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Abstract: High-dimensional metabolomics analyses may identify convergent and divergent markers,
potentially representing aligned or orthogonal disease pathways that underly conditions such as
pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we
applied six different conventional and statistical learning techniques to identify analytes associated
with key outcomes and compared the results. We found that certain conventional techniques, such as
Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical
learning techniques generally agreed with conventional techniques on the top-ranked metabolites,
but were also more inclusive of different metabolite groups. In particular, conventional methods
prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH,
whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty
acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques
can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as
PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas
divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes,
or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms
underlying the observed results, our main findings suggest that a multi-method approach to statistical
analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific
yield from a given study design.

Keywords: metabolomics; convergent and divergent markers; PAH; statistical approaches

1. Introduction

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by ele-
vated pulmonary artery pressure and, if left untreated, eventual right ventricular failure
and death [1]. Despite advances in therapeutic interventions, PAH morbidity and mortality
remains excessively high [2,3] and there remains a pressing need for reliable biomarkers
and novel pathways to better understand the disease pathobiology. Given that metabo-
lites can be influenced by genetics, environmental factors, and subtle disease processes,
metabolomics represents a high-yield tool for identifying novel biomarkers in PAH, a
complex disease that encompasses multiple types and subtypes of pathophysiologic origin
and clinical presentation. Accordingly, several metabolomics investigations of PAH have
emerged and already offer valuable insights regarding potentially new pathway markers
that could aid in diagnosis and prognosis [4–10]. However, a prominent and persistent
challenge for metabolomics studies of PAH, similar to that for other clinical traits, is the
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selection of a statistical method applied to identify associations between metabolites and
disease outcome.

Because PAH is a relatively rare disease, clinical datasets tend to be smaller in sample
size compared to those for other traits. Thus, the high-dimensional nature of metabolomics
profiling applied in PAH studies presents a compounded challenge when considering that
conventional statistical methods need to account for potentially multiple confounding
factors including other metabolites, while also accounting for multiple comparisons [11–15].
Nonetheless, metabolomics studies of PAH have predominantly applied conventional
statistical approaches such as linear regression with the false discovery rate (FDR) and
Bonferroni correction for multiple tests [8,9,16]. While helpful, these methods may fail to
adequately account for intercorrelations between individual metabolites, which can bias
towards identifying metabolites from singular pathways and underrepresent secondary
or tertiary associations from orthogonal pathways. For this reason, several alternative
statistical analysis methods have been proposed and applied in other omics studies to
more efficiently select features, including metabolites, associated with a given clinical
trait or outcome. Therefore, we sought to formally examine different conventional and
statistical learning approaches applied to metabolomics data collected from a large cohort
of PAH patients. We hypothesized that the application of multiple statistical and statistical
learning techniques to a high-dimensional metabolomics dataset will reveal differential
rankings of convergent and divergent metabolite markers associated with our clinical
outcome, PAH type. We aimed to assess the variability in findings from applying different
statistical methods and the potential clinical and biological plausibility corresponding to
their generated results.

2. Materials and Methods
2.1. Human Metabolomics Data and Analysis

The primary study objective was to compare results from applying different con-
ventional statistical and statistical learning techniques to analyses of high-dimensional
metabolomics data in relation to a clinical outcome. We used a cross-sectional study design
to identify metabolites associated with clinically important PAH phenotypes, specifically,
idiopathic PAH (IPAH) versus other types of PAH (non IPAH). We obtained patient samples
from the National Biological Sample and Data Repository for PAH (PAH Biobank), an
NIH-funded (R24HL105333, R01HL160941) biorepository of PAH patients enrolled from
37 U.S. centers with deidentified clinical data, stored biological samples, and genetic data.
Between 2012 and 2017, the biobank enrolled 2900 PAH patients who had their plasma
collected, processed, and stored at baseline. Diagnosis of PAH and PAH subtype were
confirmed by right heart catheterization according to established criteria. Patients with
other secondary causes of pulmonary hypertension were excluded along with patients
without available plasma samples matched to clinical traits, resulting in 2470 patients
remaining for the current analyses (Figure 1).
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All plasma samples were collected from study patients and processed as previously
described. Briefly, plasma samples were thawed at 4 ◦C over 8 h in light-free conditions.
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After thawing, the plasma was mixed thoroughly by orbital shaking at 500 rpm and 4 ◦C for
15 min. Cold ethanol (−20 ◦C) with deuterated internal standards was added to precipitate
proteins, non-polar lipids, and extract bioactive lipids from the plasma. Samples were then
separated using solid phase extraction (SPE) Phenomenex 8B-S199-UB) [17,18].

For profiling all plasma samples, metabolomics analyses were performed as previously
described [10,16–19]. Briefly, chromatographic separation was performed on a Vanquish
UPLC BEH shield RP18 column (2.1 × 100 mm, 1.7 µm) coupled to a high-resolution, QEx-
active orbitrap mass spectrometer (Thermo, Waltham, MA, USA) with (-) ESI. Elution was
performed with mobile phase phases A (70% water, 30% acetonitrile and 0.1% acetic acid)
and B (50% acetonitrile, 50% isopropanol, 0.02% acetic acid). Data were subsequently nor-
malized to account for plate-to-plate variation using a simple batch median normalization
metric with correction for median absolute deviation. Normalized, aligned, filtered datasets
were subsequently used for statistical analyses. These approaches have been optimized
for robust throughput, allowing for rapid extraction and analysis of thousands of plasma
samples, with precision and accuracy of analytes measures found to be <20% (CV%) for 95%
analytes and <20% for 87% analytes (RE%). The assay is found to be highly reproducible
over long periods of time; independent measures demonstrate a median CV across analytes
of 9% (range 4–27%) at low standard concentrations of 0.15 ng. All generated spectral data
underwent Qc/Qa using a panel of deuterated internal standards as well as interval pooled
plasma samples to monitor fluctuations in extraction efficiency, instrument sensitivity,
matrix artifact, and mass accuracy. Any samples not meeting Qc/Qa thresholds underwent
reinjection. Metabolites analytes were log transformed, batch normalized, and scaled.

2.2. Statistical Analysis

We employed a variety of statistical methods for comparison of metabolites prioritized
and selected in relation to the dichotomous outcome of IPAH versus non-IPAH, given
their etiologic differences (i.e., divergence) in the setting of many phenotypic similarities
(i.e., convergence). All statistical analyses were conducted using R (v4.2.0), R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org (accessed on
1 May 2023).

2.2.1. Statistical Methods

We selected the following statistical methods: (1) univariate analyses with multiple
testing correcting; (2) the least absolute shrinkage and selection operator (LASSO) ap-
proach [20]; (3) the elastic net method [21]; (4) random forest [22] with tree minimal depth
variable selection [23]; (5) shrinkage discriminant analysis (SDA) [24,25]; and (6) extreme
gradient boosting (XGBoost) [26]. These methods were selected based on their representing
a range of conventional as well as statistical learning methods, in addition to their feasibility
for application in standard research settings. Each statistical method is explained below:

Univariate Analyses with Multiple Testing Correction

Univariate logistic regression analyses were performed for each metabolite to predict
the dichotomous outcome, with adjustments made for age and sex. The significance of
each metabolite was assessed using p-values, which were adjusted for multiple testing.
Two methods were employed for adjustment: the Bonferroni correction [27,28] or the false
discovery rate (FDR) correction method [29]. The Bonferroni correction controls the family-
wise error rate by dividing the desired significance level by the number of comparisons
being performed, thereby reducing the chances of making a Type I error. The FDR method
controls the expected proportion of false positives among all significant results. It allows for
a higher number of false positives while still controlling the overall rate of false discoveries.
The Bonferroni correction is more conservative than the FDR correction method as it
maintains a lower overall false positive rate and, in doing so, may have reduced power to
detect true effects due to its stringent adjustment. Adjusted p-values were calculated for
each metabolite, and the metabolites were ranked based on their adjusted p-values, with

https://www.R-project.org
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lower values indicating higher rankings. In cases where the adjusted p-values were equal,
ranking was performed based on the raw p-values.

Least Absolute Shrinkage and Selection Operator (LASSO)

The LASSO approach [20] was employed to perform logistic regression with variable
selection. This approach incorporates a penalty term in the regression model to promote
sparsity by shrinking the coefficients of less important predictors towards zero, thus
retaining the most significant variables in the final model. The biglasso package [30] in R
was used for LASSO logistic regression. To determine the optimal level of regularization,
10-fold cross-validation was employed, selecting the Lambda value that minimized the
cross-validation error. Metabolites were ranked based on the absolute magnitude of the
coefficients, with larger coefficients indicating higher ranks.

Elastic Net

The elastic net method [21] combines the advantage of ridge regression [31] and
LASSO regression. Ridge regression assigns small but non-zero coefficients to all variables,
while LASSO regression sets some coefficients exactly to zero. The elastic net method strikes
a balance between feature selection and coefficient shrinkage, making it highly effective
in scenarios involving correlated predictors and the need for automatic feature selection.
The biglasso package [30] in R was used to conduct ridge logistic regression. To determine
the optimal level of regularization, 10-fold cross-validation was utilized, selecting the
Alpha and Lambda values that minimized the cross-validation error. Metabolites were
ranked based on the absolute magnitude of their coefficients, assigning higher ranks to
larger coefficients.

Random Forest

The random forest algorithm [22] was employed as a machine learning technique for
prediction and feature selection. It constructs multiple decision trees by randomly sampling
subsets of the data and features, combining their predictions to achieve robust and accurate
results. The randomForestSRC package [32] in R was utilized for the analysis. Optimal tun-
ing parameters, “mtry” (number of randomly selected variables) and “nodesize” (minimal
size of terminal node), were determined using out-of-sample error estimation. Random
forest variable selection with the tree minimal depth methodology [23,33] was then imple-
mented. Metabolite importance was ranked using the metric proposed by Ishwaran [34]
which quantifies the contribution of a particular metabolite in splitting the tree node and
measures its impact on improving the accuracy of the model.

Shrinkage Discriminant Analysis (SDA)

Linear discriminant analysis (LDA) [35] and shrinkage linear discriminant analysis
(SLDA) [24,25] were employed for classification and dimensionality reduction. SLDA
addresses challenges associated with high-dimensional data and limited sample sizes by
employing shrinkage techniques to enhance the estimation of covariance matrices, thereby
improving classification performance. The SDA package [25,36] in R was used for SLDA.
Metabolite ranking was determined by computing correlation-adjusted t (CAT) scores
between the group centroids and the pooled mean [25,36,37].

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [26] is a gradient boosting method that con-
structs an ensemble of weak learners, typically decision trees, in a sequential manner to
minimize a specific loss function. It integrates regularization techniques to prevent overfit-
ting and employs an advanced optimization algorithm to enhance the training process. The
XGBoost package [26] in R was used for the analysis. Optimal parameters were determined
using 5-fold cross-validation to minimize the binary classification error. The optimized
parameters were then applied using XGBoost with the logistic regression for binary clas-



Metabolites 2023, 13, 802 5 of 13

sification objective option. Metabolite importance was calculated based on the fractional
contribution to the model, measured by the total gain of the metabolite’s splits.

2.2.2. Comparing Performance across Statistical Methods

To compare the performance and selection of metabolites across statistical methods,
we first ranked the importance of metabolites based on metrics provided by the method
used: (1) the multiple testing correction method ranks metabolites based on the p-values
obtained, with lower p-values corresponding to higher rankings; (2) LASSO and elastic net
regression ranked metabolites based on the absolute magnitude of the coefficients, with
large coefficients indicating higher ranking; (3) random forest modeling ranked metabolite
importance using a metric proposed by Ishwaran [23], which quantifies how much the
accuracy of the model increases due to a particular metabolite’s contribution in splitting the
tree node; (4) SDA ranked metabolites by computing correlation-adjusted t (CAT) scores
between the group centroids and the pooled mean [25,36,37]; and (5) XGBoost ranked
the metabolites by calculating the fractional contribution of each metabolite to the model
based on the total gain of the metabolite’s splits, where a higher percentage denotes more
importance [26].

Data Structure of Differentially Prioritized Metabolites

To examine the data structures of metabolites prioritized by each of the applied
statistical methods, we used Pearson correlation to quantify the inter-relations between
each of the top 50 selected metabolites selected by each statistical method. A heatmap
displaying the correlation structure of the selected metabolites was generated for each of
the statistical methods.

Convergence and Divergence of Differentially Prioritized Metabolites

Individual rankings obtained from each method were summarized using several inte-
grated rank metrics. Missing rankings were imputed for the total number of metabolites
(N = 54,788). The integrated rank was calculated as the summation of rankings from each
method, providing a comprehensive measure of metabolite importance. The difference
rank captured the maximum difference between the highest and lowest rank for each
metabolite, thus highlighting the most distinct differences in prioritization observed among
the methods used. Similarly, the variance rank measured the variation in rankings across
the different methods, allowing metabolites to be ranked based on the level of disagreement
among the methods. These calculated rank metrics served as indicators for comparing
output from across all methods applied to prioritize metabolite importance; in turn, the met-
rics were used to identify metabolites similarly prioritized across methods (i.e., indicating
convergence) and differentially prioritized across methods (i.e., indicating divergence).

3. Results
3.1. Cohort Characteristics

A total of 2470 patients had confirmed diagnosis of PAH (1077 IPAH and 1411 non-
IPAH) and had plasma samples available for analysis and were enrolled for analysis
(Table 1). The mean age of both groups was similar, with IPAH patients having a mean
age of 52.16 (SD 17.83) years and non-IPAH patients having a mean age of 52.08 (SD
17.98) years (p = 0.9). The majority of patients in both groups were female (77.0% of IPAH
patients and 78.3% of non-IPAH patients, p = 0.5). The mean BMI of IPAH patients was
significantly higher than that of non-IPAH patients, with IPAH patients having a mean BMI of
30.44 (SD 17.63) kg/m2 and non-IPAH patients having a mean BMI of 28.19 (SD 11.73) kg/m2

(p < 0.001). The racial distribution of both groups was similar, with the majority of patients
in both groups being white (81.4% of IPAH patients and 80.4% of non-IPAH patients). The
percentages of Black, Asian, and other races were similar between both groups (p = 0.7).
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Table 1. Cohort characteristics.

Characteristic All Patients Idiopathic PAH Non-Idiopathic PAH p-Value *

N 2488 1077 1411
Age, years 52.1 (17.9) 52.16 (17.83) 52.08 (17.98) 0.9
Female (%) 1934 (77.7) 829 (77.0) 1105 (78.3) 0.4
BMI, kg/m2 29.16 (14.61) 30.44 (17.63) 28.19 (11.73) <0.001

Race (%) 0.7
White 2011 (80.8) 877 (81.4) 1134 (80.4)
Black 309 (12.4) 131 (12.2) 178 (12.6)
Asian 92 (3.7) 39 (3.6) 53 (3.8)
Other 76 (3.1) 30 (2.7) 46 (3.3)

Data are displayed as mean and standard deviation (SD) unless specified otherwise. * p-values are calculated
based on comparisons between idiopathic and non-idiopathic PAH groups.

3.2. Statistical Analyses of Metabolomics Data

We compared six statistical approaches including Bonferroni correction, false discov-
ery rate (FDR) correction, LASSO, elastic net, random forest minimal depth, shrinkage
discriminant analysis (SDA), and XGBoost. We selected these statistical approaches based
on their complementary features. In particular, LASSO and elastic net are effective for
feature selection when the number of predictors is much larger than the sample size. Bon-
ferroni and FDR are conventionally used to correct for multiple comparisons, even though
they may be overly conservative and lead to a loss of power. Random forest and XGBoost
are powerful machine learning methods that can handle high-dimensional data and have
been successfully applied in metabolomics previously. SDA is a method that can handle
collinearity among predictors and has been applied in metabolomics for feature selection
and classification tasks.

After applying the six different methods to our PAH dataset, we ranked metabolites
based on measuring method-specific metrics: based on p-values for multiple testing correc-
tion; based on absolute magnitude of the coefficients for LASSO and elastic net regression;
based on correlation-adjusted t scores for SDA; based on fractional model contribution of
each metabolite for XGBoost; and based on model accuracy for random forest. In general,
similar statistical approaches produced similar ranking of metabolites (Figure 2). For in-
stance, Bonferroni correction and FDR correction produced similar ranking of metabolites,
LASSO and elastic net shared similar metabolite ranking, while SDA and random forest
produced significantly different ranking.

3.3. Correlation of Metabolites Selected by Different Statistical Methods

The correlation between the top 50 selected metabolites from each statistical method
was compared using Pearson correlation, as shown in Figure 3. The Bonferroni/FDR
correction and random forest methods showed the highest correlation among the top
selected metabolites, suggesting that the selected metabolites originate from a similar
chemical class with chemical interdependence or homogenous representation. Accordingly,
when we examined putative identities of the top ranked metabolites prioritized by these
methods, they represented predominantly the following metabolite pathways: sterol and
oxylipins metabolism. The results from Bonferroni and FDR correction methods showed
that 82% of the top 50 metabolites were highly correlated, with correlation coefficients (R)
ranging from 0.4 to 1. Similarly, the random forest method showed that more than 50%
of the top 50 selected metabolites were highly correlated, with R values ranging from 0.3
to 0.9.
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Figure 2. Top 50 ranked metabolites using different statistical methods. After applying six pre-
specified statistical methods to our PAH dataset, we ranked metabolites based on lowest to highest
p-values for multiple testing correction (Panel (A)), absolute magnitude of coefficients for LASSO and
elastic net regression (Panel (B,C)), model accuracy for random forest (Panel (D)), correlation-adjusted
t scores for SDA (Panel (E)), and, fractional model contribution for XGBoost (Panel (F)). In general,
statistical approaches of similar design produced similar ranking of metabolites.
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Figure 3. Correlation plots of the top 50 metabolites selected using different statistical methods. For
each statistical method applied, we identified the 50 top-ranked metabolites selected by each method
and plotted correlation matrices to examine the extent of their intercorrelations. For conventional
Bonferroni/FDR methods, the top-ranked 50 metabolites demonstrated a relatively high number of
intercorrelations; for other methods, the number of intercorrelations was relatively low.

In contrast to results from the more conventional linear regression and random forest
methods, the SDA, LASSO, XGBoost, and elastic net methods produced the lowest metabo-
lite correlations among the top selected metabolites. The results from SDA showed that 96%
of the top 50 metabolites were non-correlated, indicating different chemical pathways and
broad chemical representation. This suggests that these methods may be better suited for
identifying diverse metabolites that originate from different chemical classes or metabolic
pathways. Indeed, when we examined putative identities of the top ranked metabolites pri-
oritized by these methods, they represented the following metabolite pathways: eicosanoid,
bile acid, fatty acid, and fatty acyl ester metabolisms. Overall, these results suggest that
Bonferroni, FDR, and random forest methods produce convergent metabolite profiles,
while SDA, LASSO, XGBoost and elastic net produce more divergent metabolites.

3.4. Metabolite Rankings across All Statistical Methods

We applied primarily the integrated ranking method to examine how all statistical
methods compared in identifying metabolites that could be considered as meeting a global
ranking threshold; although each ranking method produced different sets of top metabo-
lites, reflected by results of the difference and integrated ranking methods, the different
applied methods agreed on the most highly prioritized analytes (Figure 4).
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Figure 4. Top 50 ranked metabolites based on summarization rank metrics. To compare the priority
ranks generated by all six statistical methods studied, we employed the following metrics: integrated
rank was calculated as the summation of rankings from each method, difference rank was calculated
as the difference between the maximum and minimum rank for each metabolite and variance rank was
calculated as the variance of ranks across different methods. We focused on the top 500 metabolites
using the integrated rank. The figure illustrates the top 50 ranked metabolites based on the integrated
rank (Panel (A)), difference rank (Panel (B)), and variance rank (Panel (C)).

4. Discussion

Metabolomics and complementary omics investigations typically involve analyzing
high-dimensional data structures that include a large and continually expanding number
of variable measures. Identifying the variable measures from these datasets that carry
potentially the greatest clinical relevance, in relation to meaningful outcomes, is analytically
challenging and requires rigorous statistical methods. For metabolomics, in particular,
technical advances in mass spectrometry methods continue to offer increasing sensitivity
for detecting small molecule analytes such that the total number of analytes that can be
profiled from a single experimental run is exponentially larger than what was possible just
over a decade ago. The ability to detect and measure a growing number of total analytes has,
in turn, augmented the challenge of statistically analyzing datasets containing a growing
number of measures that are likely to demonstrate at least some degree of intercorrelation
as well as interactions in relation to a potential outcome of interest.

In the present study, we sought to clarify the statistical analytical issues relevant to
contemporary human metabolomics studies. In particular, we compared different conven-
tional statistical and machine learning (i.e., statistical learning) approaches to identifying
metabolites associated with the PAH disease type in a large cohort of patients for whom
comprehensive high-dimensional metabolomics profiling was conducted. Specifically,
we compared six different statistical approaches that can be used for variable selection:
Bonferroni/FDR correction, LASSO, elastic net, random forest, SDA, and XGBoost. We
showed that similarly constructed statistical approaches produced similar rankings of
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metabolites. Bonferroni/FDR correction and random forest demonstrated the highest
correlated results for top-ranked metabolites, while SDA and random forest produced least
correlation among the top-ranked metabolites. These differences in results corresponded to
putative metabolite pathways with biologically plausible complementary and potentially
orthogonal relations to PAH pathophysiology.

Metabolomics studies have emerged as an important approach to investigating metabolic
dysregulations in complex clinical disease conditions such as PAH. Several metabolomics
studies conducted in patients with PAH, in particular, have identified numerous metabo-
lites associated with the disease, including analytes that reflect alterations in amino acid
metabolism and lipid peroxidation [4,8–10,16]. Most studies in PAH metabolomics have em-
ployed conventional statistical approaches such as univariate and multivariate analyses and
utilized two common methods for multiple test correction: Bonferroni and FDR. Although
these statistically conservative approaches can be useful for targeted metabolomics studies
with a small number of metabolites, they may offer limited sensitivity for detecting associa-
tions among high-dimensional data, which are characteristic of untargeted metabolomics
studies. This issue is particularly relevant to relatively rare disease phenotypes, such as
PAH, for which the number of measured metabolites is likely to exceed the number of
observations in a given study cohort by several-fold. To this end, approaches such as
LASSO, elastic net, and other statistical learning (i.e., machine learning) algorithms offer
efficient as well as informative alternatives to conventional data analysis approaches.

Beyond the efficiency of statistical learning approaches is the ability to account for
intrinsic intercorrelation of metabolites in a biological system, which stands as a persis-
tent analytical challenge for metabolomics studies. Metabolite intercorrelations may arise
from a number of sources including similarities in chemical structure, function, or enzy-
matic derivation. Statistically, metabolite intercorrelations can result in the prioritization
of metabolites from a singular biological pathway at the cost of underrecognizing other
metabolites. Although this can be useful for identifying biomarker panels for disease,
as well as exploring putative primary underlying mechanisms and networks, pathway
singularity may preclude discovery of potentially orthogonal disease markers or thera-
peutic targets. Intercorrelations also pose challenges for statistical interpretation, as they
may result in multicollinearity, overfitting, and inflated false positive rates. Accordingly,
our study showed that statistical learning methods such as SDA and random forest, as
an alternative to conventional statistical approaches, can produce substantially different
rankings of relatively diverse metabolites. Whereas conventional methods tended to priori-
tize sterol and oxylipin metabolites in relation PAH traits, the statistical learning methods
tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Each of
these pathways represents highly biological plausible mechanistic contributors to the PAH
disease type and pathogenesis. While the current study is focused on delineating statistical
approaches that can be used to identify such convergent and divergent results, additional
work is needed to further investigate the mechanisms underlying these observations. For
PAH studies, in particular, next steps can include validating the findings in separate cohorts
enriched with similar clinical outcomes and then examining the extent to which convergent
metabolites (i.e., sterol and oxylipin analytes) may demonstrate concordant pathway activ-
ity in basic and translational models. Importantly, if also validated in separate clinical as
well as mechanistic studies, the apparently divergent metabolites (i.e., eicosanoid, bile acid,
fatty acid, and fatty acyl ester analytes) may be found to represent pathways that could be
therapeutically targeted to achieve outcomes specific to a particular PAH subtype, patient
subgroup, or severity level of clinical disease.

The novelty of this work stems from leveraging a large human metabolomics dataset
and comparing different statistical and machine learning approaches to identify metabolite
associations with the same clinical outcome. This comprehensive analysis offers insights
regarding the performance and consistency of various statistical methods for variable
selection in metabolomics studies. Additionally, this study underscores the challenge of
metabolite intercorrelations as a persistent analytical issue for metabolomics studies. We
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demonstrate how conventional statistical methods may tend to prioritize metabolites from
singular biological pathways, potentially overlooking orthogonal disease pathway markers.
By contrast, statistical learning methods such as SDA and random forest tend to prioritize
more divergent and diverse metabolites. Therefore, the selection of an approach for
analyzing human metabolomics data should be carefully considered based on the clinical
question at hand, and it may be worthwhile to consider employing multiple approaches
when conducting non-targeted discovery metabolomics studies.

Although our study does not directly translate into immediate clinical implications,
it emphasizes the importance of employing a combination of different statistical meth-
ods. This approach can uncover novel and interconnected pathways that contribute to
disease pathogenesis. By embracing a multi-method strategy, researchers can enhance
their understanding of complex diseases and potentially identify new therapeutic targets
and diagnostic markers. Therefore, our findings underscore the value of utilizing diverse
statistical approaches in advancing medical research and uncovering new insights into
disease mechanisms.

Several limitations of our study merit consideration. We applied a limited number of
statistical methods to a single PAH dataset, albeit including data from samples collected
across multiple sites. Additional work is needed to evaluate a potentially broader set
of statistical approaches and future investigations may also involve validating results in
separate cohorts. We predicated all modeling on analyses of a single outcome variable,
rather than a range of clinical variables, for the sake of efficiency and given the key clinical
importance and representative nature of this outcome. We anticipate that future work
exploring additional clinical outcomes in relation to PAH or other disease traits is likely to
yield similar findings with some variation depending on the clinical question and size and
structure of the dataset.

5. Conclusions

Utilizing a comprehensive PAH metabolomics dataset, we compared six different
statistical and statistical learning techniques to identify metabolites associated with PAH
type. Our results revealed that conventional methods, such as Bonferroni/FDR correction,
often prioritized highly inter-correlated metabolites. In contrast, statistical learning tech-
niques showed agreement with conventional methods in ranking top metabolites while also
encompassing a broader range of metabolite groups. In conclusion, our findings demon-
strate that the process of identifying clinically relevant variables from high-dimensional
metabolomics data requires careful consideration of the statistical methods available for
analyses. The statistical approaches applied in our study were all effective for achieving
variable selection and, when applied in parallel as opposed to in isolation, produced a set
of both convergent and divergent novel markers. Thus, in addition to a careful selection of
the primary statistical method being applied to fit a specific clinical question or analytical
goal, future investigations may also consider a multi-method approach to broaden the
potential information gained from a given study design.
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