoterol, antidepressants, duloxetine and cyclobenzaprine,
vitamin D and fish oil, along with the antipsychotic quetiapine.

In contrast, Table 3 also identifies medications with RC values greater than 1 that are
associated with a higher risk of developing AD + P. These include metoclopramide, an
antiemetic and gut motility stimulator, allopurinol, uric acid reducer, warfarin, an anticoag-
ulant, fluconazole, an antifungal drug, cholestyramine–aspartame, a cholesterol-lowering
medication, and terazosin, an antihypertensive drug and urinary retention medication.

Interestingly, Table 4 reveals that all six lab tests with Q < 0.05, such as Chloride
(Cl), Glucose, Urea Nitrogen, Anion Gap, Alkaline Phosphatase (ALP) Test, and Aspar-
tate Aminotransferase (AST) Test, have RC values of less than 1 indicating that they are
associated with a reduced risk of developing AD + P.

In general, this study built a cutting-edge deep-learning-based predictive model that
can accurately predict the risk of an AD patient developing into an AD + P patient. In
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addition, this interpretable model allowed us to identify a set of risk factors and beneficial
elements that may play important roles in the development of AD + P. These findings can
further lead to novel therapeutics, mechanism explorations, and better treatment options.

3. Discussion

This study presents a significant stride forward in our understanding of risk factors
and protective measures related to AD + P. By leveraging EMRs and deep learning mod-
els, we uncovered novel clinical features and potential pharmacological interventions
that deserve further exploration. Notably, our work validates and extends previous re-
search conducted at the University of Pittsburgh Alzheimer’s Disease Research Center
(ADRC), reinforcing the protective role of vitamin D and uncovering the potential benefits
of quetiapine, duloxetine, and memantine in reducing AD + P risk.

Our results have highlighted the significant beneficial effects of vitamin D, quetiapine,
duloxetine, and memantine in reducing the risk of developing AD + P. In our previous
study on research data collected by ADRC and network analysis, the use of vitamin D
was associated with a lower risk of developing AD + P [36,37]. The strong beneficial effect
of vitamin D in this observational study using EMR data further supports the potential
beneficial effect of vitamin D in preventing AD + P. For quetiapine, though there are
studies suggesting no significant difference in treating behavioral symptoms and cognitive
decline, their effect in managing psychotic symptoms in AD + P remains unclear [38,39].
In an 8-week, double-blind, placebo-controlled trial, duloxetine exhibited a strong effect
in improving cognition, depression, and some pain measures and was safe and well-
tolerated in elderly patients [40]. As for memantine, mixed results have been reported
for its potential effect in treating psychotic symptoms associated with dementia; some
studies found that there is no significant beneficial effect between memantine and placebo
in terms of their Positive and Negative Syndrome Scale (PANSS) score [41,42]. While some
studies suggested that the use of memantine in addition to atypical antipsychotics can be
beneficial in managing negative symptoms, several randomized, double-blind, placebo-
controlled studies have reported that memantine alone showed a significant beneficial
effect by decreasing the PANSS score [43–45].

In a deep learning model, the relationship between features can be complex and not
entirely independent [46]. When estimating the effect of these features using a perturbation-
based approach, the model’s ability to capture intricate patterns and dependencies between
input features is taken into account. Perturbation-based methods involve making small
changes to the input features and observing their impact on the model’s predictions [35].
By doing so, these methods can help disentangle the complex relationships and interactions
among multiple features, providing insights into their individual and joint contributions to
the model’s output.

Another point we should bear in mind when interpreting the results for the model is
that compared to traditional statistical analysis (such as Logistic Regression or Survival
Analysis), our deep learning model can take advantage of the features that showed high
collinearity, such as the diagnosis of a disease and their treatments. Deep learning models
are designed to capture complex relationships and interactions between input features [47].
During the training process, the model learns to recognize patterns and dependencies
in the data, including correlations between different features. The model’s neurons can
learn to capture interactions between features by combining them in various ways. For
example, the model may learn to recognize that a specific medication is prescribed for a
particular disease diagnosis. This information can be represented in the weights and biases
of the neurons.

When we consider the combined effects of comorbidities and their treatments, we
observe some interesting findings. For instance, joint disorders, such as arthropathy,
osteoarthritis, and pain in the joint or shoulder region, are associated with inflammation.
These tend to reduce the risk of developing AD + P. While this might seem surprising, it
is plausible that patients with these conditions are more likely to take calcium/vitamin D
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supplements, which can target both peripheral and brain-specific inflammatory processes,
ultimately reducing the risk of AD + P.

A key area of our investigation focused on glucose metabolism. Our findings highlight
the pivotal role it plays in the development and severity of AD + P, a relationship that is
intricate and warrants further exploration. Our study, for instance, identified diabetes as a
risk factor for AD + P but found that the effects of treatments for diabetes on AD + P risk
were mixed. Glipizide, an oral glucose-lowering drug, was associated with reduced AD + P
risk, while the use of insulin was linked with an increased risk. These findings underline the
potential for targeted therapies in this domain and invite a more comprehensive exploration
of glucose metabolism’s role in the AD + P development [48].

Our research also shed light on the significant connection between cardiovascular dis-
ease and AD + P. Hypertension, a major risk for cerebrovascular disease, was not associated
with AD + P risk, potentially due to the protective effects of hypertension medications,
such as irbesartan and losartan. However, the complex pattern of cerebrovascular risk and
its treatments, such as atrial fibrillation, aortic valve disorders, and their associated medi-
cations (clopidogrel and warfarin), call for an in-depth investigation into the underlying
pharmacological mechanisms. A more complex pattern is highlighted by atrial fibrillation
and aortic valve disorders, which both increase cerebrovascular risk and are associated with
an increased risk of AD + P. However, the effects of their treatments differed. Clopidogrel
was associated with reduced AD + P risk, suggesting that this therapy effectively mitigated
the risks associated with their indications. In contrast, warfarin, which is also prescribed
for these indications, was associated with an increased risk of AD + P. Examining the
mechanisms and targets of medications that are associated with AD + P (Table 5) sheds
further light on the reasons why these drugs with the same indications might have opposite
effects on AD + P risk. Warfarin is an anticoagulant medication that inhibits the production
of vitamin K-dependent clotting factors in the liver, whereas clopidogrel is an antiplatelet
medication that inhibits the activation and aggregation of platelets. As warfarin and clopi-
dogrel can penetrate the blood–brain barrier, they may exert central nervous system effects
that are independent of their anticoagulant and antiplatelet functions. For example, it has
been reported that clopidogrel can delay the closure of compromised blood–brain barriers
by inhibiting the purinergic receptor P2RY12 [49]. More molecular mechanistic studies
are needed to fully understand the underlying mechanisms for the beneficial effects of the
medications identified in our study. Nonetheless, our findings provide important clues for
the development of new medications that can target specific pathways and mechanisms
involved in the development of AD + P. This has led us to key targets, such as adrenergic
receptors and angiotensin II receptors, which are influenced by certain medications. The
fact that cardiovascular-related drugs and conditions emerged as key factors in our analysis
points to potential targets and mechanisms in this domain, such as adrenergic receptors
and angiotensin II receptors [50]. The diverse effects of different antihypertensive medi-
cations suggest that the protective influence of certain drugs may not be solely attributed
to their blood pressure-lowering effect, warranting further investigation. Intriguingly,
not all antihypertensive medications demonstrated similar protective effects, as seen with
Irbesartan and Losartan. This suggests that the beneficial effects of these drugs could be
attributed to mechanisms beyond their blood-pressure-lowering capacity. The absence
of similar effects in the case of diuretics and calcium channel blockers strengthens this
assertion. Another salient point is the association between the impairment of mitochondrial
functions and a range of neurological diseases, including AD, depression, anxiety, and
psychiatric symptoms [51,52]. These findings underscore the need for further exploration
to unravel the intricate mechanisms that contribute to AD + P’s development. This will aid
in the identification of innovative therapeutic targets to effectively prevent or manage this
disease subtype.
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Table 5. Mechanism actions, targets, and blood–brain barrier (BBB) penetration ability for the
medications identified associated with the development of AD + P.

Drugs Mechanism of Action Targets *

Ability to
Penetrate

Blood–Brain
Barrier

Predicted
Effects against

AD + P

Glucosamine–
Chondroitin

Maintain healthy cartilage by
providing the building blocks for its
synthesis and supporting its repair

UDP-glucose
2-epimerase/ManNAc

kinase (GNE) gene
No Beneficial

Dextromethorphan–
Guaifenesin

Cough suppressant that works by
acting on the cough center in the

brain/thinning and loosening
mucus in the airways

GRIN1 GRIN2A
GRIN2B

SIGMAR1
HTR3A HTR3B

Yes Beneficial

Fish Oil
Incorporating into cell membranes

and modulating the production
of eicosanoids

Yes Beneficial

Sucralfate

Forming a protective barrier over
the ulcer or damaged area, which

helps to prevent further damage and
promote healing

No Beneficial

Midodrine
Selective alpha-1 adrenergic agonist,
which increases peripheral vascular

resistance and blood pressure
ADRA1A No Beneficial

Irbesartan

Selectively blocking the angiotensin
II receptor type 1 (AT1) in the

renin–angiotensin–aldosterone
system, which leads to vasodilation

and a decrease in blood pressure

AT1
AGTR1 No Beneficial

Esomeprazole
Magnesium

Inhibiting the proton pump
(H+/K+ ATPase) in the stomach

the proton pump
(H+/K+ ATPase) Yes Beneficial

Cyclobenzaprine

A centrally-acting muscle relaxant,
which reduces muscle tone and

spasm by blocking the activity of
alpha motor neurons in the

spinal cord

alpha motor neurons in
the spinal cord Yes Beneficial

Budesonide–
Formoterol

Binding to glucocorticoid receptors
in the lungs, leading to the

suppression of inflammation and
immune responses

Glucocorticoid
receptors

Beta-2 adrenergic
receptors

Yes Beneficial

Lactulose Beneficial

Duloxetine
Inhibition of the reuptake of two

neurotransmitters in the brain,
serotonin and norepinephrine

SLC6A2
SLC6A4 Yes Beneficial

Ezetimibe
Increasing the osmotic pressure in
the colon, which draws water into

the colon and softens the stool

NPC1L1
SOAT1 No Beneficial

Magnesium Oxide
Providing magnesium ions to the

body, which are essential for many
biological processes

Yes Beneficial

Famotidine Inhibiting the activity of histamine
h2 receptors in the stomach histamine H2 receptor Yes Beneficial
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Table 5. Cont.

Drugs Mechanism of Action Targets *

Ability to
Penetrate

Blood–Brain
Barrier

Predicted
Effects against

AD + P

Nitroglycerin

A potent vasodilator by releasing
nitric oxide in the smooth muscle of
blood vessels, leading to relaxation

of vascular smooth muscle
and vasodilation

NPR1 Yes Beneficial

Alprazolam
Enhancing the activity of

gamma-aminobutyric acid (GABA)
in the brain

GABA-A receptor
benzodiazepine

receptor
Yes Beneficial

Isosorbide Mononitrate

It acts as a vasodilator by releasing
nitric oxide in the smooth muscle of
blood vessels, leading to relaxation

of vascular smooth muscle
and vasodilation

NPR1 No Beneficial

Quetiapine

Antagonist of several
neurotransmitter receptors in the

brain, including dopamine,
serotonin, and histamine receptors

DRD2
HTR1A
HTR2A
HRH1

Yes Beneficial

Glipizide Stimulating the release of insulin
from the beta cells of the pancreas.

ATP-sensitive
potassium channels in

pancreatic beta cells
SUR1

No Beneficial

Memantine

Blocking of the activity of the
NMDA (n-methyl-d-aspartate)

subtype of glutamate receptors in
the brain.

NMDA subtype of
glutamate receptors Yes Beneficial

Triamcinolone
Acetonide

A synthetic glucocorticoid, which
reduces inflammation and swelling

by inhibiting the production and
release of inflammatory mediators

Inflammatory
mediators and their
signaling pathways.

NR3C1

No Beneficial

Losartan

Angiotensin II receptor antagonist,
blocking the binding of angiotensin
II to specific receptors in the body,
which inhibits its vasoconstrictive

and pro-inflammatory effects

angiotensin II receptor Yes Beneficial

Clopidogrel

Irreversibly inhibits the P2Y12
receptor, which is found on the
surface of platelets. Reduces the

activation and aggregation
of platelets.

P2Y12 receptor Yes Beneficial

Docusate Sodium Increasing the amount of water and
fat in the stool No Beneficial

Vitamin D

Binding to vitamin d receptors
(VDR) in cells, leading to changes in

gene expression and
protein synthesis

Vitamin D receptor
(VDR) Yes Beneficial

Cephalexin
Inhibiting bacterial cell wall

synthesis by binding to
penicillin-binding proteins (PBPS)

bacterial PBPs No Beneficial
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Table 5. Cont.

Drugs Mechanism of Action Targets *

Ability to
Penetrate

Blood–Brain
Barrier

Predicted
Effects against

AD + P

Tramadol

An opioid agonist, which means it
binds to and activates opioid

receptors in the brain, inhibits the
reuptake of serotonin and
norepinephrine, which are

neurotransmitters involved in pain
processing, further enhancing its

analgesic effect

OPRM1
SLC6A2
SLC6A4
SCN2A

NMDA receptors
ADORA1

Yes Beneficial

Aspirin Irreversibly inhibit the
cyclooxygenase (COX) enzyme

PTGS1
PTGS2

AKR1C1
EDNRA

TP53
HSPA5

RPS6KA3
NFKBIA

Yes Beneficial

Pantoprazole
Irreversibly blocking the

H+/K+-atpase enzyme in the
parietal cells of the stomach

ATP4A
ATP4B No Beneficial

Warfarin

Inhibiting the synthesis of vitamin
K-dependent clotting factors in the
liver, specifically factors II, VII, IX,

and X

VKORC1
NR1I2 Yes Hazardous

Fluconazole Inhibiting fungal cytochrome
P450-dependent enzymes

fungal cytochrome
P450-dependent

enzymes
Yes Hazardous

Allopurinol
Inhibiting the xanthine oxidase

enzyme, which is involved in the
metabolism of purines

xanthine
oxidase enzyme Yes Hazardous

Cholestyramine–
Aspartame

Binding to bile acids in the intestine
and preventing their reabsorption bile acids No Hazardous

Terazosin

Blocking the alpha-1 adrenergic
receptors in smooth muscle tissue,

including the prostate and
blood vessels

ADRA1A
ADRA1B
ADRA1D

No Hazardous

Metoclopramide
Blocking dopamine receptors and

stimulating 5-HT4 serotonin
receptors in the gastrointestinal tract

DRD1
DRD2
DRD3
DRD4
DRD5
HTR4

Yes Hazardous

Clobetasol Binding to and activating
glucocorticoid receptors in skin cells NR3C1 No Hazardous

* Some of the medications have unclear mechanism of action/targets.

The significant association between the results of Aspartate Aminotransferase (AST)
and Alkaline Phosphatase (ALP) tests and AD + P that we found in our study calls for
an intriguing interpretation. Both AST and ALP are enzymes that, among other roles, are
key indicators of liver and kidney function [53,54]. Their elevated levels often indicate
some level of dysfunction or damage in these organs. The connection we’ve identified
suggests that there could be an underlying link between kidney-related indicators and
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brain health, possibly through metabolic or vascular pathways. The metabolic waste
products that the kidneys filter from the blood, for instance, might have a more intricate
relationship with the brain’s health and function than previously understood [53,54]. If
these waste products are not efficiently removed, they might indirectly impact brain health,
potentially contributing to the development or exacerbation of AD + P. Likewise, kidney
diseases are often associated with vascular problems, such as hypertension, which has been
linked to cognitive decline and dementia [55]. This adds another layer of complexity to
the relationship between kidney health and brain function. With these interpretations in
mind, it is plausible that monitoring kidney health could be of great importance in the early
detection, prevention, and management of AD + P. Health strategies could involve regular
screenings for kidney function, especially in populations at risk of AD + P. Such measures
could help to identify potential issues early, allowing for timely intervention. Furthermore,
treatments aimed at improving kidney function or managing kidney diseases might also
prove beneficial for AD + P patients.

The DeepBiomarker 1.5 model identified several important features that were strongly
associated with AD + P, including inflammation-, glucose-metabolism-, cardiovascular-,
and kidney-related biomarkers/mechanisms. Though the beneficial effect of glucose-lowering
medications (glipizide, insulin) [56,57], cardiovascular medications (midodrine, irbesartan,
losartan, clopidogrel, warfarin, terazosin, losartan) [58–60], antibiotics (cephalexin), topical
corticosteroids (clobetasol), dietary supplements (glucosamine–chondroitin), and anti-
inflammatory medications (triamcinolone acetonide, aspirin) [61] in AD have already
been reported by multiple studies, there is no clear evidence supporting their correlation
with AD + P. It is possible that these medications exert their protective effects against
AD + P by treating comorbidities in AD. However, our findings also provide some mecha-
nistic insight into the association between AD, AD + P, and these comorbidities.

Our research has limitations that need to be taken into account when interpreting the
results. First, because the patients had a limited number of medications, we could not assess
the effects of medications with few to no users. Additionally, there may be inconsistencies
in patients’ biochemical test results due to enrollment bias, and some laboratory tests may
be underrepresented in our database, limiting the analysis’s ability to detect their effects.
Furthermore, although we investigated the influence of biomarkers, comorbidities had a
greater impact since the diagnosis considers the patients’ past status, while biomarkers
only take into account their current status.

We would also like to point out that the population used in this study partially over-
lapped with the population in one of our previous studies that reported the beneficial effect
of Vitamin D against AD + P [36]. We were unable to match and exclude the overlapping
patients because of the deidentification process conducted by the data management team
at the UPMC. However, with a total of 502 subjects included in the previous study, the
overlapping sample size is too small to cause a significant impact.

Despite the potential limitations inherent to our observational study and the complex-
ity of the identified dependencies among various health conditions and treatments, our
findings pave the way for future research. They underline the need for a comprehensive
approach that considers these interdependencies and advances toward more targeted pre-
ventive measures and therapeutic strategies for AD + P. Our study ultimately emphasizes
the potential of big data and machine learning in this domain while underlining the need
for an integrated approach that considers not only the primary disease symptoms but
also co-existing conditions and their treatments. Our analysis has highlighted a novel
angle in drug development for AD + P by revealing many drugs that have CNS penetra-
tion and impact varying protein targets present in the brain, and thus, may not impact
AD + P through their effects on their original indications, but rather through other underly-
ing mechanisms that are directly involved in the development of AD + P. These findings
have important implications for drug development in AD + P and suggest that novel
therapeutic targets should be explored to effectively prevent or treat this subtype. For
example, looking at the overlap of the gene networks of these drugs’ targets within the
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CNS and that of AD + P may prove fruitful for the identification of new mechanisms for
the prevention of AD + P [20,36]. Moving forward, our research emphasizes the necessity
of a holistic approach to disease management. Future research should be directed toward
disentangling the intricate web of dependencies among various health conditions and
treatments. Ideally, the goal is to develop effective prevention and treatment strategies
that account for these multifaceted interactions. To reach this goal, it is crucial to expand
upon our findings with more detailed mechanistic studies and randomized clinical trials.
In the grand scheme of the field, this research further underscores the immense potential of
big data and machine learning in advancing our understanding of such complex diseases
as AD + P. At the same time, it also emphasizes the critical role of a comprehensive and
integrative approach, considering not only primary disease symptoms but also co-existing
conditions and their treatments.

4. Materials and Methods

The application of deep learning models to predict clinical outcomes using electronic
medical records (EMR) data has gained significant attention recently [62,63]. EMR data,
which typically represents a patient’s history as a sequence of visits with multiple events
per visit, is well-suited for such sequence models as RNNs [64,65]. Recent studies indi-
cated that simple-gated RNN models, such as Gated Recurrent Units (GRUs) and Long
Short-Term Memory (LSTMs), when finely tuned using Bayesian Optimization, often de-
liver competitive outcomes [33]. Due to the limited sample size, we did not use Transformer-
based models, which require a large amount of data for training.

4.1. Data Source

We examined the data from January 2004 to October 2019 from the Neptune system at
the UPMC, which manages the use of patient EMRs from the UPMC health system for re-
search purposes (rio.pitt.edu/services, accessed on 2 May 2023) [66]. The database includes
demographic information, diagnoses, encounters, medication prescriptions, prescription
fill history, and laboratory tests. AD patients and psychosis patients were identified using
a series of diagnosis terms in the EMR systems (Supplementary Lists S1 and S2). In addi-
tion, to avoid the possible misdiagnosis of psychosis by short-term delirium symptoms, a
psychosis diagnosis that co-occurred with a delirium diagnosis (Supplementary List S3)
was excluded.

4.2. Inclusion/Exclusion Criteria and Data Preparation

For each AD patient, we would like to predict whether the patient will have psychosis
within the next 3 months, given the history of EMRs. The inclusion criteria for cases and
controls are described as follows. To be included in this study, an AD patient had to have
at least a one-year EMR record prior to the first AD diagnosis, and the patient had no
previous history of psychosis diagnosis or at least a one-year washout period before AD.
This is to make sure that (1) we have collected enough comorbidity information for this
patient and (2) the psychosis onset was new to this patient after the AD diagnosis. At any
encounter, an AD patient who had a record of psychosis within the following 3 months is
defined as a case, while no record of psychosis within the following 3 months is defined as
a control. For a patient with multiple encounters satisfying the criteria of control, only the
last encounter was included to mimic the latest status of these patients. We also require no
records of psychosis during this period to the index date to make sure that this is a new
onset of AD + P. Moreover, we used data augmentation to increase the number of cases
(see below). The date of this encounter will be the index date. We used the medication,
diagnosis, and lab tests 1 year preceding the index date as the input. For lab tests, we
only included those abnormal ones in our modeling by searching those RESULT_FLAG
labeled as “ABNORMAL”, “HIGH”, or “LOW”. We also excluded those lab tests with low
frequency and kept the 89 top frequently tested ones. The diagnosis was coded in ICD9
before the year 2015 and ICD10 after the year 2015. As such, we used a lookup table from

rio.pitt.edu/services
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https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs (accessed
on 8 December 2022) to convert ICD9 to ICD10 codes. The first three characters of the ICD10,
which designate the category of the diagnosis, were extracted, yielding 1614 diagnosis
groups. Medication names were converted to DrugBank IDs by name matching, and
1407 unique DrugBank IDs were mapped. Finally, for each encounter, the associated
medications, diagnosis, and abnormal lab test results were packed into a sequence with the
indices of DrugBank IDs, categories of the diagnosis, and lab test IDs, respectively.

4.3. Data Augementation

Data augmentation is a technology used to increase the data size and reduce overfitting.
At any encounter, the chance of having psychosis within the next 3 months was much
lower than that of having no psychosis, even within these AD patients with high risk.
We included all encounters nearby the psychosis, which satisfied the inclusion criteria for
positive cases while under-sampling the encounters which satisfied the inclusion criteria
for controls (Figure 1). The purpose of data augmentation is to enhance the influence of
factors nearby the events while reducing the effects of factors far from the events.

The dataset was split with a ratio of 8:1:1, and 8 of 10 subsets were used as the
training dataset, while 1 of 10 subsets was used as the validation dataset to find the optimal
parameters, and 1 subset was used as the test set to evaluate the generalization of our model.

4.4. Model Construction and Assessment

We adopted the Pytorch_EHR framework established by ZhiGroup, where Deep
learning models with Vanilla RNN, GRU, LSTM, Bidirectional RNN, Bidirectional GRU,
Bidirectional LSTM, Dilated RNN, Dilated GRU, Dilated LSTM, QRNN, and T-LSTM were
used to analyze and predict clinical outcomes [33]. We further modified the framework,
as highlighted in Figure 1, by (A) data augmenting to improve the model performance,
(B) including individual lab tests and medications along with the diagnosis groups as
the input so that we could assess the effects of each lab tests and medications, and
(C) integrating contribution analysis [35] module for the importance estimation of key
factors (see below for more details). The structure we used here was the LSTM model,
which stores previous illness history, infers current illness states, and predicts future med-
ical outcomes. The memory cell is gated to moderate the information flow to or from
the cell. LSTMs have been adapted to many applications, such as machine translation,
handwriting recognition, and speech recognition. In this study, the following parame-
ters are used: embed dimension: 128; hidden size: 128; dropout rate: 0.2; the number of
layers: 2; input size: 30,000; patience: 3. The calculations were repeated ten times for each
deep learning algorithm to estimate the standard deviations of the accuracy.

To further investigate the importance of those factors on the prediction of psychosis,
we calculated the relative contribution (RC) of each feature on the psychosis [35]. The RC
of a feature was calculated as the average contribution of the feature to events divided by
the average contributions of this feature to no events. The contributions were estimated by
a perturbation-based approach. Such an approach has been used in a recent study on the
important features of the heart failure incidence prediction [67]. The equation is shown as
follows, where FC represents the feature contribution:

RC =
mean FC in patients with event

mean FC in patients without event
(1)

https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs
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Figure 1. Overview of DeepBiomarker. (A) Data sampling process from EMRs to create case and
control cohorts; data augmentation was applied to oversample AD + P patients to create balanced
datasets. (B) Data embedding is a process of representing higher dimensional data in a lower-
dimensional space while preserving the relevant properties of the original data. (C) Prediction by
neural network with LSTM as the basic prediction unit. Perturbation-based contribution analysis
was used to identify important features.

FC value was the total value of the feature within the same patient if the feature
appeared more than once in that patient. The natural logarithm form variance for RC was
calculated as follows:
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Variance(ln(RC)) =

(
sd o f FC o f patients with event

mean o f FC o f patients with event

)2

number o f patients with event
+

(
sd o f FC o f patients without event

mean o f FC o f patients without event

)2

number o f patients without event
(2)

Thus, the 95% confidence interval (CI) of RC was given by

95%CI = e(ln (RC))±1.96
√

Variance(ln (RC)) (3)

The p-value was under the assumption of z distribution [68]. Bonferroni correction [69]
was used to reduce the type I error caused by multiple comparisons.

In this version of DeepBiomarker (V1.5), we refined our RC calculation by normalizing
the FC value and scaling the RC values for all our features. The improved FC formula is the
ratio of the summary of the contribution of a feature and the summary of the contribution
of all the features. Next, we performed scaling, where the RC for an AD diagnosis was
scaled to 1, and the factor generated was multiplied to get the real RC value for each of
the other features. The rationale of normalization is to consider the different occurrences
of a feature in patients because of differences in the number of encounters and consider
the influence of other features. The rationale for scaling the RC of AD to 1 is that all the
patients had AD, and AD will have similar effects on the risk of psychosis.

Model performance was evaluated by the area under the ROC curve (AUROC).

5. Conclusions

In this study, we presented a cutting-edge deep learning model, DeepBiomarker,
that is capable of accurately predicting the onset the AD + P and identifying risk factors
and potential treatment options for AD + P. The results generated by this study not only
provided a powerful tool for clinical care but also provided insights for mechanism studies
related to AD + P and can further facilitate the development of effective treatment options
for AD + P.

Our research emphasizes the remarkable potential of big data and deep learning in
unraveling the multifaceted influences on the development of AD+P. Through our work,
we spotlight the intricate interplay of comorbid conditions and their treatments in AD+P
pathogenesis, highlighting glucose metabolism, cardiovascular factors, and kidney/liver
functions as key areas of interest. This provides a valuable springboard for targeted thera-
pies that extend beyond conventional symptom management. However, the complexity
of these interdependencies necessitates refined methodologies for accurate interpretation,
emphasizing a need for comprehensive, holistic approaches in both research and clinical
practice. Future research should aim to disentangle these relationships further, foster-
ing the development of innovative preventive measures and therapeutic strategies for
AD + P. This study reaffirms the pivotal role of translational research, bridging the gap
between theory and clinical application as we continue our pursuit to alleviate the burden of
Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16070911/s1. Supplementary material contains: Supplementary
List S1: diagnosis terms used to identify AD patients. Supplementary List S2: diagnosis terms used to
identify psychosis patients. Supplementary List S3: diagnosis terms used to identify delirium patients.
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