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Background

Advances in single-cell RNA sequencing (scRNA-seq) technologies have enabled the
exploration of the transcriptome at the resolution of individual cells [1]. This can poten-
tially reveal heterogeneity and diversity among different cell types [2]. However, despite
improvements in experimental protocols, various technical factors lead to substan-
tial noise in scRNA-seq data. In addition, the low transcript capture efficiency and low
sequencing efficiency may result in a high frequency of zero or low read counts, defined
as dropout events [3]. These can corrupt scRNA-seq data and hinder downstream
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analyses, such as novel cell type identification and marker gene analysis, which rely
heavily on data quality.

Recently, many studies have reported promising advances in the field of single-cell
omics, highlighting the importance of single-cell data analysis [4, 5]. In particular, vari-
ous imputation approaches have been introduced to resolve the problem of dropouts.
Some methods assume statistical models underlying the observed expression values, and
handle the dropouts with the help of the assumed model [6—8]. Some impute the drop-
outs through deep learning models [9, 10]. Some combine the deep models with statisti-
cal assumption [11, 12]. Besides, some methods are based on network analysis [13, 14],
similarity learning [15] or clustering [16].

As the ultimate goal of imputation is to recover true data and gain more reliable bio-
logical insights, it is essential to determine whether these methods can aid in subsequent
analyses, such as discovering the cell clusters, and determining whether these clusters
can be discriminated by marker genes and represent meaningful cell types [17-19].
Moreover, although most methods have exhibited good performance in a range of fun-
damental analysis tasks, it has been pointed out that imputation may introduce false-
positive results [20]. Therefore, there is an urgent need for an unbiased evaluation of
imputation methods, and guidance on how to select suitable methods for different data
applications.

In this study, we conducted a systematic evaluation for 11 known or adapted imputa-
tion methods on 12 real datasets and 4 simulated datasets, based on numerical recovery,
cell clustering and marker gene analysis.

We first evaluated these methods from the perspective of numerical recovery, and cal-
culated imputation errors to directly demonstrate their ability to recover true expres-
sion levels. We then evaluated the methods on the cell clustering task, to determine their
ability to recover and enhance the underlying clusters within the original data. We paid
more attention to evaluating the methods based on marker gene expression, because the
investigation of marker genes is an excellent way to determine actual biological signif-
icance. This study reveals the benefits and limitations of various imputation methods,
and provides data-driven guidance for scRNA-seq data analysis.

Results

Performance in the numerical recovery of scRNA-seq data

The initial aim of imputation is to impute the dropouts in scRNA-seq data to approxi-
mate the true expression values. Therefore, it is a direct way to measure the numerical
difference between the true values and imputed values of different imputation methods,
to evaluate the bias distribution and imputation accuracy.

On real datasets, including ILC, HCC, CRC, NSCLC, PBMC, BCC, ITC, human and
mouse DCs and Melanoma.1 (Table 1), most methods tended to slightly underestimate
expression values (Fig. 1). Furthermore, on Smart-Seq2 (and Smart-Seq) datasets, some
methods, such as SAVER and scScope, significantly underestimated (like the corrupted
data) while others, such as DCA and scV], significantly overestimated expression val-
ues. Moreover, some methods, resulted in extremely large expression values, such as
scImpute on HCC, CRC, NSCLC, PBMC, DC_mouse and Melanoma.l1, and scVI on ILC
and HCC. On simulated datasets (Sim1 to Sim4), most methods, especially SAVER and
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Table 1 Details of all the datasets

Dataset in Source Description Data Size*  Clusters Sparsity Original Protocol
the study Rates data type™
ILC [27] GSE70580  Human 26087 x647 4 87.2% Raw count Smart-Seq2
tonsil Innate
lymphoid
cells (ILCs)
HCC [28] GSE98638 T cells from 14127 x 4050 11 75.0% Raw count Smart-Seq2
hepatocellu-
lar carcinoma
(HCQO)
CRC [29] GSE108989 T cells from 12547 x 8496 20 71.6% Raw count Smart-Seq2
colorectal
cancer (CRC)
NSCLC [30] GSE99254  Tcellsfrom  12415x9051 16 75.9% Raw count Smart-Seq2
non-small
cell lung can-
cer (NSCLC)
PRMICH** - Peripheral 14219% 5356 5 94.8% Raw count Chromium
blood mono-
nuclear cells
(PBMCs)
BCC [31] GSE123813  Single cells 1000 x 50026 19 55.9% Raw count Chromium
from basal
cell carci-
noma (BCC)
[TC[32] GSE124731 Human 13260 x 2005 7 93% Raw count Chromium
innate T cells
(ITCs)
DC_human GSE137710 Human 14064 x 4406 7 85.6% Raw count Chromium
[33] splenic den-
dritic cells
(DCs)
DC_mouse GSE137710 Mouse 12699 x 4432 7 84.6% Raw count Chromium
[33] splenic den-
dritic cells
(DCs)
Melanoma.1  GSE137710 Single cells 15292 x 8612 7 92.1% Raw count Chromium
[33] from mela-
noma
Melanoma.2  GSE72056  Single cells  22280x 4636 7 80.2% TPM Smart-Seq2
[34] from mela-
noma
BRCA [35] GSE75688  Single cells 27420515 5 79.0% TPM Smart-Seq
from breast
cancer
(BRCA)
Sim1 - - 600 x 2000 5 30.7% Raw count -
Sim2 - - 600 x 2000 5 50.6% Raw count -
Sim3 - - 600 x 2000 5 70.2% Raw count -
Sim4 - - 600 x 2000 5 89.6% Raw count -

* Number of genes x number of cells. This is the size of data after quality control
**TPM,Transcripts Per Kilobase Million

***https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmcék

SIMLR, significantly underestimated expression values, while scVI again overestimated
expression values, and resulted in extremely large expression values for all simulated

datasets.
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Fig. 1 Distribution of log2 normalized differences between the imputed values (or corrupted values) and
true values. The performance of different imputation methods for all datasets with raw counts are shown. The
differences were calculated by subtracting the true values from the imputed values (or zeros for corrupted
data). Positive differences were normalized tolog, (value + 1) and negative differences were normalized to
—log,(—value + 1)
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More importantly, to evaluate the accuracy of the recovered expression values,
we focused on the absolute imputation errors of the different methods, and used
their median and mean errors as indicators of accuracy. The median error reflects
the general performance of the imputation method, and neglects the effect of out-
lier values, while the mean error takes the outliers into consideration. Additionally,
we also evaluated imputation accuracy based on R2 score (Table 5). The ranking of
compared algorithms based on R2 score is similar to that based on mean error.

On real datasets, the effect of the imputation methods varied among the different
protocols (Fig. 2). On 10x datasets, most methods explicitly improved the corrupted
data. However, on Smart-Seq2 (and Smart-Seq) datasets, imputation can barely
accurately recover most of the artificially corrupted values and even introduced
more noise (with higher median errors). However, we also found that most methods
led to significantly lower mean errors (Fig. 2b), which indicates that large corrupted
values were effectively imputed. In general, most methods generally benefited the
real datasets, albeit with the addition of some noise. SAVER slightly improved all of
the datasets.

On simulated datasets, the imputation methods, especially DCA and scScope, gen-
erally performed well (Fig. 2b). Some methods that assume statistical models, such
as scVI, ZINBWaVE, and SAVER, led to relatively higher errors than those without
statistical assumptions. Given that simulated datasets were generated using Splatter,
an scRNA-seq data simulation package that assumes a gamma distribution for the
mean expression of each gene and a Poisson distribution based on the read counts in
each cell, it may be more difficult for statistical model-based methods to analyze the
simulated datasets, which have inconsistent underlying data distributions.

In summary, different imputation methods performed differently in numerical
expression recovery. Most methods slightly underestimated expression values on
real datasets and significantly on simulated datasets, while SAVER and scScope sig-
nificantly underestimated on almost all datasets and scVI tended to overestimate
expression values. In terms of the recovery accuracy, only SAVER showed a slight,
but consistent, improvement on real datasets. On simulated datasets, most meth-
ods performed well, especially DCA and scScope, but some statistical model-based
methods were less effective.
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Fig. 2 Median and mean imputation errors on raw count datasets. a Median imputation error and mean
imputation error on each dataset. b Normalized total error across the real (Smart-Seg2 and 10x Chromium)
and simulated datasets. The normalized error was calculated by dividing the original error by the maximum
error on the dataset. Gray dashed baselines indicate the performance before imputation. Lower errors
indicate better performance

Performance in single-cell clustering and visualization

To investigate the effect of imputation on subsequent data analyses, we performed clus-
tering analysis and visualization for data before and after imputation. We implemented
single-cell consensus clustering (SC3) and PhenoGraph on both original and imputed
data to capture the underlying clustering structure. As the analysis results based on
these two methods were relatively consistent, we have only shown the results of SC3.

Evaluation of clustering consistency of imputed data
A crucial factor that reflects the effect of imputation on clustering analysis is the con-
sistency between the clusters uncovered from the imputed data and the ground truth.
Therefore, the adjusted rand index (ARI) was evaluated for all of the methods.

On real datasets, surprisingly, data imputed by most imputation methods had lower
ARI scores than those before imputation (Fig. 3a). Most methods did not exhibit
expected or satisfactory performance, even on datasets with clear intrinsic clustering
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structures, such as ILC (Additional file 1: Figure S1), where the ARI score on the raw
count data was over 0.8. However, many of the methods did perform well on PBMC,
which mainly contains four types of immune cells (T cells, B cells, natural killer (NK)

cells, and monocytes) that are easy to distinguish (Additional file 2: Figure S2).

On simulated datasets, most methods performed well on Sim1, which has a drop-
out rate of approximately 30% (Fig. 3). With the increase in dropout rate from 30%
(Sim1) to 90% (Sim4), clustering consistency markedly decreased. However, some
methods, such as scScope and DrImpute, still showed better performance. In particu-
lar, scScope maintained a distinctively higher ARI score (Fig. 3a) and better clustering

Table 2 Input data type and parameter setting of different imputation methods

d on SC3 clustering. a The ARI scores on all of the datasets, with different colors

Algorithm Version Input datatype* Parameter Setting

SIMLR [15] 013 Raw count, TPM Default

ZINBWaVE [6]  1.6.0 Raw count Default

sclmpute [7] 0.09 Raw count ‘Kcluster'was set to 5 for simulated datasets, 20 for GSE123813
and 10 for the others**

Drimpute [16] 1.0 Raw count, TPM ‘ks'was set to 5:10

SAVER [8] 1.1.1 Raw count, TPM Default

MAGIC [13] 152 Raw count, TPM Default

NE [14] - Raw count, TPM Default

scVI[11] 0.3.0 Raw count, TPM ‘new_n_genes'was set to the number of genes of each dataset.

DCA[12] 022 Raw count Default

scScope [9] 0.1.5 Raw count, TPM Default

SAUCIE [10] - Raw count, TPM Default

*For scimpute, ZINBWaVE and DCA, only raw counts are allowed for input
**To ensure that scimpute obtained the same prior knowledge as other methods, we didn’t provide the accurate number of

cell types for it
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visualization (Fig. 3b) than other methods, even though the dropout rate reached
approximately 90%. In general, imputation could bring significantly benefits to sim-
ulated datasets, although the performance of all methods dropped with increasing
sparsity rates.

Thus, it was found that the performance of various imputation methods on real and
simulated datasets were quite different. For example, scScope performed very well on
simulated datasets, but relatively poorly on many real datasets, such as ILC and Mela-
noma.2 (Additional file 1, 3: Figures S1 and S3). In general, SAVER, NE, and DrImpute
showed better performance on real datasets and, given the biological significance of real
datasets, these results should be paid more attention.

We conducted additional experiments to evaluate the clustering results using Purity
(Table 3) and NMI (Table 4) metrics. The results showed that the ranking of the com-
pared methods is mostly consistent with that based on ARI metric.

Evaluation of cluster coherency of imputed data

The silhouette coefficient is widely used to assess the coherency of clusters, and we
therefore used this metric to evaluate the ability of different imputation methods to
enhance the clustering structures of data.

As illustrated in Fig. 4a, most methods slightly recovered the known cluster structures
(annotated by the author) of real datasets, but significantly improved those of simulated
datasets. This again demonstrated the different performances of methods on real and
simulated datasets. On real datasets, only two methods, SAVER and NE, showed rela-
tively good and stable performance, while others did not show satisfactory performance
(also shown in Supplementary Figures S4, S5 and S6). In contrast, simulated datasets
were improved by most methods.

We also calculated the silhouette coefficient based on the SC3 clustering results, to
measure the enhancement of potential cluster structures (Fig. 4b). We found that, on
most real datasets, NE, SAVER, DrImpute, and scImpute improved the clustering
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Fig. 4 Silhouette scores on all the datasets. a Silhouette scores calculated using pre-annotated clusters. b
Silhouette scores calculated using SC3 clustering results. The dashed baseline corresponds to the silhouette
score before imputation. Higher scores indicate better performance
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quality, while others had unstable performance. Besides, on simulated datasets, scScope,
DrImpute, NE, and SIMLR clearly enhanced the clusters.

Evaluation based on marker gene expression and immune cell subsets

As marker genes are not specific to any dataset, they can directly, clearly and unbiasedly
characterize cell types from the biological perspective. Therefore, special attention was
also paid to evaluation based on marker genes.

In general, marker genes showed good discrimination after imputed by DCA, MAGIC,
NE, and SAVER on PBMC (Fig. 5). However, some methods were barely able to discrimi-
nate different cell subsets based on marker genes. CD3E, which is generally considered
to be a T cell marker, although it is also expressed in NK cells at the RNA level, is not
expressed in B cells. However, in data imputed by scScope, CD3E showed the strongest
expression levels in B cells, whereas it was barely expressed in other cell types. There-
fore, imputation may also introduce false-positive results.

Methods were found to vary greatly in their performance. Some could bring ben-
efits, while others had negative effects instead. ILC comprises three ILC subsets and
one NK subset (Fig. 6a). NE explicitly separated the four subsets, and the visualization
of SAVER was as clear as the original data. Moreover, scimpute and DrImpute derived
novel distinct subtypes for each ILC subset. Based on marker gene expression (Fig. 6b),
only SAVER and scImpute performed well, while several other methods performed
very unstably. Interestingly, all of the marker genes from data imputed by scScope were
shown to be barely expressed (Fig. 6b), which was also observed on PBMC (Fig. 5). After
imputed by scVI, ZINBWaVE, and DCA, the patterns of marker gene expression in dif-
ferent subsets were obscured, suggesting that, on ILC, imputation may introduce a large

amount of noise.
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Besides, based on the visualization of marker genes (Fig. 7), we found that the per-
formance of different imputation methods was heavily dependent on datasets. For
example, on ILC, most methods could not clearly separate different cell types based
on marker genes, although some methods, such as SAVER, NE, scImpute, and DrIm-
pute, performed well (Fig. 7a). However, most methods performed very well on PBMC
(Fig. 7b), which comprises four major types of immune cells (T cells, B cells, NK cells,
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Fig. 7 Visualization of marker genes. a ILC and b PBMC. Cells expressing high levels of marker genes for a

specific cell type are highlighted in each panel
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and monocytes). Although NK cells slightly overlapped T cells, the original clustering
structure was sufficiently distinct. Most recovered data were as clear as the original data,
except for data imputed by ZINBWaVE and scScope, where multiple cell types over-
lapped. Therefore, in terms of marker genes and clustering structure, the performance of
imputation methods was dataset-dependent.

In addition, to evaluate how much the intrinsic structure can be discriminated based
on the marker genes after imputation, we also calculated silhouette scores based on the
discriminated cell clusters for datasets PBMC, ILC, Melanoma.2 and BRCA (Fig. 8). We
found that no matter for datasets that are easy to cluster (e.g. PBMC and BRCA) or that
are difficult to separate (e.g. ILC and Melanoma.1), there were always some methods
that can improve the original data. SAVER performed the best on these four datasets,
outperforming all of the original data, with NE the next best.

In addition to marker gene analysis, one of the most important applications of sScRNA-
seq data is to identify potential novel cell subsets. Clear clusters mapping to various cell
types or subsets are strongly expected, particularly when multiple cell types exist in a
dataset.

Monocytes are well-recognized in human peripheral blood and are generally catego-
rized into three classes, based on the expression of cell surface markers, denoted CD14
and CD16 (FCGR3A, low affinity immunoglobulin gamma Fc region receptor III-A)
[21]. Thus, there are classical (CD1411tCD16 ), intermediate (CD147+tCD16%) and non-
classical (CD14TCD16"") monocytes. Interestingly, two separate monocyte clusters
were clearly observed after imputed by scImpute (Fig. 9a). When remapped using the
subset labels derived from scImpute, monocytes of most other methods, except ZINB-
WaVE and scScope, showed two separate discernible clusters (Fig. 9b). However, mono-
cyte subsets could not be well discerned from marker gene expression (Fig. 9d), because
of the conflicting expression of CD14 and CD16 in different monocyte subsets derived

from scImpute.
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Fig. 8 Silhouette scores based on clusters annotated by markers on four datasets. Higher scores indicate
better performance
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Fig. 9 A visual illustration of immune cell subsets based on marker genes. a Four main pre-annotated
subsets in PBMC. b and c indicate monocyte subsets, where the labels are derived from the two separated
clusters (in red and green) of scimpute and Drimpute, respectively. Scatter plots in (d) and (e) show a
relationship between CD14 (x-axis) and CD16 (y-axis) expression in the corresponding monocyte clusters,
with the same colors from scimpute and Drimpute, respectively

We further selected the two slightly separated monocyte subsets derived from DrIm-
pute to remap monocytes in data imputed by other methods (Fig. 9¢). Based on CD14
and CD16 expression (Fig. 9¢), we identified two discriminate monocyte subsets corre-
sponding to the main classical (CD14TTCD16, in red color) and non-classical (CD14*
CD16"™, in green color) monocytes. Intermediate monocytes (CD14"tCD16%) were
mainly present in the cluster representing classical monocytes, which makes biological
sense. Therefore, DrImpute may perform better in the identification of cell subtypes.
This was further supported by ILC, in which ILC3 also showed multiple clusters (Fig. 6a).

Overall, four methods — NE, SAVER, scImpute and DrImpute — improved the origi-
nal data in the marker gene analysis. scImpute and DrImpute may be beneficial to detect
subtle cell types.

Discussion

Unlike previous benchmarking studies that mainly used cell lines with homogeneous cell
populations, this paper evaluates the methods mainly on single cell datasets from real
world. Such datasets tend to exhibit greater cellular heterogeneity, introducing higher
variability and complexity, making the evaluation more challenging. Additionally, the
availability of reference datasets is often more limited compared to well-characterized
cell lines, further complicating the evaluation process.

Besides 11 imputation methods mentioned above, we also evaluated some other meth-
ods, such as Autolmpute [22]. However, not all methods are suitable for comparison.
As Autolmpute first selects and only imputes the 1,000 most variable genes, evaluation
tasks, such as numerical recovery, cannot be fairly compared. However, some visualiza-
tion results about AutoImpute are shown in Additional file 7: Figure S7.

The evaluation results are summarized in Fig. 10, and reveal that the performance
of the methods varied between datasets (Fig. 10a). Moreover, real datasets were only
slightly improved by a few methods (Fig. 10b), while simulated datasets were signifi-
cantly improved by most methods (especially those without statistical models). SAVER
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and NE are the only methods that improved both real and simulated datasets, while
ZINBWaVE and scVI generally brought negative effects. In addition, scScope showed
entirely different performances across the two types of datasets.

On the numerical recovery task, almost all of the methods showed a biased estimation
of dropout events. Furthermore, statistical model-based methods performed unstably
on simulated datasets, which may result from inconsistencies with the assumed models.
Additionally, it may be too difficult for imputation methods to achieve accurate numeri-
cal recovery. For example, the lowest mean absolute imputation error on ILC exceeded
175 (Fig. 2a), while the mean non-zero expression value of all genes was only approxi-
mately 261.

We found that the effects of imputation methods, in terms of median error, varied in
different protocols. For most imputation methods, it was difficult to reduce the median
error on Smart-Seq2 (and Smart-Seq) datasets, but easy on 10x Chromium datasets
(Fig. 2b). This may be due to the different quantification schemes. The former represents
read-count only protocols, while the latter is unique molecular identifier (UMI)-based
protocol. UMI-based protocols remove duplicates in read counts resulting from poly-
merase chain reaction cycles during library construction. Thus, to exclude the potential
influence of dataset characteristics, another set of datasets, which were recently devel-
oped specifically for benchmarking [23], were also evaluated for the top three bench-
marking protocols. Similar results (small mean and median errors) were observed on
both UMI-based protocols, Quartz-Seq2 and 10x Chromium (Additional file 8: Figure
S8a). However, for clustering analysis, the imputation methods did not show apparently
different tendencies across different protocols (Figs. 3 and 4), which was further con-
firmed by the benchmarking datasets (Additional file 8, 9: Figures S8b and S9).
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In clustering analysis, based on the ARI metric, only SAVER slightly improved most
real datasets, while the other methods generally showed unstable performance. How-
ever, on simulated datasets, most methods performed relatively well. Moreover, under
the silhouette score based on the ground truth cluster labels, SAVER and NE showed
better performance. However, under the silhouette score based on SC3 clustering
results, most methods were unstable on real datasets, but performed better on simu-
lated datasets. Overall, no method performed consistently well across all datasets, and
some methods even had negative effects on most datasets. Furthermore, it is not easy for
imputation methods to improve real datasets, particularly those with biologically homo-
geneous cell subsets, such as HCC, CRC, and NSCLC. For example, on HCC, in which
all of the cells are T cells, most methods performed poorly, as indicated by the ARI and
silhouette scores. Thus, how to improve the cluster analysis in highly homogeneous sub-
sets remains a substantial challenge for imputation methods.

Evaluations based on clustering analysis and visualization also suffers from some dif-
ficulties, due to the overdependence on the ground truth or the lack of prior knowledge.
On one hand, for ARI and silhouette scores based on the known cluster structures, the
ground truth was annotated in the original studies. If there is an unknown but significant
difference between the ground truth and the true intrinsic clustering structure, evalua-
tion based on the ground truth is of little benefit. Although the ground truth of simu-
lated datasets is accurate, analyses based on simulated datasets are always limited, due
to the differences between real and simulated datasets. On the other hand, the silhouette
coefficient based on SC3 clustering results, can be used to evaluate imputation methods
without ground truth, thus eliminating the errors caused by inexact ground truth. How-
ever, evaluation that relies on no prior knowledge would be unreliable. As a result, how
to evaluate the effect of imputation on clustering analysis remains to be improved.

During the evaluation, much attention was paid to marker gene analysis, because of its
biological significance. Imputation methods are expected to at least recover marker gene
expression values. However, our results showed that, different imputation methods had
varied performance in marker gene expression and may introduce false-positive signals.

For example, DCA, Drimpute, MAGIC, scVI, and ZINBWaVE introduced a large
amount of noise on ILC (Fig. 6b). In addition, on HCC, CRC, and NSCLC, false-posi-
tive marker genes were also introduced by these methods, as well as by NE and SAUCIE
(Additional file 10: Figure S10). However, more false-positive signals were observed on
the Smart-Seq2 datasets (HCC, CRC and NSCLC) than the 10x Chromium dataset (DC_
human). Therefore, the benchmarking datasets were further evaluated for marker gene
expression.

Five imputation methods were selected according to their performance (Fig. 10), and
were evaluated for analysis (Additional file 11, 12, 13: Figures S11, S12 and S13). SAVER
showed the best performance across different protocols. scImpute also performed well.
DrImpute and NE performed better on UMI-count datasets than the Smart-Seq2 data-
set. Therefore, the induction of false-positive marker signals may be involved in proto-
cols, imputation methods and datasets.

Besides, based on marker gene analysis, it appeared that imputation may assist the dis-
covery of potentially novel cell subsets. DrImpute and scImpute have been found to have
advantages to identify more sub-clusters (Fig. 9), which may facilitate the discovery of
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novel subsets. However, they should be used with caution, as the derived subsets have
yet to be further validated. It is important to consider whether the clusters are induced
by varying sequencing quality or other factors such as batch effect. If these factors have
been accounted for, it is ideal to further identify truly reliable marker genes for these
new subpopulations. In terms of marker genes, when a cell subtype is divided to subtler
sub-divisions, specific marker genes in these sub-divisions will become more difficult to
identify. Therefore, datasets with highly homogeneous structures, or those with many
subtle sub-populations, would be difficult to impute for most methods, suggesting that
imputation challenges remain.

We also evaluated the impact of imputation on gene-gene correlation. Based on some
significantly correlated gene pairs from bulk RNA-seq datasets [24], we compared their
correlation before and after imputation. We found that some imputation algorithms,
such as MAGIC, scVI and scScope, were indeed able to improve the correlation. How-
ever, we also discovered that these methods introduced a significant number of false
positive signals, which accords with the previous observation [20].

There are some potential improvements for imputation methods. For example, to pro-
mote biological discoveries, imputation methods should focus more on the improve-
ment of data in downstream analyses, which is closely related to the method design.
Therefore, imputation methods could incorporate the characteristics of scRNA-seq data,
such as interactions among genes and connections between cells, to improve their effec-
tiveness. Moreover, with the development of high-throughput sequencing technology,
the size of scRNA-seq data will grow rapidly. However, some imputation methods cost
a lot of time on some datasets (Additional file 14: Figure S14). Therefore, the scalability
and efficiency of imputation methods should be improved, to adapt to future develop-
ments and trends. Finally, with the development of single-cell multi-omics methods [25,
26], integrating data from multiple levels will improve imputation performance and the
downstream applications.

There are some guidelines for using imputation methods. It is suggestive to try and
compare several well-performing imputation methods (such as SAVER and NE), then
choose the best-performing one for subsequent tasks. Furthermore, it is essential to
understand the purpose of the analysis. For instance, when analyzing the gene-gene
correlation, high correlation after imputed by some methods, like MAGIC, should be
treated with caution, unless it can be supported by other techniques such as bulk RNA-
seq. Additionally, since imputation is dataset-specific, it is crucial to analyze the expres-
sion patterns of known marker genes after imputation to determine their validity within
the dataset.

Conclusions

In this study, we conducted a systematic evaluation of 11 imputation methods for
scRNA-seq data. The results revealed that the performance of different methods var-
ied across different datasets, suggesting that imputation may have dataset specificity.
In particular, based on the experiments evaluating downstream analysis, real datasets
were barely improved by most imputation methods. In contrast, simulated datasets were
always improved. Furthermore, methods without statistical models had more advan-

tages on simulated datasets.
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In general, based on their performance in cell clustering and marker gene analysis,
two imputation methods, SAVER and NE, are recommended for downstream analyses.
In additional, we recommend DrImpute and scImpute for discovering novel subtle cell
types, due to their potential in identifying sub-clusters of single cells.

Methods

Datasets and preprocessing

All of the tested datasets [27—35] are shown in Table 1. They vary in size from a few
hundred to tens of thousands, with varying sparsity rates (proportion of zero entries)
and different numbers of inherent cell subpopulations, thus allowing a comprehensive
evaluation of the imputation methods. In addition, all of the real datasets comprise
certain types of immune cell subsets, such as T cells, B cells, natural killer (NK) cells,
monocytes, dendritic cells (DCs) and innate lymphoid cells (ILCs). For example, dataset
PBMC is mainly composed 4 distinct cell types (T cells, B cells, NK cells, and mono-
cytes), while dataset CRC contains 20 highly homogenous cell subsets (12 CD4" T cell
subsets and 8 CD8™ T cell subsets), which poses different challenges for imputation.

To further evaluate the effectiveness and robustness of the different methods, four
simulated datasets with varying proportions of dropouts were synthesized using Splat-
ter [36]. Briefly, a baseline dataset without dropouts was first generated using the default
parameters in Splatter. This dataset contains 2000 cells, 600 genes, and 5 clusters. Four
datasets with different sparsity rates, ranging from 30 to 90%, were then derived from
this baseline dataset.

Quality control of the real datasets was performed before imputation. First, bulk RNA
samples within the datasets were removed. Low-quality single cells were then filtered
out if the number of expressed genes or the library size exceeded the upper threshold or
fell below the lower threshold. The upper threshold was defined as the 75th percentile
of all cells plus three times the interquartile range (IQR), while the lower threshold was
defined as the 25th percentile minus three times the IQR. Genes that were expressed in
no more than two cells were removed.

In dataset BCC, which contains more than 50,000 cells, only the top 1000 genes with
the highest expressional variance were retained for imputation, to speed up the calcula-
tion. DrImpute and scImpute were not applied to this dataset, as the number of cells
exceeds the limit of DrImpute, and the run time of scImpute exceeds our time limit (5
days).

Numerical recovery of gene expression values
To quantify the numerical recovery of the scRNA-seq data, we measured the imputation
error for each imputation method on datasets with raw count data.

Specifically, for simulated datasets, the baseline dataset, which has true expression val-
ues that are missing in the four simulated datasets, was treated as the ground truth. Fol-
lowing a similar strategy in scScope [9], two lists, [ and [/, were constructed, in which
elements respectively corresponded to the ground truth and the imputed values for all
of the dropout entries. The mean imputation error was defined as the mean distance
between [ and [/, and the median imputation error was defined as the median distance
between [ and /'.



Cheng et al. BMC Bioinformatics (2023) 24:302 Page 19 of 24

For real datasets, we followed the downsampling strategy used in scVI [11]. We simu-
lated the dropout process by corrupting the real datasets, randomly selecting 10% of the
non-zero entries and setting them to zero. We then imputed the corrupted datasets and
compared the recovered data with the original data. The imputation error was calculated
using the same method as that used for the simulated datasets. We repeated the dropout
process ten times for some datasets, and found that the randomness of the dropout pro-
cess had little effect on the performance of most imputation methods.

Clustering analysis and visualization
Two clustering algorithms, PhenoGraph [37] and SC3 [38], were used for cluster-
ing analysis. Default parameters in SC3 were used, except that ‘gene_filter’ was set to
‘FALSE’ and ‘ks’ was set to the real number of clusters. All of the default parameters
in PhenoGraph were used. In addition, to visualize the intrinsic structure of the high-
dimensional data, the non-linear dimension reduction method, t-distributed stochastic
neighbor embedding (t-SNE) [39], was used, with the parameter ‘perplexity’ set to 50.
Before clustering and visualization, all expression values were scaled to logs (value + 1),
except when using SUACIE, as it would result in some negative values. All samples were
then reduced to 50 dimensions using principal component analysis (PCA).

To compare the consistency between the clustering results and the ground truth or the
original label in the corresponding study, we used adjusted rand index (ARI), which is
defined as

> () =[S @5 @] 6
IS @S @] -2 @Ol

ARI =

where 7;; denotes the number of shared cells between cluster i in ground truth and
cluster j in clustering results, n denotes the number of all the cells, a; = Zj n; and
bj =, n;. We visualized the consistency by projecting the original data and imputed
data into two dimensions, with different colors of points representing different labels of
ground truth.

We used silhouette coefficient to measure coherency, based on the ground truth or
clusters generated using SC3. The silhouette score of a sample i is defined as

b(i) — a(i)

SO = (@, b))

where a(i) denotes the mean intra-cluster distance of sample i and b(i) is the mean near-
est-cluster distance of sample i. The silhouette score of a clustering is the mean silhou-
ette score of all of the samples.

For real datasets, clusters annotated in the corresponding study were used as the
ground truth. For simulated datasets, the original clusters in the baseline dataset were
used as the ground truth.
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Marker gene analysis

To determine whether imputation can improve marker gene analysis, we used marker
genes to discriminate cell clusters for data before and after imputation, and evaluated
whether the clusters are well separated. Marker genes of each cell type and subset were
extracted from the published literature.

First, the mean expression value of marker genes was used to measure how much a
cell belongs to a cell type. For a particular cell type, if the mean value of the correspond-
ing marker gene expression in a cell exceeded a predefined threshold, the cell would be
labeled with that cell type. A cell could have no label, one label or multiple labels. The
predefined threshold was optimized to maximize the proportion of one-label cells, while
ensuring that more than 90% of cells had labels. The threshold varied among different
datasets and imputation methods, due to their heterogeneity.

Based on the cell labels, a new dataset was then constructed from the original dataset.
The constructed dataset consisted of the two-dimensional projection of cells with one or
more labels. Multi-labeled cells were duplicated multiple times. The silhouette score was
calculated for the constructed datasets, to evaluate whether they could be well separated
by the labels.

Settings of imputation methods
The type of input data and the parameter settings of all of the imputation methods are
shown in Table 2.

Specially, the NE algorithm, a network enhancement method [14], was adapted to
impute scRNA-seq data for the first time in this study. Firstly, we normalized the input
data by

10° x Cj;

— 4
> Gy

log, (
where Cj; is the expression value of gene i in cell j. Next, we constructed a cell-to-
cell similarity matrix by calculating the Pearson correlation between cells. Network
enhancement was then applied to denoise the similarity matrix and enhance the cell-to-
cell correlations. We normalized the denoised similarity matrix to a weighting matrix by
dividing all of the similarity values by the maximum value of each cell, and set the self-
weight of each cell to 1.5 times the maximum weight to its neighbors. To share infor-
mation from similar cells, recovered data were obtained by multiplying the weighting
matrix by the original data matrix, as in MAGIC [13].

For SIMLR [15], we first used the method to directly learn a cell-to-cell similarity
matrix from the input data. The similarity matrix was then normalized to a weighting
matrix, in which the sum of each row equaled one. We then multiplied the weighting
matrix by the input data matrix to obtain the imputed data.

When using SAUCIE [10], the input data were first reduced to 100 dimensions by PCA
before imputation. The output data were then inversely converted to the original dimen-
sions to give the imputation results.
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Abbreviations
scCRNA-seq Single-cell RNA sequencing

ILC Innate lymphoid cell

HCC Hepatocellular carcinoma

CRC Colorectal cancer

NSCLC Non-small cell lung cancer

PBMC Peripheral blood mononuclear cell

BCC Basal cell carcinoma

ImC Innate T cell

DC Dendritic cell

BRCA Breast cancer

SIMLR Single-cell interpretation via multi-kernel learning
ZINBWaVE Zero-inflated negative binomial-based wanted variation extraction
SAVER Single-cell analysis via expression recovery
MAGIC Markov affinity-based graph imputation of cells
NE Network enhancement

sVl Single-cell variational inference

DCA Deep count autoencoder network

SAUCIE Sparse autoencoder for unsupervised clustering, imputation and embedding
TPM Transcripts per kilobase million

SC3 Single-cell consensus clustering

ARI Adjusted rand index

NK Natural killer

UMI Unique molecular identifier

IQR Interquartile range

t-SNE T-distributed stochastic neighbor embedding
PCA Principal component analysis

CD3D Cluster of differentiation antigen 3d molecule

CD3E CD3e molecule

cD19 CD19 molecule

CD79A CD79a molecule

CD56 CD56 molecule, also known as neural cell adhesion molecule 1/NCAM1
GZMH Granzyme H

D14 CD14 molecule

TGAM Integrin subunit alpha M

cD16 CD16 molecule, also known as Fc fragment of IgG receptor Illa/FCGR3A
[TGAX Integrin subunit alpha X

cD1C CD1c molecule

CD798B CD79b molecule

CD8A CD8a molecule

CD8B CD8b molecule

D4 CD4 molecule

SLIT2 Slit guidance ligand 2

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-023-05417-7.

Additional file 1: Fig. S1: Visualization of different methods on ILC. On dataset ILC, data before imputation (raw’)
and after imputed by different methods were visualized by t-SNE, with different colors representing different cell
types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based on
the ground truth and the ARI scores, respectively.

Additional file 2: Fig. S2 Visualization of different methods on PBMC. On dataset PBMC, data before imputation
(raw’) and after imputed by different methods were visualized by t-SNE, with different colors representing different
cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based
on the ground truth and the ARI scores, respectively.

Additional file 3: Fig. S3Visualization of different methods on Melanoma.2. On dataset Melanoma.2, data before
imputation (raw’) and after imputed by different methods were visualized by t-SNE, with different colors represent-
ing different cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette
scores based on the ground truth and the ARI scores, respectively.

Additional file 4: Fig. S4 Visualization of different methods on HCC. On dataset HCC, data before imputation (raw’)
and after imputed by different methods were visualized by t-SNE, with different colors representing different cell
types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based on
the ground truth and the ARI scores, respectively.

Additional file 5: Fig. S5 Visualization of different methods on NSCLC. On dataset NSCLC, data before imputation
(raw’) and after imputed by different methods were visualized by t-SNE, with different colors representing different
cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based
on the ground truth and the ARI scores, respectively.
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Additional file 6: Fig. S6 Visualization of different methods on DC_mouse. On dataset DC_mouse, data before
imputation (raw’) and after imputed by different methods were visualized by t-SNE, with different colors represent-
ing different cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette
scores based on the ground truth and the ARI scores, respectively.

Additional file 7: Fig. S7 Visualization of raw count, SAVER, NE and Autolmpute. Data before imputation (raw’) and
after imputed by SAVER, NE, and Autolmpute were visualized by t-SNE, with different colors representing different
cell types. For these data, log transformation was not performed before visualization, as Autolmpute imputed data
with many negative values.

Additional file 8: Fig. S8 The performance of five imputation methods on benchmarking datasets.Five selected
imputation methods (sclmpute, Drimpute, SAVER, NE, and DCA) were tested on datasets from three different pro-
tocols (Quartz-Seq2, Chromium, and Smart-Seq2). (a) For the numerical recovery task, two indices, the median error
and mean error, are shown. (b) For clustering analysis, three indices, AR, silhouette based on ground truth 'sil(g);
and silhouette based on SC3 clusters sil(s)' are shown. The five selected imputation methods did not show different
tendencies with respect to these five indices across these three protocols. Human samples including PBMCs and
HEK293T cells, were used for the analyses.

Additional file 9: Fig. S9 Cluster visualization of five imputation methods on benchmarking datasets.Clusters on
three different protocols (Quartz-Seq2, Chromium, and Smart-Seq?2) were visualized by t-SNE. Colored cell labels
were directly derived from the original study.

Additional file 10: Fig. S10 Marker gene expression on HCC, CRC, NSCLC and DC_human. Expression values of
marker genes of different datasets before and after imputation are shown: CD3D and CD3E for HCC, CRC and NSCLC;
[TGAX and CD1C for DC_human. Expression values of marker genes in different datasets before and after imputation
are shown. We selected the following marker genes for analysis: CD3D and CD3E for T cells; CD79A and CD798 for B
cells; NCAM1 for NK cells; and ITGAX and CD1C for DCs.The datasets HCC, CRC, and NSCLC represent T cells, which
should highly express CD3D and CD3E, but not CD79A, CD79B, or NCAM1. The dataset DC_human represents DCs,
which should highly express ITGAX and CD1C, but not CD3E, CD79A, or CD79B.

Additional file 11: Fig. S11 Marker gene expression of different cell types from the Quartz-Seq2 protocol. Expres-
sion values of marker genes of different cell types are shown: CD3D and CD4 for CD4$A+S$ T cells; CD3D, CD8A
and CD8B for CD8$A+S T cells; CD19 and CD79A for B cells; NCAM1 for NK cells;,CD14 for CD145A+$ monocytes;
FCGR3A for FCGR3ASA+$ monocytes; SLIT2 for HEK293T cells.

Additional file 12: Fig. S12 Marker gene expression of different cell types from the Chromium protocol.Expression
values of marker genes of different cell types are shown:CD3D and CD4 for CD4$A+-$ T cells; CD3D, CD8A and CD8B
for CD8SA+S T cells; CD19 and CD79A for B cells; NCAM1 for NK cells; CD14 for CD14$A+$ monocytes; FCGR3A for
FCGR3AS$A+S$ monocytes; SLIT2 for HEK293T cells.

Additional file 13: Fig. S13 Marker gene expression of different cell types from the Smart-Seq2 protocol. Expression
values of marker genes of different cell types are shown: CD3D and CD4 for CD4$A+$ T cells; CD3D, CD8A and CD8B
for CD8SA+S T cells; CD19 and CD79A for B cells; NCAM1 for NK cells;CD14 for CD145A4-$ monocytes; FCGR3A for
FCGR3AS$A+$ monocytes; SLIT2 for HEK293T cells.

Additional file 14: Fig. S14 Run time of different imputation methods. The run times (in seconds) of different
methods are shown for all datasets. Green and yellow grids correspond to faster and slower speeds, respectively. The
methods were ranked by the ‘overall’score, which is the average score of all of the datasets.
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