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Externally validated deep 
learning model to identify 
prodromal Parkinson’s disease 
from electrocardiogram
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Rishikesan Kamaleswaran 4, Robert L. Davis 5, Kalea Colletta 6, Lokesh Chinthala 5, 
John L. Jefferies 7, Kathleen Bobay 8, G. Webster Ross 9, Helen Petrovitch 10, Kamal Masaki 11,12, 
Caroline M. Tanner 13 & Oguz Akbilgic 1*

Little is known about electrocardiogram (ECG) markers of Parkinson’s disease (PD) during the prodromal 
stage. The aim of the study was to build a generalizable ECG-based fully automatic artificial intelligence 
(AI) model to predict PD risk during the prodromal stage, up to 5 years before disease diagnosis. This 
case–control study included samples from Loyola University Chicago (LUC) and University of Tennessee-
Methodist Le Bonheur Healthcare (MLH). Cases and controls were matched according to specific 
characteristics (date, age, sex and race). Clinical data were available from May, 2014 onward at LUC 
and from January, 2015 onward at MLH, while the ECG data were available as early as 1990 in both 
institutes. PD was denoted by at least two primary diagnostic codes (ICD9 332.0; ICD10 G20) at least 
30 days apart. PD incidence date was defined as the earliest of first PD diagnostic code or PD-related 
medication prescription. ECGs obtained at least 6 months before PD incidence date were modeled to 
predict a subsequent diagnosis of PD within three time windows: 6 months–1 year, 6 months–3 years, 
and 6 months–5 years. We applied a novel deep neural network using standard 10-s 12-lead ECGs to 
predict PD risk at the prodromal phase. This model was compared to multiple feature engineering-based 
models. Subgroup analyses for sex, race and age were also performed. Our primary prediction model 
was a one-dimensional convolutional neural network (1D-CNN) that was built using 131 cases and 1058 
controls from MLH, and externally validated on 29 cases and 165 controls from LUC. The model was 
trained on 90% of the MLH data, internally validated on the remaining 10% and externally validated on 
LUC data. The best performing model resulted in an external validation AUC of 0.67 when predicting 
future PD at any time between 6 months and 5 years after the ECG. Accuracy increased when restricted 
to ECGs obtained within 6 months to 3 years before PD diagnosis (AUC 0.69) and was highest when 
predicting future PD within 6 months to 1 year (AUC 0.74). The 1D-CNN model based on raw ECG data 
outperformed multiple models built using more standard ECG feature engineering approaches. These 
results demonstrate that a predictive model developed in one cohort using only raw 10-s ECGs can 
effectively classify individuals with prodromal PD in an independent cohort, particularly closer to disease 
diagnosis. Standard ECGs may help identify individuals with prodromal PD for cost-effective population-
level early detection and inclusion in disease-modifying therapeutic trials.
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Parkinson’s disease (PD) is a systemic disease that is currently diagnosed when classic motor symptoms includ-
ing resting tremors and bradykinesia, become evident and generally manifest after 50% of substantia nigra 
dopaminergic neurons are already dead or dying and with extensive striatal dopaminergic deafferentation1–4. 
However, pathologic changes in the lower brainstem and peripheral autonomic nervous system likely begin 
years or even decades before significant nigral damage occurs5,6, and symptoms referable to these sites of early 
pathologic injury may manifest many years before motor PD is diagnosed3. Putative interventions to delay or 
slow the progression from prodromal disease to parkinsonism could be implemented during this pathologic 
evolution if PD patients could be identified early with confidence.

Lewy pathology is found throughout the autonomic nervous system in PD7. Pathology of the sympathetic 
and parasympathetic ganglia, cardiac nerves and cardiac deafferentation are consistently seen in early PD8–11 
and post-mortem examinations associate these pathologies with incidental nigral Lewy bodies (ILB)10. For this 
reason, cardiac sympathetic deafferentation as measured by 123I-Metaiodobenzylguanidine (123I-MIBG) scintig-
raphy is designated as a supportive criterion for the clinical diagnosis of PD in the MDS-PD diagnostic criteria12. 
However, MIBG scintigraphy is invasive and expensive, and is not a viable tool for population-level screening 
for PD risk.

Sympathetic and parasympathetic nerve inputs mediate adaptive responses to varying physiological condi-
tions and cardiovascular demands, all of which can manifest as heart rate variability (HRV). HRV can be assessed 
by measuring the duration between consecutive R waves on an ECG13. HRV is reduced in PD, likely reflecting 
underlying cardiac autonomic Lewy pathology and deafferentation14–22. In addition, HRV has recently been 
shown to correlate with striatal dopamine depletion in PD23. Paralleling MIBG observations, evidence suggests 
that HRV may be reduced in prodromal PD. HRV is reduced in rapid eye movement (REM) sleep behavior dis-
order (RBD)24,25, a condition that is thought to be a biomarker and strongest predictor for prodromal PD, due 
to its direct correlation to the progression to PD26,27.

A previous study using data from Atherosclerosis Risk in Communities Study Description (ARIC), a large 
prospective study, found that low HRV was associated with 2-3 fold increased subsequent risk of PD over a mean 
of 18 years follow up period28. In addition, there has been research into predicting PD or prodromal PD using 
numerous clinical risk factors in combination with biological components extracted from serum samples, such 
as cytokines and chemokines within a decision tree algorithm29. Research by Akbilgic et al. (2022) used cardiac 
electrical activity signal information from 60 subjects from the Honolulu Asia Aging Study (HAAS) within a 
logistic regression model following a Probabilistic Symbolic Pattern Recognition (PSPR) method to identify 
patients at high risk of PD but without a pre-specified time window30. While this research reported an average 
AUC of 0.835, the HAAS cohort was a small and very homogeneous data sample and not representative of the 
general population. While HRV metrics, typically measured using 5-min ECGs, have been used in multiple 
studies, there is some debate whether such classical metrics can indeed capture substantial information on the 
likelihood of development of PD30. In previous research, models were developed to predict future PD using 
machine learning algorithms that incorporate multiple features derived from the full waveform of standard 10-s 
ECGs30. Such research indeed provides substantial preliminary indication that ECG-based signals can be used 
as a predictor of PD, with the possibility of predicting PD onset at a timely manner before diagnosis.

This research builds on prior artificial intelligence (AI) approaches but uses raw waveform ECGs rather than 
features extracted from ECGs. There is substantial utility, generalizability and simplicity of raw 12-lead ECGs, 
which are easily and routinely collected, to predict prodromal (and risk of) PD within a specified time window. 
Importantly, this novel study uses two independent study populations with available electronic ECGs obtained 
prior to PD onset, with one dataset used for model building and the other used for external validation.

Results
Our initial EHR-based search identified 131 eligible PD cases and 1,058 controls from the MLH database, with a 
total of 428 and 3584 available ECGs, respectively. After validation of PD diagnosis by manual chart review, the 
LUC dataset included 29 PD cases and 165 matched controls with one ECG each. The baseline characteristics of 
these cohorts are summarized in Table 1.

The MLH data was split into 90% training and 10% internal validation. We developed 1D-CNN model (Fig. 1) 
using 90% MLH training data up to 100 epochs. The model from the epoch which resulted in the highest AUC 
in the 10% internal validation data was selected as the final model. This model resulted in an internal validation 
AUC of 0.73 with 95% CI of 0.51–0.96. To convert predicted risk values into predicted classes (PD or not), we 
identified the decision threshold as 0.139, which maximized the F1 score. Using this threshold, we obtained a 
sensitivity of 0.43 and a specificity of 0.96 in predicting prodromal PD up to 5 years before disease onset in the 
internal validation dataset. We note that this threshold can be adjusted according to one’s purposes, to increase 
sensitivity at a cost of reduced specificity. For purposes of developing a clinical trial for a putative disease-mod-
ifying drug, high specificity is the preferred metric, because it would substantially reduce the required sample 
size. Conversely, when one or more disease-modifying drugs become available, assuming the drug is safe, it could 
make sense to select a test positivity cute-point that emphasizes sensitivity over specificity, and thereby treat a 
larger proportion of at-risk individuals. The MLH data driven model was then externally validated on the LUC 
data and resulted in an AUC of 0.67 (0.54, 0.79), correctly classifying 12 of 29 PD cases 5 years prior to disease 
diagnosis, and 123 of 165 controls, with a specificity of 0.75 and sensitivity of 0.41. In LUC external validation 
data, the accuracy increased slightly when predicting future PD within 3 years of diagnosis, with AUC = 0.69 
(0.57–0.82) and average precision (AP) of 0.21, with the highest accuracy achieved, as expected, when predicting 
PD within one year of diagnosis with an AUC of 0.74 (0.62–0.87) and AP of 0.11 (Table 2, Fig. 2).

In addition to the 1D-CNN, models using multiple feature-engineering methods, including descriptive sta-
tistics extracted from 12 leads of the ECGs, sample entropy, PSPR etc., were also developed to predict prodromal 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12290  | https://doi.org/10.1038/s41598-023-38782-7

www.nature.com/scientificreports/

PD within a 5-year time period. This was done to compare multiple models with a raw ECG-based model. From 
all the methods listed in Supplementary Table S1, the highest LUC validation accuracy achieved was AUC = 0.58 
when using descriptive ECG features. When all the features extracted from all the different feature engineering 
methods were included within one main LightGBM model, the AUC increased to 0.61 (0.52–0.79). These results 
show that the AUC of the external validation accuracy obtained from deep learning on raw digital ECGs, which 
is 0.67 (0.54–0.79), was better than to those obtained from machine learning approaches using engineered ECG 
features (Supplementary Table S1). Since there was no major improvement in the LightGBM model utilizing all 
the extracted features, the 1D-CNN ECG model was the basis of the subgroup analyses.

Subgroup analysis.  Although statistical power was limited for some analyses, we implemented a com-
prehensive subgroup analysis of the LUC external validation cohort, stratifying by sex, race, and age. We also 
explored how predictive accuracy varied by time from ECG until PD incidence date (Table 2).

Table 1.   Baseline characteristics. MLH, University of Tennessee-Methodist Le Bonheur Healthcare; LUC, 
Loyola University, Chicago.

MLH LUC

Total
(n = 1189)

Case
(n = 131)

Control
(n = 1058)

Total
(n = 194)

Case
(n = 29)

Control
(n = 165)

Mean age at ECG (SD) 70.1 (9.5) 72.6 (8.0) 69.8 (9.6) 71.2 (8.7) 69.8 (8.7) 71.4 (8.8)

Mean age at PD diagnosis (SD) 75.3 (7.7) 75.3 (7.9) – 72.3 (8.0) 71.0 (8.8) –

Mean years between ECG and PD diagnosis (SD) 2.7 (1.9) 2.7 (1.9) – 1.7 (1.0) 1.65 (1.0) –

Male n (%) 639 (53.7%) 77 (58.8%) 562 (53.1%) 119 (61.3%) 18 (62.1%) 101 (61.2%)

Race n (%)

 White 753 (63.3%) 86 (65.7%) 667 (63.0%) 149 (76.8%) 23 (79.3) 126 (76.4)

 Black or African American 412 (34.7%) 41 (31.3%) 371 (35.1%) 22 (11.3%) 3 (10.4) 19 (11.5)

 Multiple 10 (0.8%) 0 (0%) 10 (1.0%) 0 (0%) 0 (0%) 0 (0%)

 Other/unknown 5 (0.4%) 2 (1.5%) 3 (0.3%) 19 (9.8%) 3 (10.4) 16 (9.7)

 Asian 8 (0.7%) 2 (1.5%) 6 (0.6%) 4 (2.1%) 0 (0.0%) 4 (2.4%)

 Amer. Ind/Alaska Native 1 (0.1%) 0 (0%) 1 (0.1%) 0 (0%) 0 (0%) 0 (0%)

Figure 1.   Proposed 1D-CNN architecture used to predict PD risk using 10 s 12-lead ECG data. Values in the 
Conv1D boxes refer to number of filters, kernel size and number of strides respectively.

Table 2.   CNN model performance in the LUC external validation cohort. *The data size was very limited to 
reach any conclusion.

Subgroup

Time from ECG until PD incident diagnosis date

6 months–1 year 6 months–3 years All (6 months–5 years)

All subjects 0.74 [0.62–0.87] 0.69 [0.57–0.82] 0.67 [0.54–0.79]

Sex

 Male 0.73 [0.57–0.9] 0.71 [0.55–0.87] 0.69 [0.53–0.85]

 Female 0.79 [0.6–0.98] 0.66 [0.45–0.86] 0.63 [0.43–0.84]

Race

 White 0.71 [0.56–0.86] 0.70 [0.56–0.85] 0.67 [0.52–0.81]

 Black* 1.00 [1.00–1.00] 0.53 [0.13–0.91] 0.65 [0.27–1.03]

Age

 >  = 60 0.73 [0.6–0.87] 0.70 [0.57–0.83] 0.67 [0.53–0.80]

 < 60* 0.78 [0.40–1.15] 0.66 [0.26–1.05] 0.66 [0.26–1.05]
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As shown in Table 2, prediction accuracy of the model improved with a shorter time interval between the 
ECG and the PD diagnosis. The 1D-CNN model predicted prodromal PD in males at the highest overall accu-
racy, with AUC 0.69 (0.53–0.85), although accuracy was high in women within one year of PD diagnosis (AUC 
0.79 [0.60–0.98]); sex-specific differences in classification accuracy were not statistically significantly different 
(Delong test p = 0.62). Overall accuracy was similar in those aged < or > 60, though was high in those < 60 within 
one year of PD diagnosis (AUC 0.78 [0.40–1.15]). We had limited statistical power for race-specific comparisons.

Discussion
There has been an increase in studies researching early identification of PD through biological models, but 
there still remains a major gap in early detection and, even more so, prediction of PD within the prodromal 
stage31. While multiple studies have assessed the use of various clinical features to predict prodromal PD, the 
implementation of such models on a population level may be limited by the lack of symptom reporting and/or 
diagnostic coding of these features in the medical record. Accurate identification of prodromal PD is essential 
for implementation of cost-effective clinical trials of putative neuroprotective agents, and ultimately for risk 
stratification and population-level disease prevention once therapeutic efficacy is established for one or more 
agents. In order to be effective on a population level, a predictive test of PD risk should be universally available, 
cost-effective and non-invasive. Studies found that heart rate variability (HRV) determined from 5-min ECGs 
is reduced in prevalent PD, and results from a single prospective study showed that lower HRV was associated 
with an increased risk of incident PD32. Prior work by our group utilized machine learning approaches to predict 
prodromal PD using clinical variables in one study33 and a proof-of-concept study using standard 10-s printed 
ECGs in another study30. Both studies resulted in moderate accuracy, however the latter study was conducted 
in a demographically homogeneous elderly population and lacked an external cohort for model validation30.

This research builds on the above work, using a deep learning approach to develop a predictive model for 
prodromal PD using standard 10-s raw digitized ECGs stored in a large healthcare system EHR, and validates 
this model using an independent cohort from a different healthcare system EHR. The developed model had 
moderately good classification accuracy in the validation cohort, with an AUC of 0.74 between 6 and 12 months 
before PD diagnosis and an AUC of 0.67 when the ECG was obtained as long as 5 years before PD diagnosis. The 
data imbalance between cases and controls and the relatively small size of the validation cohort likely limited 
our classification accuracy, yet the model successfully distinguished between the majority of cases and controls 
in an independent population, and has important implications as an ancillary approach to detect early PD in 
population-level screening.

While the AUCs derived here can be deemed as somewhat low-moderate at 5 years before diagnosis, it should 
be noted that the main aim of this model is to serve as a tool to help clinicians assess probable risk of people devel-
oping PD in the future and not for diagnosis per se. Other researchers have reported higher AUCs for predictive 
models, however most of those models were built using large numbers of extracted features including, but not 
limited to, clinical variables, neuropsychological test scores, domain composite scores, brain section measure-
ments and magnetic resonance imaging (AUC = 0.84)34,35, while other models relied on physical movement tests 
(e.g. finger tapping) to extract bradykinesia features (AUC = 0.79–0.85) or PD detection based on language and/
or speech data (AUC > 0.85)36–38. Despite some of these biomarkers are also low cost and easy to collect, they are 
typically collected only from already symptomatic patients, therefore, not suitable for EMR based prodromal 
PD screening purposes. In contrast to a standard 10-s ECG, many of these features would not be available in 
the EMR, limiting their usefulness for population-level screening. The use of ECGs in combination with other 

Figure 2.   The area under the ROC Curves for LUC external validation and MLH internal validation sets.
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prodromal PD features available in the EMR will likely further improve our ability to screen the general popula-
tion to identify persons at high risk for PD.

A strength of the current study is the validation of PD diagnosis and incidence dates in the external LUC 
validation population, thus ensuring accurate and generalizable performance metrics. Given that the model was 
developed in the MLH cohort without chart-based validation, a proportion of whom were likely misclassified, 
the predictive performance of the model in the replication cohort is all the more remarkable, and provides sup-
port for the broad generalizability of the use of ECGs for prodromal PD prediction: almost half of the future PD 
cases were correctly identified as such, while most of the controls were classified properly as not being at risk. 
We acknowledge that the deep learning model developed here needs improvement to maximize case identifica-
tion, however, in addition to likely disease misclassification, it should also be noted that the MLH dataset used 
for training was largely imbalanced between cases and controls, making the model slightly more effective in 
identifying controls. The model’s performance can be improved following re-training using a larger cohort or 
the implementation of transfer learning in combination with a larger cohort.

In comparison to the machine learning models utilizing ECG feature-engineering as inputs (Supplementary 
Table S1), the CNN model predicted prodromal PD at higher accuracy. These results are comparable to published 
research that included multiple different biological and demographic information, some of which can be quite 
costly to obtain (e.g. serum analysis), within a machine learning system. Furthermore, while the prediction 
accuracy of the CNN model within 5 years before PD onset is moderate, this research adds to our understanding 
that PD cardiac markers, which are found before the motor changes of PD39, can act as signals within an artificial 
intelligence framework without the need of full ECG feature extraction. The inclusion of demographic and clini-
cal variables as additional inputs with the predicted outcomes from the ECG CNN model will likely increase the 
accuracy of predicting prodromal PD within an extended time window. Karabayir et al.33 showed that there is 
added benefit in including demographic and clinical variables in the prediction of prodromal PD, allowing for 
opportunity for exploration of improving this work. Such variables can also extend to the inclusion of data from 
the Cognitive Abilities Screening Instrument (CASI), olfactory tests and the simple choice reaction times test. 
At the time of development of the models in the current study, such clinical and demographic variables were not 
available from the MLH and LUC data sources.

It is also worth noting that recent literature has showcased the potential of leveraging fractional dynam-
ics to capture long-range memory in ECG data analysis, offering valuable insights for addressing temporal 
dependencies in the field40,41. In this study, we implemented various models including pure RNN, LSTM, and 
Transformers42–44. While RNN and LSTM models struggled to capture long-term dependencies (AUC of 0.6 and 
0.61, respectively), Transformers demonstrated promise with an AUC of 0.69, effectively modeling complex tem-
poral relationships. Nevertheless, our model, combining 1D convolution layers and LSTM, slightly outperformed 
Transformers by effectively capturing both short and long-term dependencies, resulting in improved accuracy. 
While Transformers offer comparable accuracy, their computational complexity and memory requirements may 
present challenges. Our model strikes a balance between efficiency and performance. In summary, our study 
validates the effectiveness of our hybrid model and acknowledges the promising performance of Transformers.

Overall, the CNN model developed in this research classified individuals based solely on a 10-s ECG input 
to an artificial intelligence framework. The easy accessibility and routine collection of ECGs within any clinical 
setting increases their generalizability to the wider population since it substantially reduces bias towards any sex, 
race or age subgroup. This makes such models useable in the wider, possibly global, population, especially with 
modern technological advancement which allows AI models to be incorporated within smart technologies. It is 
highly likely that incorporation of our ECG-based predictive model with other known prodromal markers of PD 
would result in improved risk stratification for PD. This highlights the importance of routine collection of ECGs 
within cohort studies aiming at understanding the pathophysiology of PD and other neurodegenerative diseases.

This study has some limitations. We were able to perform chart reviews on LUC data, but not on MLH data. 
Based on the high false positive rate of PD diagnosis based exclusively on EHR ICD codes at LUC (only 29/47 
were determined to have PD), a substantial proportion of MLH PD cases were likely to have been misclassified. 
Therefore, implementing transfer learning on our final deep learning model and retraining it on large well-
annotated datasets will result in a more accurate PD prediction tool. This also highlights the challenges around 
PD case ascertainment using EHR-based queries of diagnostic codes. The inclusion of AI models in clinical 
practice and future clinical decision support could help to reduce diagnostic misclassification. The five-year PD 
risk prediction model we developed correctly classified only about half of future PD cases but 96% of controls 
on MLH validation while only 41% of future PD cases and 75% of controls on LUC validation data. However, 
the test positivity cut-point can be adjusted by an investigator or clinician to emphasize high specificity (e.g., for 
clinical trials of putative disease-modifying drugs) or high sensitivity (e.g., for selection of high-risk individuals 
to receive preventive treatment), depending on the particular application.

We also note that the raw ECG data used in this study was gathered from two different cardiology informa-
tion systems: GE MUSE at LUC and Epiphany at MLH. Despite this limitation, the concordant results between 
internal testing and the validation process provides evidence that raw ECGs exported from different platforms 
can be used reliably within AI frameworks, with minimal pre-processing.

The prediction accuracy of our model is highest using ECGs 6-months-1-year prior to PD diagnosis, which 
may pose a limitation for use in recruitment for some clinical trials. However, it still has moderate accuracy using 
ECGs up to 3-years or even 5-years prior to PD diagnosis. When specificity was maximized in our example (to 
reduce false positives), sensitivity for identifying persons with future PD was less than 50%. We acknowledge 
this relatively low sensitivity as a major limitation. However, for clinical trials of future disease modifying thera-
pies, and in contrast with some diagnostic tests, high specificity is far more important than high sensitivity. We 
anticipate that future work that additionally incorporates demographic, clinical variables, and genetic information 
within the current deep learning model will offer greater sensitivity without sacrificing the high specificity of 
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our ECG-only model. We anticipate that continuous improvement of model prediction accuracy, for example, 
through the use of larger and more accurate cohort data, and inclusion of other ‘simple’ variables will lead to 
the integration of these models within ECG-capable smart wearables. The development of smart applications 
within wearables will allow for cost-effective, non-invasive and non-burdensome screening of people for PD risk, 
allowing for early detection, quicker follow-up times and timely intervention strategies.

This work provides proof-of-principle that a deep learning predictive model using only simple 10-s ECGs 
correctly classifies individuals with prodromal PD with modest accuracy. This model was effective in distinguish-
ing between future PD cases and controls in an independent cohort, increasing in accuracy closer to disease 
diagnosis, although still notably within the prodromal stage of the disease. The use of standard ECGs, which are 
easily and routinely collected by healthcare providers, may help identify individuals at high-risk of PD, allowing 
for timely inclusion in disease-modifying therapeutic trials and possible intervention strategies to delay or slow 
disease progression.

Methods
Standard protocol approvals and patient consents.  This retrospective case–control study was con-
ducted using data from two hospital centers in the United States (Loyola University Chicago (LUC), Maywood, 
IL and University of Tennessee Health Science Center (UTHSC), Memphis, TN). The study was reviewed and 
approved by the institutional review boards of the participating centers (Loyola University Chicago and Uni-
versity of Tennessee Health Science Center), and all methods were carried out in accordance with the relevant 
guidelines and regulations. Due to its retrospective nature and exempt status, written informed consent was 
waived by the institutional review boards of the participating centers.

Study cohorts.  This study used electronic health record (EHR)-based datasets from Loyola University Chi-
cago (LUC), Chicago, IL and University of Tennessee-Methodist Le Bonheur Healthcare (MLH), Memphis, 
TN. The study design is summarized in Fig. 3. The participants in the analytic cohorts were aged 26–89 years 
at the time that the ECG was recorded. While 26 to 40 year-old participants fall within the ‘early-onset’ criteria 
of PD45,46 and is indeed rare, we utilized this information to build a more inclusive model, unbiased towards 
age, with the main objective of determining whether the developed models can incorporate a wide range of 
prodromal-to-PD scenarios.

Case identification.  In both datasets, we identified patients aged 26–89 years who had received at least two 
ICD diagnostic codes for PD (ICD9 332.0, ICD10 G20) as the primary reason for the visit at least 30 days apart, 
between May 1, 2014 and January, 2020 at LUC and January 1, 2015 and January, 2020 at MLH. PD incidence 
date was defined as the earliest of the first PD diagnostic code or PD-related medication prescription. For the 
external validation phase, we included individuals from LUC who had a standard 12-lead ECG within 5 years 
before the incidence date. In order to have the largest possible training sample, we included individuals from 
MLH within 10-years prior to the PD incidence date.

Case validation.  We reviewed the medical records of individuals from the LUC dataset to confirm the PD 
diagnosis and date of disease incident diagnosis. To carry out this evaluation on the LUC data, the patients’ charts 
were accessed using the Epic software, and the related clinical notes were reviewed by a movement disorders 
specialist (co-author KC). ‘Care Everywhere’ notes in Epic from other healthcare systems were also examined 
when available. We considered diagnostic consistency, clinical features, response to medication, and possible 
alternative diagnoses. All patient charts were also searched for the presence of medical diagnoses or medications 
potentially inconsistent with a diagnosis of PD. Based on these descriptions, we identified 131 cases at MLH and 
29 eligible chart-reviewed cases (47 cases before manual chart review) at LUC and extracted their corresponding 
ECGs from cardio servers.

Control identification.  Randomly selected control subjects from each institution were matched to cases 
by age at ECG, date of ECG recording, race and sex, and were required to have been in the system for at least 

Figure 3.   Study design.
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10 years (for MLH) or 5 years (for LUC) with no diagnostic codes for PD or another form of parkinsonism. We 
identified 1058 control subjects at MLH and 65 at LUC, whose ECGs were retrieved for analysis.

Covariate data.  Covariates were also obtained from the EHR including age, sex, and race.

ECG data.  Digital 12-lead, 10-s ECG, referring to time–voltage data, was obtained for each case and control. 
The ECGs at LUC were exported from MUSE Cardiology Information System in XML format at 500 Hz. Base 
64 encoded waveform data was further decoded using the Python programming language. ECGs at MLH were 
exported in DICOM format and the associated waveforms were parsed out. Some MLH ECGs were recorded at 
500 Hz and some at 250 Hz and therefore, to ensure comparability and based on our previous successful applica-
tion on utilization of ECG via deep learning47,48, all ECGs at 500 Hz were down-sampled to 250 Hz by removing 
one of every two amplitudes from each lead. In addition, we excluded the first second of each ECG before input-
ting them into the model. This was done to avoid any possible noise due to the patient’s movement at the begin-
ning of the ECG recording. It should be noted that while ECGs were obtained from different service providers, 
i.e. GE MUSE and Epiphany, there is no reported difference in the ECG data exported from either service apart 
from the storage method (DICOM: binary vs XML: human-readable)49.

Method development and external validation.  Because the MLH study cohort was significantly 
larger than the LUC cohort, we used MLH data for training and LUC data for external validation. We note 
that we had access to one ECG per patient from LUC. However, we could retrieve multiple ECGs per patient at 
MLH, and we utilized all ECGs during training. We split the MLH dataset into 90% training and 10% internal 
validation sets based on patients rather than ECGs, since some patients have multiple ECGs. All available ECGs 
were used for the 90% training dataset. However, while multiple ECGs were available, in the 10% MLH internal 
validation dataset only one randomly selected ECG per patient was used. This was done with the aim of achiev-
ing representative samples to that within the LUC external validation dataset. The model’s hyperparameters were 
tuned based on the highest accuracy when using the internal validation set. This model, i.e. the one providing 
the highest AUC, was used for external validation on LUC data. In addition to the AUC, the best performing 
model was assessed using sensitivity, specificity, positive predictive value, negative predictive value, and average 
precision score (AP). Although AUC is a widely used metric to evaluate the performance of classifiers, it should 
be carefully utilized in evaluation of severely imbalanced classification problems since it only measures how 
well predictions are ranked. This makes AUC optimistic for the evaluation of classification models that include 
imbalanced and/or small datasets. Therefore, we have also provided the area under AP and Precision-Recall (PR) 
curve (AUPRC) (Figure S1) as an alternative metric to effectively evaluate the proposed model by focusing on 
the minority class (PD).

Deep learning method.  We used a one-dimensional convolutional neural network (1D-CNN) with raw 
digital ECGs as inputs with the risk for PD being the determined output. The 1D-CNN, inspired from ResNet50, 
takes advantage of skipping connections between layers, which eases the optimization of the kernels in the net-
work and therefore obtains robust and more generalizable models than those yielded by traditional or shallow 
networks. CNN architectures include several hyperparameters including the number of convolutional filters, the 
kernel dimension, and the stride parameter of convolution layers. The parameters and the overall architecture of 
the CNN are depicted in Fig. 1. In our architecture, we employed 15 1D convolution layers and one LSTM layer 
to extract abstract spatial representations and capture both long and short-term dependencies from ECG data, 
enabling us to effectively capture complex patterns for accurate prediction of PD risk. To optimize the model’s 
performance, we employed the categorical cross entropy loss function, which effectively minimized the differ-
ence between predicted and true class labels. This choice significantly improved accuracy and enabled reliable 
predictions, especially for multi-class classification tasks like the one presented in our work. Furthermore, we 
utilized the leaky rectified linear units (Leaky-RELU) activation function51 to obtain a better representation of 
the ECG by activating the intermediate neurons and allowing negative inputs. After the hyperparameter tuning 
process, dropout layers with a rate of 0.1 were included within the CNN architecture to penalize the kernels and 
help prevent model overfitting52. The Adam optimization algorithm53 (beta_1 = 0.9, beta_2 = 0.999 and learning 
rate = 0.001) was used to optimize the kernels in the model. The batch size for data input was set to 128. We have 
used the grid search approach to tune architecture based on several hyperparameters including the number of 
convolutional filters, the kernel dimension, and the stride parameter of convolution layers. The model’s training 
process was stopped once reaching consecutive decrease (five times in a row) on the AUC of the internal valida-
tion dataset.

Conventional machine learning method.  To compare the proposed deep learning algorithm, we also 
utilized Light Gradient Boosting Machine (LightGBM) by inputting ECG features, which were extracted from a 
variety of signal processing algorithms54. In the development of the LightGBM model, the same five-fold cross 
validation strategy used in the development of the CNN model was used to ensure comparability. Details of the 
feature engineering-based machine learning model can be found in Supplementary Material.

Data availability
Requests for patient-related data not included in the article will not be considered. The code for our proposed 
model can be accessed at https://​github.​com/​ikara​bayir/​PD_​ECG_​CNN_​Risk.

https://github.com/ikarabayir/PD_ECG_CNN_Risk
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