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Abstract

In the gastrointestinal (GI) system, like in other organ systems, the histological structure is 

a key determinant of physiological function. Tissues form multiple layers in the GI tract to 

perform their specialized functions in secretion, absorption, and motility. Even at the single 

layer, the heterogeneous cell population performs a diverse range of digestive or regulatory 

functions. Although many details of such functions at the histological and cell biological levels 

were revealed by traditional methods such as cell sorting, isolation, and culture, as well as 

histological methods such as immunostaining and RNA in situ hybridization, recent advances in 

spatial single cell technologies could further contribute to our understanding of the molecular 

makeup of GI histological structures by providing a genome-wide overview of how different genes 

are expressed across individual cells and tissue layers. The current minireview summarizes recent 

advances in the spatial transcriptomics field and discusses how such technologies can promote our 

understanding of GI physiology.

I. Introduction

Histology is the study of the microscopic anatomy of biological tissues, determined through 

various microscopic imaging methods (1). The structure of each tissue is directly related to 

its physiological function. The structure is often altered during disease contexts, leading to 

the formation of characteristic histopathological structures, which could be detected through 

microscopic analysis and used for the diagnosis of specific diseases.

The histological structure of the gastrointestinal (GI) wall has been well defined and 

described (1). The GI wall, from the mid-esophagus to the anus, exhibits the conserved 

structure composed of major layers, including the mucosa, submucosa, and external muscle 

layers. The mucosa is subdivided into the epithelium, lamina propria, and muscularis 

mucosa. The epithelium is composed of highly heterogeneous cell populations, which 
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perform specialized functions in digestion, such as secretion and absorption. For instance, 

in the small intestine, absorptive function is mainly mediated by enterocytes, while goblet 

cells secrete mucus and enteroendocrine cells secrete diverse hormones. These cell types 

were produced by the division and differentiation of stem cells, which are located at a 

special histological niche, such as the intestinal crypt. The diversity of cell types has been 

previously explored through microscopic cell morphology or expression of tissue-specific 

marker genes and proteins. For the latter, examination of spatial gene expression in the 

tissue is critical for identifying specific cell types. Recent advances in single cell RNA-

seq (scRNA-seq) dramatically improved our understanding of different cell types and 

their specific molecular markers in the GI organs. To put this cell diversity information 

into a context of spatial biology, histological techniques to detect gene expression, such 

as immunohistochemistry (detecting protein expression) or RNA in situ hybridization 

(detecting mRNA expression), have therefore been essential for the study of single cell 

type location and function in the GI organs (2).

Although these techniques are powerful for confidently detecting gene expression and can 

provide microscopic spatial information that can reveal single cell and subcellular structures, 

they are limited by their inherent low-throughput characterization since only 1-4 molecular 

species can be profiled in a single histology session. These limitations could be overcome 

by transcriptomic profiling using RNA-seq (3). Bulk RNA-seq, however, does not have a 

single cell or histological resolution; therefore, even though we can have information about 

the RNA expression level, we do not know how RNA expression is distributed throughout 

different cells and tissue areas.

scRNA-seq addresses this challenge by dissociating tissue into a single cell suspension, 

and by profiling each single cell transcriptome separately (4). This can reveal the full 

heterogeneity of the single cell transcriptomes comprehensively for liquid biosies; however, 

for solid tissues, it still erases all the spatial information of where the cells are originally 

located in the tissue. Recent developments of various spatial techniques (Figure 1; Table 1) 

can address this issue by providing spatial resolution to the transcriptomic studies (5). This 

review will provide a brief overview of currently available spatial transcriptomics solutions 

and discuss how such technologies can promote our understanding of GI physiology and 

pathology by examining several recent studies utilizing the technology.

II. Various Spatial Transcriptomics Technologies and Their Applications to 

GI Organs.

II-1) scRNA-seq Techniques & In-Silico Reconstruction of Spatial Information

Most currently available non-spatial scRNA-seq methods involve three experimental steps: 

tissue dissociation and preparation of a single cell suspension, molecular barcoding for 

the single cell transcriptome, and preparation of the library containing both barcoded 

single cell information and gene information. The scRNA-seq methods can be classified 

according to how the single cell transcriptome is barcoded for single cell multiplexing and 

de-multiplexing. Early scRNA-seq technologies prepared separate libraries for individual 

cells (6); therefore, single cell molecular barcoding was not necessary or had to be done 
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manually. However, this method has a clear limitation in scalability as it can only profile 

a small number of cells. Utilization of nanoliter droplets as a method for encapsulating 

single cells with a barcoded oligonucleotide source that can be attached to cDNA enabled 

massively parallel profiling of the single cell transcriptomes (4), and it is widely adopted 

in commercial platforms (e.g. Chromium from 10X Genomics (7)), as well as in-house 

platforms (e.g. Drop-seq (8), inDrop (9)). Single cell barcode sorting using nanowells is 

another method enabling massively parallel scRNA-seq analysis, and it is also implemented 

in customized in-house platforms (e.g. CytoSeq (10) and Seq-Well (11)) or commercial 

platforms (e.g. BD Rhapsody (12)). Finally, combinatorial barcoding directly performed 

on fixed cells can also enable tracing of transcriptomic information into single cells (e.g. 

Split-Seq (13) and sciRNA-seq (14)). In some configurations, two or more of these methods 

could be combined to further increase the throughput of scRNA-seq (e.g. scifi-RNA-seq 

(15)). Massive improvements in throughput and the quality of scRNA-seq profoundly 

revolutionized the field and enabled us to approach the transcriptomic heterogeneity in 

single cells found in the tissue.

However, there are some inherent limitations in the scRNA-seq approach due to the tissue 

dissociation step that enables single cell isolation. During tissue dissociation, some sensitive 

cell types may be lost, damaged, or altered in their transcriptomic contents. There are 

cell types, such as mature adipocytes and elongated myofibers, which are particularly 

challenging for single cell isolation. Also, for most solid tissues, many cells die or lyse 

during dissociation and sorting; these caveats introduce inherent bias in the estimation of 

cell type composition from the tissue. To overcome these limitations, single nucleus RNA-

seq (snRNA-seq) was devised and performed, as the size of the nuclei is more homogeneous 

than the size of single cells, and the nuclei can be conveniently isolated from difficult 

tissues and cell types (16). In addition, snRNA-seq could be performed with preserved 

frozen tissues, while frozen solid tissues are not typically compatible with scRNA-seq (17). 

Still, the transcriptome information recovered from snRNA-seq is more sparse than the one 

from scRNA-seq as it only captures transcripts in the nuclei. A more serious problem of 

scRNA-seq and snRNA-seq with solid tissues is that the cell dissociation or nuclei isolation 

procedure inherently erases all the spatial information, which is important for interpreting 

the results in the histological context.

However, for tissue types that have a defined histological zonation of transcriptome 

phenotypes, this problem can be alleviated by performing computational spatial 

reconstruction using spatial RNA expression patterns obtained through independent 

methodologies (18, 19). Since GI organs have well-characterized zonation structures, 

scRNA-seq has been combined with other techniques so that each single cell transcriptome 

can be sorted through histological zonation patterns.

For instance, in the liver, it has been very well characterized that hepatocytes show clear 

zonation patterns across the hepatic lobule, spanning from the portal triad (artery, portal 

vein, and bile duct) to the central vein (20). Hepatocytes located close to the portal triad are 

exposed to an environment rich with nutrients and oxygen, while hepatocytes located close 

to the central vein are exposed to hypoxic and nutrient-sparse conditions. Using landmark 

genes that show characteristic gene expression patterns across the portal-central axis, 
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hepatocellular scRNA-seq data were sorted to reveal spatial transcriptome patterns (21). 

The results suggested that over 50% of all genes expressed in the liver show spatial zone-

specific expression patterns. Many genes were expected to show spatially non-monotonous 

expression patterns, which may indicate a layer-specific metabolic function in the liver (21). 

A similar strategy was used to compare the single cell transcriptomes of normal and fatty 

liver hepatocytes and revealed zone-specific hepatocellular responses to nutritional overload 

(22). Zonation-based spatial reconstruction can also be used to infer the global pattern of 

spatial gene expression changes in response to circadian inputs (23).

The liver zonation pattern was also examined in non-hepatocytes such as hepatic stellate 

cells (HSCs), which play an important role in liver physiology and fibrosis (24). Similar 

to the hepatocellular patterns, scRNA-seq of HSCs revealed portal vein- and central vein-

associated HSCs, and the latter was found to become active myofibroblasts, which produce 

collagen during liver fibrosis (24). Liver sinusoidal endothelial cells (LSECs) were also 

similarly profiled to show zonation patterns across the portal-to-central axis based on several 

landmark gene expression patterns (25, 26). LSEC zonation patterns were also assessed 

through paired sequencing with the hepatocytes attached to the LSEC (27). Identification 

of cell surface markers showing zonation patterns also allowed for the spatial sorting 

of liver cells, which enabled the comprehensive molecular profiling of cells residing in 

different zones (28, 29). scRNA-seq analysis of the human liver identified specific HSCs, 

macrophages, and LSEC clusters found in the cirrhotic liver, and their cluster type markers 

were highly expressed in the fibrotic lesion (30), indicating that, in addition to zonation 

structure, spatial information is critical for understanding the pathological structure of liver 

inflammation and fibrosis.

Nevertheless, many of the spatial features may be difficult to reconstruct precisely in 
silico, without relying on global axes such as zonation or circadian time. Moreover, 

the inference of global axes such as zonation could be locally confounded by the 

pathological alterations of transcriptomes. Computational reconstruction is also prone 

to overfitting and may misrepresent the actual biological information. Therefore, the 

information from scRNA-seq becomes more useful if integrated with spatial transcriptomic 

technologies. For example, methods such as robust cell type decomposition (RCTD (31)) 

and conditional autoregressive-based deconvolution (CARD (32)) leverages cell types 

identified from scRNA-seq data as reference to deconvolute cell types from spatially-

resolved transcriptomics data, obtained through several methods that will be described 

below.

II-2) In situ Imaging-based Techniques

Molecular detection techniques, such as immunohistochemistry or RNA in situ, when 

combined with microscopical techniques such as fluorescence and confocal microscopy, can 

provide high-resolution images that capture where different biomolecules are found across 

the histological space (2).

Even though a single session of each imaging technique can only monitor 1-4 molecular 

species due to the limitations of available spectra for fluorophores, the tissue section can be 

erased and stained with a completely new set of probes, so that the imaging can be repeated, 
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and the data can be multiplexed for an unlimited time in principle. Developments in tissue 

embedding and clearing methods enabled such multiple staining/erasing cycles from a single 

tissue section. Furthermore, the combinatorial barcoding (Seq-FISH (33)) or error-correcting 

binary code (Mer-FISH (34)) could be used to reduce the necessary staining/erasing cycles 

required to monitor many different genes, with elevated confidence and a decreased error 

rate. One of the potential limitations of these methods is that in a cytosolic structure with 

high concentrations of RNAs in a limited space, spatial decoding of FISH image data 

could be challenging due to the proximity of different transcripts. These problems can be 

partially addressed with the usage of expansion microscopy (35). Still, to profile the whole 

transcriptome, many rounds of staining/erasing cycles need to be performed, and many 

images should be obtained and analyzed. Confident decoding of such a huge image dataset 

can be computationally challenging and requires a large amount of computational resources. 

Some efforts have been made towards streamlining these procedures through automation, 

and several companies, such as Vizgen (Mer-FISH), Spatial Genomics (Seq-FISH), and 

Nanostring (CosMx Spatial Molecular Imager (36)), are working on providing commercial 

solutions for these methods.

Another technology that is based on in situ imaging is in situ sequencing. In this 

technique, sequencing reactions such as sequencing by ligation (e.g. ISS (37), FISSEQ 

(38) and STARmap (39)), sequencing by synthesis (e.g. BaristaSeq (40)), and sequencing by 

hybridization (HybISS (41)) are directly performed in the tissue, and fluorescence signals 

are used to decode the sequence. To enable sequencing, the specific sequence signatures are 

amplified in situ through rolling circle amplification, which will generate DNA nanoballs 

that can be used for sequencing by ligation or sequencing by synthesis. Like the in situ 
hybridization techniques, in situ sequencing techniques are also limited by the cellular space 

where nearby signals cannot be easily distinguished and separately decoded. Again, tissue 

expansion microscopy techniques can be used to produce a better resolution and more 

confident sequencing process (e.g. Ex-Seq (42)).

The limitation of in situ imaging techniques, including both in situ hybridization and 

sequencing techniques, is that they require extensive high-resolution imaging and analysis, 

which can be technically demanding and necessitates a large-scale investment of time and 

resources, like the prolonged use of expensive equipment. Computational imaging analysis 

could be also challenging, as it would need to cover a wide tissue area. In most cases, they 

are focused on a limited number of genes, making unbiased transcriptome analysis difficult. 

Nevertheless, by providing an extremely fine microscopic spatial resolution, these methods 

could confidently identify small spatial features, such as single cell types and shapes, as well 

as subcellular structures.

Single molecule-detecting FISH (smFISH) has been used to either identify landmark 

transcription that can guide spatial reconstruction of scRNA-seq data or confirm spatial 

features inferred by scRNA-seq data analysis (21). smFISH was also used to identify 

transcriptional burst effects in single cells (43). Multiplexed in situ hybridization was also 

performed for analyzing the spatial transcriptome of the developing mouse liver (through 

Mer-FISH (44)) and gut (through Seq-FISH (45)) and revealed embryo-specific structures in 
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these organs (44, 45). Seq-FISH is also currently used to spatially profile the human tissue 

transcriptome, including the liver and intestine, as a part of the HuBMAP consortium (46).

II-3) Histological segmentation methods

Various methodologies were also developed to capture region(s) of interest (ROI) from the 

histology area, and comprehensively characterize its gene expression content. Laser capture 

microdissection (LCM), which uses a laser beam to isolate ROI directly from the tissue 

(47), has been applied for diverse analysis for more than a decade. LCM could be combined 

with scRNA-seq to perform single cell analysis with spatial information (LCM-Seq (48) and 

GEO-Seq (49)).

More recently, a solution for regional spatial profiling, NanoString GeoMx Digital Spatial 

Profiler (DSP), has been commercially released (50). The solution first targets various 

probes with specific barcode sequences to their corresponding biomolecules. Then, those 

probes are released into the solution through light-mediated cleavage. By limiting light 

activation in specific regions of the tissue, GeoMx DSP can analyze multiple ROIs with 

transcriptome- or proteome-level coverage (50).

LCM-based experiments were utilized for investigating liver zonation (51, 52) and zonation 

of intestinal epithelial cells (53). These studies provided essential information regarding 

tissue zonation that were extremely helpful for guiding scRNA-seq analyses by identifying 

zonation landmark genes as described in the earlier section (21). Combined with a modified 

scRNA-seq strategy, such as paired cell sequencing (27) and cell clump sequencing (54), 

these landmark genes were used to characterize the spatial heterogeneity of single cells 

across diverse cell types. More recent NanoString DSP technologies were also used 

for characterizing the gene expression patterns in developing intestinal tissues in mouse 

embryos (55).

Unlike in situ imaging techniques, which are basically a targeted approach for detecting 

defined molecular features, these histological segmentation methods enable unbiased 

molecular quantitation covering the whole transcriptome. Nevertheless, these methods are 

primarily based on ROI selection, so even though they are less molecularly biased, they 

could be histologically biased by ROI selection; unexpected molecular features in certain 

biologically relevant (but unexpected) spatial patterns may not be detected. These limitations 

could be addressed by the spatial barcoding technologies described in the next section.

II-4) Spatial Barcoding technologies.

Spatial barcoding technologies are based on an array of oligonucleotides that have a barcode 

sequence that encodes the coordinate of a given position. The first method utilizing spatial 

barcoding was Spatial Transcriptomics (ST), published in 2016 (56). ST initially utilized an 

oligonucleotide microarray, whose spot-to-spot distance is 200 μm (56). In this method, the 

tissue is overlaid onto the array and imaged, and tissue RNA is released so that it can be 

captured by oligo-dT-tagged spatial barcode-containing oligonucleotides in the microarray 

(57). Then, the reverse transcription is conducted, and the library, whose components are 

chimeric molecules containing both spatial barcode and cDNA sequences, is constructed 

and sequenced. From the sequence results, spatial images can be reconstructed based on 
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the known coordinates of each barcode sequence, and each spot can be analyzed through 

standard statistical techniques to identify different cell types and gene expression features.

This is a revolutionary method because it can profile the spatial gene expression for the 

whole transcriptome in an unbiased and scalable manner. The procedure is intuitive because 

it is simply an RNA-seq with spatial information. However, the low resolution of the original 

ST has been a major hurdle for its widespread adoption; even after extensive optimization 

and commercial product development by 10X Genomics, the most recent version of ST 

(branded as Visium) provides 100 μm center-to-center resolution (58). Considering that 

the naked human eye has a resolution of around 40 μm, many tissue features, including 

histological layers and heterogeneous single cells, could be obscured with this analysis. So, 

many different techniques have been developed to improve the resolution of ST.

For instance, Slide-Seq and HDST utilize barcoded microbeads with a diameter of around 

10 μm (Slide-Seq (59)) or 2 μm (HDST (60)), to encode the spatial barcode sequence. 

Accordingly, the center-to-center spatial resolution is 15-20 μm (Slide-Seq) or ~4 μm 

(HDST), exhibiting around an order of magnitude improvement over the first-generation 

ST. In these methods, barcode sequences in the bead are generated through the split-pool 

synthesis method; therefore, the barcode in each bead will be randomly synthesized. Such 

barcode sequences can be decoded through sequencing by ligation (Slide-Seq) or sequential 

FISH (HDST) methods; therefore, the spatial coordinates for each barcode sequence can be 

determined. Although these methods can produce a high resolution, they are limited with 

low capture sensitivity; read depth per region is very low (e.g. <1 UMI/μm2 in HDST), 

so high-resolution cell type mapping analysis is limited. However, recent improvements in 

library preparation chemistry may improve the RNA capture efficiency so that they can be 

more widely adopted (Slide-SeqV2 (61)).

Another method, named Deterministic Barcoding in Tissue for spatial omics sequencing 

(DBiT-seq), uses a microfluidic device for spatial barcoding (62). Unlike other methods that 

capture RNA by solid-supported oligonucleotides, this method diffuses the spatial barcode 

into the tissue. Accordingly, it has shown a substantially higher RNA capture efficiency over 

previously available methods (~12 UMI/μm2), albeit providing a small feature size whose 

center-to-center resolution can go down to 20 μm. Barcode diffusion also makes it easy to 

capture molecular signatures other than transcriptome (62–65), as further discussed below in 

future perspectives.

More recently, the resolution of spatial barcoding technology has been brought down to 

submicrometer ranges through the repurposing of next-generation sequencing technologies. 

Beijing Genome Institute (BGI) announced that it developed a technology named Stereo-

Seq, which repurposes their DNA nanoball sequencing platform into spatial molecular 

barcoding, providing nominal resolution down to the 0.5-0.7 μm range (66). However, as 

observed with the bead-based technologies described above, Stereo-Seq initially suffered 

from a low RNA capture efficiency, forcing the investigators to aggregate transcriptome 

information into 36 μm-sided squares, lowering the effective resolution. The reported 

transcriptome capture efficiency was initially ~1.7 UMI/μm2, which was lower than that 

of ST/Visium (~3.6 UMI/μm2). This rate was improved in recent studies (67), but most 
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analyses were still done with 36 μm-sided squares, which are larger in size than most single 

cells.

At a similar time to the announcement of Stereo-Seq, another spatial barcoding technology 

based on the Illumina sequencing platform, named Seq-Scope (68, 69), was independently 

reported. Like Stereo-Seq, Seq-Scope has an ultra-high center-to-center resolution of spatial 

barcodes, 0.5-0.8 μm range (~0.6 μm on average). An encouraging finding from Seq-Scope 

is that it also exhibits high transcriptome capture efficiency, up to ~23.4 UMI/μm2, which is 

among the highest of all available reported values from spatial barcoding technologies at the 

time (69). Based on the ultra-high resolution and efficient transcriptome capture output, 

Seq-Scope can visualize unprecedented details of spatial molecular features, including 

histological, cellular, and subcellular features. Importantly, Seq-Scope relieves investigators 

from the computational burden of image processing as the Illumina sequencing platform 

automatically translates the raw images into spatially coordinated barcode sequences. 

Shortly after the report of Stereo-Seq and Seq-Scope, another spatial barcoding method 

based on a custom-built sequencing-by-synthesis platform, named PIXEL-seq, was reported 

(70). PIXEL-seq also has a micrometer center-to-center resolution (~1 μm) and an efficient 

transcriptome capture efficiency (~10 UMI/μm2). In summary, the developments of these 

ultra-high-resolution technologies suggest that spatial barcoding technologies now have the 

potential to examine the spatial transcriptome with a high resolution and in an unbiased way.

Another important recent development is that these spatial barcoding technologies can 

be combined with scRNA-seq, enabling spatial single cell analysis. For example, XYZeq 

segments the histological section into microwells that have a 500 μm center-to-center 

resolution and performs the spatial barcoding reaction in the microwell before each segment 

is combined and subjected to scRNA-seq (71). In contrast, sci-Space uses a grid of spatially 

barcoded oligonucleotides on a slide, which are transferred to the nuclei of overlaid tissue so 

that it can be used to track their originated spatial location in a subsequent snRNA-seq (72). 

The center-to-center resolution of sci-Space is reported to be ~220 μm. Even though the 

spatial resolution of these spatial single cell or single nucleus methods is relatively low, it is 

possible for these techniques to be applied with higher-resolution spatial barcoding methods 

to produce spatially resolved transcriptomic data in both single-cell and sub-micrometer 

resolution. In addition, the development of ultra-high-resolution spatial barcoding methods 

may also enable simple histology-based single cell segmentation, which may enable spatial 

single cell analysis even without tissue dissociation. Indeed, Seq-Scope was able to perform 

such spatial single cell analysis through histology- or transcriptome-based cell segmentation 

methods (69).

Compared to other technologies, spatial barcoding technologies are scalable; therefore, 

it could be easily applicable to various problems in the GI biology. For instance, the 

first-generation spatial barcoding methods, specifically ST and 10X Visium, have become 

commercially successful and very popular in the field, and various groups have used these 

methods for investigating the GI histological transcriptome. For instance, the original ST 

was used for investigating the spatial transcriptomes of adult mouse liver (73), human 

embryonic liver (74) and intestines (75, 76), inflamed intestinal tissues in Crohn’s disease 

(76), and injured mouse colon (77). Thorough studies were also performed on various 
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neoplastic tissues in GI system, such as gastric (78), pancreatic (79, 80) and colon cancers 

(81). However, as discussed above, the limitation in resolution seriously impeded getting 

pathophysiologically important spatial information from these datasets because a single 

spatial data point of ST/Visium can contain a large number of cells. Therefore, instead 

of serving as a stand-alone spatial solution, ST/Visium was used to provide rough spatial 

information to already existing scRNA-seq datasets, which provided single cell-resolution 

information.

High-resolution spatial barcoding methods were also experimentally applied to understand 

the GI spatial transcriptome. In its initial proof-of-concept study, Slide-Seq was applied 

to mouse liver tissue and identified periportal and pericentral hepatocellular populations 

from the histological space (59). Seq-Scope was applied to both normal and injured mouse 

liver and revealed continuous zonation of normal hepatocytes and increased infiltration of 

non-parenchymal cells during active liver injury (69). In the injured liver, Seq-Scope was 

able to detect different macrophage and HSC subpopulations mediating homeostatic and 

inflammatory roles, exhibiting distinct spatial localization patterns (69). Seq-Scope was also 

applied to colon tissue and revealed the major histological layers of the colonic wall, as 

well as the different cell types present in epithelial and non-epithelial cells in each layer 

(69). Importantly, this cell type mapping information is congruent with underlying findings 

from traditional histology; nonetheless, the Seq-Scope data was much more informative than 

traditional histology in identifying specific cell types and revealed the histological structure 

of transcriptomic features.

III. Conclusion and Future Perspectives

Many GI tissues are characterized by small, repeating structural units mediating the 

parenchymal functions of the organ, which are composed of diverse cell types performing 

specialized functions. Such fine structures are subjected to diverse pathological alterations 

during the disease process. For instance, tissue inflammation and dysfunction often 

involve damage in the parenchymal tissue, malfunction in tissue homeostasis, and massive 

infiltration of non-parenchymal inflammatory cells. To understand the physiological and 

pathological processes of the GI tissues, high-resolution spatial profiling is essential.

For this, we have reviewed the major spatial transcriptome methodologies and discussed 

how these methods were applied for studying the GI system (Figure 1). Various scRNA-

seq technologies can give information on the true single cell resolution and reveal 

the cellular heterogeneity of an organ (Figure 1A); however, the spatial information 

should be guessed through existing landmark information determined through histological 

segmentation analysis or in situ imaging methods. Histological segmentation is a powerful 

tool to perform differential expression between different areas of the tissue (Figure 1B); 

however, selection of ROI can limit the spatial output and discoverable novel spatial 

features. In situ imaging techniques can provide microscopic spatial resolution and reveal 

structural details of diverse gene expression (Figure 1C); however, demanding requirements 

of imaging and data processing capabilities, as well as technical issues, could limit the 

information output, such as number of genes, for detection. Finally, spatial barcoding 

techniques could comprehensively profile the spatial transcriptome (Figure 1D); however, 
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the original versions have limited spatial resolution, and the newer high-resolution single 

cell-level technologies are yet to be made available to broader society. In addition, the 

capture rate of rarely expressed genes is not great in spatial barcoding technologies 

when compared to imaging-based technologies. These limitations might be addressed 

through further optimization and/or additional technical breakthroughs. Various startup and 

established companies work on streamlining in situ imaging techniques to make it more 

accessible to scientific community, while there are also efforts of making high-resolution 

ST commercially available. Further improvements in either in situ imaging or molecular 

barcoding technologies may enable near-saturated spatial transcriptome characterization in 

microscopic resolution, which might offer one-size-fits-all solutions for tissue molecular 

characterization. However, until that time arrives, these different methodologies are currently 

complementary to each other, and should be chosen carefully depending on the nature of the 

tissue and scientific questions to be addressed.

These technologies have the potential to reveal information beyond transcriptomic 

information, such as proteomic and epigenomic-level information. scRNA-seq has been 

already combined with proteomic and epigenomic solutions to perform single cell multi-

Omics (82–84). Histological segmentation methodologies were originally developed as a 

multi-omics platform (47, 50), and in situ imaging technique is specifically amenable for 

the multiplexed detection of proteins, which has been recently implemented through the 

Co-Detection by Indexing (CODEX) platform (85), iterative indirect immunofluorescence 

imaging (4i) platform (86, 87), or Nanostring CosMx platform (36). Spatial barcoding 

techniques were also recently expanded to perform spatial profiling of protein expression 

(62, 63, 88, 89), chromatin accessibility (64, 90), and epigenomic signatures (65). 

These advances enable spatial multi-omics analysis of GI tissues that can enable better 

understanding of the molecular basis underlying diverse pathophysiology.

The advances in technology should be also followed up by new discoveries enabled by the 

new techniques. Identification of specific biological questions and question types that can be 

better solved by these techniques would also be essential, as it will demonstrate the utility 

of these new techniques. Specifically, bioinformatic and statistical tools for comprehending 

the information from large-scale datasets would be critical, as the raw data produced from 

spatial transcriptomics experiments can hardly be analyzed without automated computation. 

Especially, the ultra-high resolution spatial transcriptomics technologies pose us new 

challenges in computational scalability in the software tools as the number of spatial 

barcodes per unit region dramatically increases (e.g. ~120/mm2 for Visium and >1M/mm2 

for Seq-Scope). At the same time, as there will be a limited number of mRNAs that can 

be captured per unit region, statistical methods that can robustly infer fine-scale spatial 

information from a limited number of reads per spatial barcode will become increasingly 

more important. The vast amount of new information revealed through these technologies 

may enable many new discoveries that cannot be done with former methodologies, such as 

the unbiased diagnosis of human pathologies and development of new therapeutic rationale 

specific for certain disease subtypes.
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Figure 1. 
Overview of Various Spatial Single Cell Transcriptomics Methodologies including (A) 

Single Cell RNA-seq (scRNA-seq) methods, (B) In situ Imaging methods including 

sequential in situ hybridization or in situ sequencing methods, (C) Histological 

Segmentation methods, and (D) Spatial Barcoding and in situ capture methods.
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Table 1.

Characteristics of major technologies available for spatial transcriptome analysis

Technology Pros Cons

scRNA-Seq
(e.g. 10X Chromium (7))

▪ Well-established commercial solutions 
available
▪ Cell dissociation and sorting minimizes 
cross-cell contamination
▪ High transcriptome capture rate per cell

▪ Destroys spatial information during 
dissociation
▪ May induce stress responses during 
dissociation
▪ May introduce bias by eliminating vulnerable 
cell population during dissociation

In situ Imaging
(e.g. Mer-FISH (32))

▪ Ultra-high microscopic resolution
▪ High detection rate for rare transcripts

▪ Technically and computationally demanding
▪ Microscopic optical challenges in decoding 
abundantly expressed genes
▪ More appropriate for targeted analysis over 
unbiased screen

Histological Segmentation
(e.g. GeoMx DSP (50))

▪ Well-established commercial solutions 
available
▪ Enables unbiased whole transcriptome 
analysis

▪ Limited and potentially biased spatial 
information due to ROI selection

Spatial 
Barcoding

Overall

▪ Enables unbiased whole transcriptome 
analysis
▪ Enables unbiased spatial analysis
▪ Straightforward methodology
▪ Relatively low cost for implementation 
(no special equipment necessary other than 
sequencing)

▪ Lower detection rate for rare transcripts 
▪ Possibilities of transcript diffusion during 
capture
▪ Difficulties in cell segmentation and isolating 
single cell transcriptome

Microprinted Array
(e.g. 10X Visium (58))

▪ Well-established commercial solutions 
available

▪ Limited spatial information due to low 
resolution (~100 μm)

Microbead Array
(e.g. Slide-Seq (59)) ▪ Relatively high resolution (4-20 μm)

▪ Difficulties in producing uniform array with 
spatial feature information
▪ Relatively low capture rate – continue to 
improve.
▪ Custom array generation and raw 
image analysis can be technically and 
computationally demanding.

Microfluidic Device
(e.g. DBiT Seq (62))

▪ Relatively high resolution (20-100 μm)
▪ High transcriptome capture rate due to 
barcode infusion into tissue

▪ Limited number of spatial barcodes (50 x 50 
coordinates)

Next-Generation 
Sequencing Array
(e.g. Seq-Scope (69))

▪ Ultra-high spatial resolution (0.5-1 μm)
▪ High transcriptome capture rate due to tight 
arrangement of spatial features.
▪ Does not require raw image processing 
as spatially coordinate barcodes are 
automatically produced from the Illumina 
platform (for the case of Seq-Scope).

▪ Deep sequencing is necessary to perform 
high-resolution analysis
▪ Solution not commercially available yet
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