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Guided construction of single cell reference
for human and mouse lung
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Accurate cell type identification is a key and rate-limiting step in single-cell
data analysis. Single-cell references with comprehensive cell types, repro-
ducible and functionally validated cell identities, and common nomenclatures
are much needed by the research community for automated cell type anno-
tation, data integration, and data sharing. Here, we develop a computational
pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-
cell transcriptomic datasets of 104 human lungs and 17mouse lung samples to
construct LungMAP single-cell reference (CellRef) for both normal human and
mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalo-
gued from diverse anatomic locations and developmental time points. We
demonstrate the accuracy and stability of LungMAP CellRefs and their utility
for automated cell type annotation of both normal and diseased lungs using
multiple independentmethods and testing data.Wedevelopuser-friendlyweb
interfaces for easy access and maximal utilization of the LungMAP CellRefs.

Single-cell RNA-seq (scRNA-seq) analysis is being widely applied in
biomedical research, enabling the study of complex organs, such as
the lung, at unprecedented scale and resolution, and transforming our
understanding of organdevelopment anddisease1–4. Accurate cell type
identification is a necessary step in single-cell data analysis that usually
requires time-consuming processes to optimize computational para-
meters followed bymanual inspection that requires domain expertise.
With the increasing number of published scRNA-seq datasets and the
release of large-scale cell atlases, advanced computational tools5–7

have been developed using annotated datasets to predict cell iden-
tities in new datasets. Common issues related with the use of a

published scRNA-seq dataset as a reference for supervised classifica-
tion of user-supplied datasets include the lack of comprehension
(missing cell types), inclusion of speculative cell types/states that have
not been functionally validated, technology specific-biases in the
reference or query, and insufficient power to represent the repertoire
of common healthy lung cell types. The lack of common cell type
nomenclatures and guidelines for single cell transcriptomic studies
also creates substantial technical challenges for data integration and
comparison. Therefore, single-cell references with comprehensive cell
types, functionally validated cell identities, and standardized nomen-
clature are much needed by the research community to optimize
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automated cell type annotation and facilitate data integration, sharing,
and collaboration.

A growing number of community-wide efforts have been devoted
to the development of common cell type nomenclature, including cell
type ontologies of the Human Cell Atlas8 and mammalian brain9.
Recently, the LungMAP consortium produced a LungMAP CellCards10,
a rigorous catalog of lung cells based on a community-wide effort that
synthesizes current functional and single-cell data from human and
mouse lungs into a comprehensive andpractical cellular census of lung
cells. The current version of LungMAP CellCards catalogs major lung
cell types and numerous immune cell subtypes, spanning the cellular
heterogeneity present in diverse regions of normal lung, including
trachea, bronchi, submucosal glands (SMG), and lung parenchyma10.
These common cell type nomenclature efforts provide a scaffold and
guideline for the ongoing development of a comprehensive lung
single-cell reference for single-cell genomics analysis. In addition to
curation, computational methods are further needed to utilize care-
fully curated literature knowledge as guidelines to accurately identify
cell types using integrated single-cell datasets.

Here, we present a guided approach for cell atlas construction
that directs the identification of lung reference cell populations
according to a dictionary of pre-compiled cell type terms and mole-
cularmarkers derived fromCellCards. The pipeline consists of two key
steps, first identifying a seed population for each cell type which best
represents the cell identity in the dictionary, then mapping all cells to
the seeds based on transcriptomic similarity to construct a complete
single-cell reference, termed CellRef. Using this approach, we con-
structed and released a CellRef consisting of a total of 48 normal
human lung cell types, which we named LungMAP Human Lung Cell-
Ref. Using the same approach, we identified seed cells for 40 mouse
lung cell types and constructed the LungMAP Mouse Lung Develop-
ment CellRef. We deployed this resource asmultiple user-friendly web
interfaces to facilitate easy access and maximize use of the LungMAP

CellRefs. These interfaces include the use of the recently developed
Azimuth interface5, which enables research investigators to annotate
their own scRNA-seq dataset automatically using the LungMAP Cell-
Refs, via automated supervised classification, prior user-annotation
comparison, and exploration against the CellRef for any scRNA-seq
input dataset. We developed functions to facilitate evaluation of
automated cell type annotation results using CellRef marker genes.
Using multiple independent methods and testing data, and bench-
marking across different lung atlases, we demonstrate the accuracy
and stability of LungMAP CellRefs and their utility for automated cell
type annotation of both normal and diseased lungs. The present gui-
ded approach is implemented in R and is applicable for CellRef con-
struction for other organs.

Results
Data collection and guided construction of a LungMAP single-
cell reference
The LungMAP CellCards catalogued major lung cell types and their
associated marker genes in multiple regions of normal lung, including
trachea, bronchi, SMG, and lung parenchyma10. To construct a Lung-
MAP human lung CellRef in accordance with the CellCards, we col-
lected 10 large-scale sc/snRNA-seq datasets (8 published and 2
unpublished) from the four regions of human lung (Fig. 1A): Haber-
mann et al.11 (n = 10 donors; parenchyma), Reyfman et al.12 (n = 8
donors; parenchyma), Adams et al.13 (n = 28 donors; parenchyma),
Deprez et al.14 (n = 9 donors; trachea/bronchi/parenchyma), Travaglini
et al.15 (n = 3 donors; bronchi/parenchyma), Goldfarbmuren et al.16

(n = 15 donors; trachea), Wang et al. (n = 3, small airway, neonatal/early
pediatric samples excluded), Melms et al.3 (n = 7, parenchyma),
CCHMC LungMAP cohort (n = 5, bronchus SMG, unpublished) and
UPenn LungMAP cohort (n = 16, parenchyma, unpublished). This col-
lection contains data from similar numbers of female andmale donors
(n = 48 and 55, respectively; 1 unannotated) (Fig. 1A; Supplementary
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Fig. 1 | Data collection and the guided single-cell reference (CellRef) con-
struction pipeline. A Characteristics of the collection of single cell/nucleus
(sc/sn) RNA-seq datasets from normal human lung samples. B Schematic workflow

for the LungMAPCellRef construction guided by using LungMAPCellCards as a cell
type dictionary.
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Data 1). The median age of donors was 41 years (interquartile range
[IQR], 29−61 years; 1 unannotated). Data were generated from three
10x chromium single cell libraries: Single Cell 3’ sequencing kit based
on v2/v3 and Single Cell 5’ chemistry. In total, 505,256 lung cells from
148 sc/snRNA-seq of normal human lung samples from 104 donors
were used for LungMAP human lung CellRef construction (Supple-
mentary Data 1).

The integration of such a large and complex single-cell data col-
lection is challenging due to the huge batch differences associated
with both biological (i.e., different donor and different anatomic
regions) and technical variations (e.g., sample preparations by differ-
ent protocols from different research institutions). To perform accu-
rate single-cell reference construction, we developed a computational
pipeline which combines batch correction, unsupervised cell cluster-
ing, single-cell ranking, power analysis, and automated cell type
annotation to consolidate single-cell datasets and annotate cell iden-
tities guided by a pre-defined cell type dictionary (i.e., LungMAP
CellCards) (Fig. 1B). We utilized both positive and negative markers to
improve the sensitivity to distinguish cell types sharing similar gene
expression patterns and marker genes, for example, lung goblet cells
(MUC5AC + /MUC5B+) and SMG mucous (MUC5AC-/MUC5B+). The
pipeline consists of fourmajor steps (Fig. 1B, “Methods”). First, we tried
the mutual nearest neighbor (MNN) matching method in Monocle 3,
Seurat’s reciprocal principal component analysis (RPCA) based
integration5 and Harmony17 for batch correction. In addition, we
applied a recently described cluster stability assessment framework to
quantitatively assess and compare the cluster stability of different
integrationmethods based on three independent statistical metrics to
quantitively assess the data integration18. MNN outperforms RPCA and
Harmony on both the UMAP inspection and cluster stability metrics
measurement, we therefore set the mutual nearest neighbor (MNN)
matching method in Monocle 3 as default, and Seurat’s reciprocal
principal component analysis (RPCA) based integration and Harmony
as alternatives (Supplementary Fig. 1). Next, seed identification was
performed (steps 2 and 3 in Fig. 1B). This is a unique feature of our
approach. We aim to identify a core set of cells that best match to the
identity of each cell type in the CellCards dictionary. We perform
unbiased clustering analysis and determine candidate cell clusters for
each cell type based on the expression of marker genes in the dic-
tionary. The use of unsupervised clustering in this step provides an
opportunity to discover new cell types that are not yet defined in the
dictionary. To identify the best seed cells, we developed a single-cell
ranking method that first ranks cells based on expression of each cell
specific marker gene in the CellCards dictionary and then aggregates
the rankings of thosemarkers for a given cell type to identify seed cells
for the cell type. We performed a power analysis to determine the
minimum number of seed cells required. The last step is consensus
label transfer. We applied multiple machine learning methods (e.g.,
Seurat’s label transfer and SingleR) to map all other cells to the seed
cells and determine their cell types based on the seed annotation. Cells
that have consistent cell type predictions in all methods will be inclu-
ded in the CellRef. The last step can be repeated to include newly
collected datasets into the CellRef by mapping them to the seed cells.
We implemented this cell-type-dictionary guided CellRef construction
pipeline in R and hosted its development and documentation in
github: https://github.com/xu-lab/CellRef19.

The LungMAP Human Lung CellRef
Using this guided approach and a cell type dictionary derived from
LungMAP CellCards (Supplementary Data 2), we identified 8,080 seed
cells representing 48 normal human lung cell types, termed LungMAP
Human Lung CellRef Seed (Fig. 2A). Next, we mapped all other cells in
our collection to the CellRef Seed cells and predicted cell type anno-
tations using two independent methods, Seurat Label Transfer5,20 and
SingleR6. Cells with consistent cell type annotations were combined

with the CellRef Seed to form the LungMAP Human Lung CellRef
(347,970 cells) (Fig. 2B, Supplementary Figs. 1–3, “Methods”).

The CellRef includes the following CellCards cells: 12 epithelial
(AT1, AT2, basal, ciliated, goblet, myoepithelial [MEC], mucous, PNEC,
secretory, serous, Tuft cells, and ionocytes); 5 endothelial (arterial,
venous, lymphatic endothelial, capillary 1, and 2 cells), 8 mesenchymal
(alveolar fibroblast 1 and 2 [AF1, AF2], airway and vascular smooth
muscle cells [ASMC, VSMC], mesothelial cells, chondrocytes, peri-
cytes, and myofibroblasts [SCMF]), and 16 immune cell types (alveolar
and interstitial macrophage [AM, IM], inflammatory and patrolling
monocytes [iMON, pMON], mast/basophils, neutrophils, B, plasma,
NK, ILC, cDC1, cDC2, pDC, CD8 +T, CD4 +T, and T regulatory [Treg]
cells). In addition to the known lung cell types, we extended the dic-
tionary to incorporate 7 cell types that are not yet in the CellCards but
have marker genes reported in recent scRNA-seq studies and are
selectively expressed in our unbiasedly identified cell clusters,
including deuterosomal cells14 (DEUP1, FOXN4, CDC20B), suprabasal
cells14 (SERPINB4, KRT19, NOTCH3), systemic venous endothelial cells21

(SVEC; marker genes: COL15A1, ABCB1, ACKR1), mature dendritic cell
subset (maDC; marker genes: CCR7, CCL19, LAD1), megakaryocyte/
platelets15, 22 (ITGA2B, ITGB3), SMGduct cells (MIA, ALDH1A3, RARRES1),
and respiratory airway secretory cells (RAS; marker genes: SCGB3A2,
KLK11, SOX4). We combined SMG basal and SMG duct cells into one
mixed type, SMG Basal/Duct cell, since their marker genes were co-
expressed in the same cell cluster in our data integration. Similarly, we
combined mast and basophil cells into a mixed Mast/Basophil cell
type. These mixed cell types likely result from the lack of clear known
markers or insufficient numbers of cells in the subtypes to distinguish
the heterogeneity of the cluster in the current CellRef. We performed
uniform manifold approximation and projection for dimension
reduction (UMAP) analysis on the LungMAP Human Lung CellRef. All
cells, from trachea to alveoli, were projected into a common UMAP
space and showed clear separations by the predicted cell iden-
tities (Fig. 2B).

To evaluate cell identities in the human lung CellRef Seed, we
preformed the following validation analyses. Cell type marker
genes were found to be selectively expressed in their correspond-
ing seed cells, the majority having high cell type specific expression
frequencies, suggesting that the identities of the seed cells were
consistent with the cell type dictionary (Fig. 2C). To further validate
the identities of the seed cells, we created pseudo-bulk gene
expression profiles for each cell type by averaging gene expression
in its seed cells, measured their correlations, and performed hier-
archical clustering analysis, demonstrating that cell types were first
unbiasedly clustered by their major cell lineages and then by sub-
lineages (Fig. 2D). The pseudo-bulk profile of SMG myoepithelial
cells (MEC) co-clustered with mesenchymal cells and was positively
correlated with both SMGBasal/Duct cells and smoothmuscle cells,
consistent with their complex cell nature. UMAP analysis showed
that the seed cells formed dense cell clusters and clearly dis-
tinguished all cell types except closely related T cell subtypes (i.e.,
Treg and ILC are clustered with CD8/4 T cells), supporting distinct
transcriptomic patterns of cell types in the CellRef Seed and a high
similarity of the seed cells for each cell type (Fig. 2A). In summary,
using our guided approach, we developed the LungMAP Human
Lung CellRef Seed, a collection of seed cells for 48 normal lung cell
types which can serve as a simplified version of CellRef with cell
identities in accordance with a cell type dictionary derived from the
LungMAP CellCards.

To validate the similarity of cell identities in the CellRef Seed
and the full CellRef, we created pseudo-bulk profiles for the cell
types in the CellRef, combined them with the pseudo-bulk profiles
generated using the CellRef Seed, measured correlations among all
pseudo-bulk profiles, and performed hierarchical clustering analy-
sis. Like the CellRef Seed, the pseudo-bulk profiles of the cell types
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in the full CellRef were also first clustered by their major cell
lineages and then by sub-lineages. Moreover, each of them was well
correlated with the pseudo-bulk profile of the same cell type cre-
ated using the CellRef Seed (Fig. 2D). Taken together, these results
validated the identities of cell types in our constructed LungMAP
Human Lung CellRef.

The LungMAP Mouse Lung Development CellRef
Using the same approach, we constructed a cell type dictionary based
on the LungMAP CellCards to define cell types in mouse lung during
perinatal development, identified seed cells for each cell type (termed
LungMAPMouse LungDevelopment CellRef Seed”), and constructed a
CellRef for mouse lung development (denoted as LungMAP Mouse
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Lung Development CellRef) using Drop-seq of mouse lungs
(n = 95,658, 8 time points, 17 samples) from embryonic day 16.5 to
postnatal day 28 (Fig. 3, Supplementary Fig. 4, Supplementary Data 3,
4). Because of the time course design, themouse lungCellRef included
more developmental progenitor cells and transitional cell states than
the LungMAP Human Lung CellRef, including, Sox9 + /Id2+ distal epi-
thelial progenitor cell23,24, an AT1/AT2 cell population22,25 expressing
both AT1 (Ager, Hopx) and AT2 (Lamp3, Sftpc, Abca3) cell markers in
conjunction with Cldn4, Krt19, and Krt8 (signature genes of recently
reported PATS26, DATP27, or ADI28 cells), Foxf1 + /Kit+ endothelial pro-
genitor cells (EPC)29, and proliferative mesenchymal progenitor (PMP)
cells30,31 (Fig. 3). In total, 40mouse lung cell types have been identified
with the guidance of the mouse lung cell type dictionary (Fig. 3, Sup-
plementary Data 4). Cell identities were verified using expression of

marker genes, UMAP visualization of cell types, pseudo-bulk expres-
sion and hierarchical clustering analysis-based cell lineage recon-
struction, and cell type specific signature gene identification (Fig. 3).
The construction of this LungMAP mouse lung CellRef in parallel with
the human lung CellRef will enable cross comparisons for better
understanding of how the cell types inmouse lung relate to the human
lung andhowdata frommouse studies in the literature relate to human
disease. The mouse CellRefs will continue to be expanded with adult
time points and murine injury in the future.

Interactive web-tools for search and display of the LungMAP
CellRefs
To facilitate data sharing and broad use of the resource, we developed
several user-friendly web portals to host the LungMAP CellRefs online,

Fig. 2 | The construction of LungMAPHuman Lung CellRef. AUniformmanifold
approximation and projection (UMAP) visualization of seed cells representing 48
lung cell types of normal human lung, termed LungMAPHuman Lung CellRef Seed.
Cells were colored by their predicted seed identities. B UMAP visualization of the
complete single-cell reference for normal human lung, denoted as LungMAP
Human Lung CellRef, which contains 347,970 cells from 104 donors and defines 48
cell types in normal human lung. Cells were colored by their predicted identities.
C Validation of the seed cell identity using the expression of cell type selective

marker genes derived from LungMAP CellCards. D Reconstruction of cell lineage
relationships using hierarchical clustering analysis of cell type pseudo-bulk gene
expression profiles. Color represents Pearson’s correlation value of pseudo-bulk
expression profiles. Labels ending with “.Seed” represent pseudo-bulk profiles
created by averaging gene expression in the cells of each cell type in the human
lung CellRef Seed, while labels ending with “.CellRef” represent pseudo-bulk pro-
files created using gene expression of each cell type in the complete human lung
CellRef.

Fig. 3 | The construction of LungMAPMouse LungDevelopment CellRef. A The
developmental time points of mouse lung single-cell transcriptome data used for
the guided CellRef construction. B Uniform manifold approximation and projec-
tion (UMAP) visualization of the seed cells representing 40 cell types of the
developingmouse lung, termed LungMAPMouse Lung Development CellRef Seed.
Cells were colored by predicted seed identities.CUMAP visualization of CellRef for
normal mouse lung development, named LungMAP Mouse Lung Development
CellRef. Cells were colored by their predicted identities. D Validation of seed cell

identities using expression of cell type selective marker genes. E Lineage relation-
ships among mouse lung cell types were reconstructed using hierarchical cluster-
ing analysis using pseudo-bulk gene expressionprofiles. Color represents Pearson’s
correlation value of pseudo-bulk expression profiles. Labels ending with “.Seed”
represent pseudo-bulk profiles created by averaging gene expression in the cells of
each cell type in the mouse lung CellRef Seed, while labels ending with “.CellRef”
represent pseudo-bulk profiles created using gene expression of each cell type in
the complete mouse lung CellRef.
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including the LGEA LungMAP CellRef page for human and mouse
(https://research.cchmc.org/pbge/lunggens/CellRef/LungMapCellRef.
html), scViewer-Lite, and ShinyCell for CellRef human (https://app.
lungmap.net/app/shinycell-human-lung-cellref) and mouse lung
(https://app.lungmap.net/app/shinycell-mouse-lung-cellref). These
tools provide highly interactive search, analyzing, and visualization
functionalities for users to explore and reanalyze cell type and gene
expression patterns provided by the LungMAP CellRefs (Fig. 4, Sup-
plementary Fig. 6). The LGEA CellRef page enables users to perform

“Gene Expression Query”, “Cell Type Query”, and “Cell Signature
Query”. The “Gene Expression Query” enables users to input any gene
of interest to visualize the expressionpatterns and associated statistics
in UMAP, Box, NotchedBox, Beeswarm, Scatter plot, and bi-directional
bar charts (Fig. 4A, B). The “Cell Type Query” enables users to select
any one of the pre-defined cell types and obtain cell-type information
collected by LGEA including cell selective marker genes, transcription
factors, and surface markers, ligands and receptors) as well as a link to
theLungMAPCellCards29 (Fig. 4C). The “Cell SignatureQuery” function

SensitivityFrequency

Fold change -log(value)

Cell type specific gene expression patterns

Expression DistributionA B

C

D

N
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ed

 e
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Fig. 4 | Online interactive exploration of LungMAP CellRef Seed using Lung
Gene ExpressionAnalysis (LGEA)web portal. The LungMAPHuman Lung CellRef
Seed was comprised of 8080 seed cells representing 48 normal lung cell types.
A The “Gene Expression Query” interface allows users to input a gene of interest
(top) and visualize of the expression of the queried gene in UMAP embeddings of
cells (bottom), Colors represent the seed cell identities (bottom left) or the
expression of the input gene (bottom right).B Visualization of the gene expression
pattern (top: expression distribution;middle: expression frequency and sensitivity;
bottom: fold change and p-value of differential expression) across all cell types in
the CellRef Seed. Box center lines, bounds of the box, and whiskers indicate
medians, first and third quartiles, and minimum and maximum values within
1.5×IQR (interquartile range) of the box limits, respectively. P value for each cell

type was determined using a nonparametric binomial test47 for single-cell RNA-seq
data by comparing the expression of FOXJ1 in the cell type with its expression in all
other cells in the CellRef Seed. See Fig. 4 source data table for number of cells in
each cell type.C LGEAhosts comprehensive cell information relatedwith the query
cell type. D “Cell Signature Query” function retrieves signature gene expression
statistics of a given cell type and bar-plot visualization of signature genes expres-
sion across all cell types in the CellRef Seed. P values were determined using a
nonparametric binomial test47 for single-cell RNA-seq data by comparing gene
expression in the ciliated cells (n = 200 cells) with all other cells (n = 7880 cells) in
the CellRef Seed. In (A) and (B), FOXJ1 expression was shown as example. In (C) and
(D), Ciliated cells were used as example.
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provides cell type selective signature genes identified using the
LungMAP CellRefs, along with interactive tables and bar graph that
enables users to search differential expression statistics and compare
themeangene expression across all cell types (Fig. 4D). scViewer-lite is
a R shiny based app that allows for comparative viewing of gene
expression and/or other meta data overlapped on dimension reduc-
tion plots and violin plots. Users can also select and highlight cells of
interest (Supplementary Fig. 6). In addition to these two newly devel-
oped web interfaces, LungMAP CellRefs can be interactively explored
in LungMAPwebportal using ShinyCell32 basedweb interfaces (https://
lungmap.net/cell-cards, “CellRef scRNA-seq” tab). CellRef-ShinyCell
allows cell-cell or gene-gene comparison and gene co-expression
analysis, more importantly, we incorporated age and sex variables into
the CellRef-ShinyCell App, to enable users to depict the age/sex-
dependent gene expression in UMAP and cell-type distributions.

Automated cell type annotation using the LungMAP CellRefs
Wedeveloped LGEA, ShinyCell, and scViewer-lite-basedweb interfaces
for users to explore and analyze expression patterns of normal lung
cells and genes of interest without the need for computational coding.
Another powerful use of the LungMAP CellRefs is to use them for
automated cell type annotation of users’ own single-cell datasets to
facilitate analysis and standardization of cell type prediction and
annotations. To achieve this goal, we built our CellRef Seeds and
CellRefs into R objects in accordance with Seurat reference mapping
pipeline5, 20. Azimuth (https://satijalab.org/azimuth) instances were
established at LungMAP.net (https://lungmap.net/cell-cards, “CellRef
Azimuth” tab) to enable users to upload their own datasets for online
automated cell type annotation using our CellRefs (Fig. 5A) and
exploration of any gene features on the projected UMAP or in Violin
plots. Additionally, to facilitate evaluation of automated cell type
annotation results, we developed functions in our R pipeline to
visualize the expression of CellRef markers across all predicted cell
types, identify cell type signature genes and their associated functional
annotations, and compile all visualization and evaluation results into a
single evaluation report using R markdown (Fig. 5A).

Use cases driven evaluation of LungMAP single-cell references
for automated cell type annotation
Annotation of scRNA-seq of normal human lung. We collected pub-
lished scRNA-seq datasets of normal human lung samples to inde-
pendently evaluate the accuracy of the automated cell type annotation
using the LungMAP CellRefs. The datasets were from normal human
lung samples of 2 months to 45 years of age and were generated using
10X chromium 3’ (GSM5388411/12/1333 and GSM4504966/6734; aligned
to hg38 reference genome) and 5’ (GSM40354721; aligned to hg19
reference genome) platforms.

For each test data, we used both the human lung CellRef Seed and
CellRef to predict cell type annotations using Azimuth’s reference
mapping algorithm5,20. More specifically, we used the Seurat v4 Find-
TransferAnchors and MapQuery functions. During the reference
mapping, a prediction score (between 0 and 1) was calculated for each
cell, reflecting the confidence associated with the predicted cell
annotation. By default, we used the mean value minus one standard
deviation as the cutoff for the prediction score; cells within the
threshold are considered to be confidently mapped to the CellRef
annotations. Using this cutoff, 80.28% cells in the test dataset can be
confidently annotated using the CellRef in comparison with 80.84%
using the CellRef Seed, suggesting that similar numbers of cells can be
confidently predicted using both the complete human lung CellRef
and the CellRef Seed (Fig. 5B, C). Predictions using the CellRef Seed
were computationally efficient, taking ~1min to annotate a 10x chro-
mium scRNA-seq of 4000–8000 cells.

We evaluated CellRef performance via multiple independent
approaches including using inter-dataset (external data) and intra-

dataset (10-fold cross validation within CellRef samples) or based on
prior knowledge (i.e., known markers and gene ontology terms). First,
we applied the validation functions in our pipeline (Fig. 5A, “Methods”)
to evaluate the accuracy of cell type predictions based on prior
knowledge. As shown in Fig. 5D–I and Supplementary Fig. 7, predicted
cell types were well separated and formed clusters. Cell-type-specific
marker genes from CellCards were selectively expressed in each pre-
dicted cell type, supporting the concordance of the cell identities
(Fig. 5E, F, Supplementary Fig. 7). Cell type specific signature genes
were identified using widely accepted criteria (adjusted p value of
Wilcoxon rank-sum test <0.1, expression frequency >=20%, and fold
change >=1.5) (Fig. 5G, H). Functional enrichment analysis of cell type
signature genes was used to further validate the predicted cell iden-
tities. For example, predicted AT2 cells were functionally enriched in
“surfactant homeostasis” and “lipid/phospholipid/fatty acid metabolic
processes” (Fig. 5I, top). ToppCell (https://toppcell.cchmc.org/) ana-
lysis showed that the predicted signature genes were consistent with
genes selectively expressed in normal AT2 cells identified in inde-
pendent single-cell studies of human lung35,36 (Fig. 5I, bottom). Next,
we evaluated the CellRef performance using external datasets
GSM5388411/12/1333. After mapping and comparison of the CellRef
prediction to the original published cell type annotations, we mea-
sured the CellRef performance based on multiple metrics, including
precision, recall, accuracy, F1 score, and Matthews correlation coeffi-
cient (MCC) (“Methods”). The median values of all metrics are greater
than 0.92 (Supplementary Fig. 8), supporting the high consistency of
the automated CellRef cell type prediction with the original cell
annotations. Last, we performed a 10-fold cross validation of cell type
identification within both human and mouse LungMAP CellRefs
(“Methods”). Briefly, we randomly partitioned the data in the CellRef
into 10 similar parts, used 9 parts as training data to predict cell types
in the remaining part and measured the performance of the predic-
tions based on F1 score and Matthews correlation coefficient (MCC)
which quantified the consistencies of the predicted identities with the
CellRef identities of the test part. We repeated the training and testing
10 times and used a different part as the testing data each time. Both
the LungMAP human and mouse lung CellRefs achieved high cross
validation performance with ~0.92 median F1 and MCC scores for the
human lungCellRef and0.98median F1 andMCC scores for themouse
lung CellRef, respectively (Supplementary Fig. 9).

In summary, evaluations based on prior knowledge or using inter-
dataset and intra-dataset demonstrate the high performance and
accuracy of human and mouse lung CellRef cell type annotations,
support the general applicability of automated CellRef cell type
annotation for new data from scRNA-seq of lung.

Among the testing datasets, GSM4035472 showed relatively lower
consistency score than others (Fig. 5C). This is a special dataset in two
ways. It was generated using 10X SingleCell 5’ assaywhile other testing
samples were using 10X Single Cell 3’ assays. This dataset was aligned
using hg19 while others used hg38. We included this dataset for a
proof-of-concept that CellRef can map cell types for datasets from
different protocol and reference versions. The difference is likely due
to the combination of different library and reference genomeversions.
Nevertheless,more than 75%cells from this dataset canbe consistently
mapped using the CellRef and CellRef Seed when using the default
cutoff (Fig. 5C).

Application to scRNA-seq of human lung diseases. We previously
performed single-cell transcriptomic analyses of lung samples from
patients with lymphangioleiomyomatosis1 and identified a unique
population of cells termed LAMCORE that were readily distinguished
from endogenous lung cell types and shared closest transcriptomic
similarity to uterine myocytes in both normal and LAM uteri1. In the
present work, we re-aligned this dataset to the hg38 reference genome
and performed automated cell type annotation using the LungMAP
Human Lung CellRef Seed. A total of 31 cell types were predicted from
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the two LAM lungs (Fig. 6A–C) in comparison with 18 cell types pre-
dicted from theoriginal publication1. Cell type predictionswere largely
consistent with the original clustering-based annotations1, but more
cell subtypes not reported in the original study can be distinguished
using CellRef. Importantly, the previously identified LAMCORE cells (73
cells) had the lowest average prediction score below the cutoff line
(Fig. 6D), supporting the notion that this LAMCORE cell population was
not similar to normal lung cell types in the present LungMAP CellRef.

In the second use case, we used an idiopathic pulmonary fibrosis
(IPF) lung scRNA-seq dataset (GSE135893, 10X Single Cell 5’, 19 sam-
ples, 12 IPF lungs) (Fig. 6E–G). Habermann et al. reported the identifi-
cation of 31 cell types including a previously unrecognized KRT5-/
KRT17+ pathologic, ECM-producing epithelial cell population that was

highly enriched in IPF lungs11 (Fig. 6G, left panel). Using this data,
CellRef predicted 37 cell types and identified more endothelial and
rare epithelial cell subtypes (e.g., PNEC and ionocytes) (Fig. 6E). Most
importantly, the median prediction score of KRT5-/KRT17+ cells was
the lowest among all cells (Fig. 6F, G, right panel); significantly lower
than our default cutoff threshold, suggesting that this cell population
cannot be confidently mapped to any of the normal lung cell types in
CellRef and likely represents an atypical or pathogenic cell population.
In summary, these use cases provide proof-of-principle examples that
CellRef can be used to assist analysis of lung disease data and identify
potential disease-related cell clusters. Further morphological analyses
and functional validations are then needed to identify and characterize
any abnormal cell types or atypical cell states.
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Benchmark analysis of cell type accuracy and stability of the
LungMAP Human Lung CellRef
In addition to CellRef, prior healthy lung cell atlases have been
reported, including Travaglini et al.15 which included data from 3
human lungs, and the recently released integrated version of Human
Lung Cell Atlas (HLCA)37,38. The HLCA core reference was used, which
defined 58 lung cell types/states based on an integration of single-cell
RNA-seq data from 167 healthy samples from 107 individuals from 14
datasets37.

To assess and benchmark the accuracy of cell type identification
and marker genes prediction, we compared LungMAP human lung
CellRef with HLCA using multiple independent approaches. First, we
accessed the overall similarity/distinction of the two atlases based on
correlation analysis of pseudo-bulk expression of highly variable genes
(see “Methods” for details). Although the cell type names are not
identical, the correlations of cell type pseudo-bulk profiles between
HLCA and CellRef were highly consistent among the four major lung
cell lineages (Fig. 7A).Within each lineage,mostCellRef andHLCAcells
have a one-to-one mapping (Fig. 7A). In addition, each reference
identified several unique lung cell types or states (i.e., cell types do not
cluster together between the two references). Among these, the
chondrocytes, myoepithelial (MEC), ILC, Treg, and neutrophil cells
were unique in our CellRef, while subpleural fibroblast, AT2 pro-
liferating, and T cell proliferating were unique in HLCA. We summar-
ized the one-to-onemapped cell types and the unique cell types/states
in the Supplementary Fig. 10. In summary, the consensus across the
two lung atlases is very high, providing further assurance of accuracy.
By identification of common and unique cell identities across the two
atlases, our efforts represent an initial standardization step to begin
mapping a complex cell group with multiple names across different
lung atlases.

Next, we assessed and compared the accuracy of cell type iden-
tification and cell selective marker prediction via receiver operating
characteristic (ROC) curve analysis of cell type selective marker genes
ranking expression in the predicted cells, a method we developed and
incorporated into SINCERA pipeline30 (“Methods”). Using this
approach, we performed the single-cell ranking based on the expres-
sion of the marker genes of each cell type and compared the rankings
against the cell type annotations in reference to obtain an area under
ROC curve (AUC) for each cell type. A higher AUC represents a higher
accuracy of cell type identification in a reference. To ensure the fair
comparison, we first calculated the AUCs for mapped cell type pairs
between the two references using the cell typemarker genes identified
by HLCA. As shown in Fig. 7B, the average AUC of 97.7% is achieved for
CellRef, slightly higher than 97.2% for HLCA but with no significant
difference (P value = 0.262). Next, we performed the same analysis
using the cell type marker genes identified by CellRef (Supplementary
Data 5). The results were consistent (CellRef: 98.8%; HLCA: 96.1%)

(Fig. 7C). Using the CellRef markers, CellRef out-performed HLCA in
this case (P value = 8.345E−07) (Fig. 7C).

Next, we assessed and compared performance of CellRef and
HLCA using the data from first version of human lung atlas15 as the test
data. After the mapping using the CellRef Seed and HLCA, we found
that 43 out of 48 (89.6%) CellRef and 48 out of 58 (82.8%) HLCA cell
types were predicted and most of the predictions had a one-to-one
mapping (38 out of 43 CellRef clusters) (Fig. 8A–D). Disagreements
include CellRef interstitial macrophages (IM) which was subdivided
into HLCA monocyte and DC subsets and CellRef suprabasal cells was
subdivided into HLCA Basal resting and suprabasal cells. Vice versa,
HLCA myofibroblasts was subdivided into SCMF and ASMC in Cell-
Ref prediction; HLCA CD8 T cells were subdivided into CD8 T, NK,
Tregs, and ILC in CellRef prediction; platelets and Tuft cells were only
predicted by CellRef while some alveolar macrophage subtypes such
asmonocyte-derivedmacrophages, alveolarmacrophageproliferating
were only predicted by HLCA. Hence, all three versions of Lung Atlas
are highly consistent, with the different atlases providing potentially
diverse resolution levels resulting in some discrete lung cell
populations.

To quantitatively assess the validity of the cell population pre-
dictions between CellRef and HLCA, we applied three distinct cluster
stability measurements in the recently published single-cell integra-
tion framework scTriangulate18. In brief, scTriangulate aims to com-
pare the biological stability of conflicting clusters amongst multiple
annotations, such that each single cell can be assigned to the most
stable annotation. The stability metrics include reclassification statis-
tics (SCCAF)39, centroid-based reassignment (Reassign)18, and marker
gene specificity (Term frequency - Inverse Document frequency or TF-
IDF)18. SCCAF and Reassignmetrics measure whether the atlas leads to
definitive cell population predictions and with high confidence (i.e.,
cells canbe reproducibly re-classified to these clusters). A higher TFIDF
score suggests there are more unique/informative markers associated
with the defined cluster. Applying these stabilitymetrics to CellRef and
HLCA on the test data from Travaglini et al., we observed that, on
average, CellRef produced slightly higher SCCAF and Reassign scores
as compared to HLCA; while HLCA produced slightly higher TF-IDF
score than CellRef (Fig. 8E). Similarly, when applying these stability
metrics to CellRef and HLCA using their own data collections, CellRef
produced slightly higher scores on SCCAF and TF-IDF; as well as a
significantly higher score on cell re-assignment (p = 0.011) as com-
pared to HLCA (Supplementary Fig. 11). scTriangulate leverages the
computed stability scores to further assess themarginal importance of
each annotation (CellRef and HLCA) using a cooperative game theory
framework. scTriangulate predicted that 50% (n = 24/48) of the CellRef
cell types to be of higher confidence (AEC, AF1, AF2, AM, ASMC, CD8T,
cDC1, cDC2, Ciliated, Goblet, Ionocyte, LEC, Platelet, pMON, Supra-
basal, SVEC, VSMC), compared to 46% (n = 27/58) of the HCLA cell

Fig. 5 | Cell type annotation and evaluation using the LungMAP Human Lung
CellRef. A Schematic workflow of the automated cell type annotation and eva-
luation pipeline. B Distributions of cell type prediction scores in each test data.
Prediction scores using CellRef Seed (yellow bars) are comparable to those using
the complete CellRef (blue bars). Prediction scores (between 0 and 1) were calcu-
lated by the Seurat v4MapQuery function for each cell. Box center lines, bounds of
the box, and whiskers indicatemedians, first and third quartiles, andminimum and
maximumvalueswithin 1.5×IQR (interquartile range) of the box limits, respectively.
GSM5388411: 6228 cells, GSM5388412: 8329 cells, GSM5388413: 7143 cells,
GSM4504966: 8381 cells, GSM4504967: 8043 cells, GSM4035472: 5767 cells.
C Consistency of cell type predictions using the CellRef Seed and CellRef in each
test data. Consistency percentages (y axis) were calculated for cells in each test
dataset (color) passing different thresholds of prediction scores (x axis).
D–H Evaluation of automated cell type annotations for three of our test data
(GSM5388411/12/13, three scRNA-seq of normal human lungs). Evaluation of the
other three test data samples were shown in Supplementary Fig. 7. Basal and

suprabasal cells were combined in prediction. D UMAP visualization of cells with
prediction scores ≥ default cut-off (mean-1 standard deviation) and predicted
annotations with at least 5 cells. Cells were colored by automated cell type anno-
tations using the CellRef Seed as reference. Data from different donors were inte-
grated using Seurat’s reciprocal principal components analysis (RPCA) pipeline.
E Evaluation of cell type annotations using CellRef cell type markers from Sup-
plementary Data 2. F Percentages of cell typemarkers (Supplementary Data 2) that
are differentially expressed in their corresponding cell type predictions (n = 34 cell
types) in (D). Data are shown using violin plot with dot and error bars representing
mean ± SEM. G Heatmap visualization of expression of cell type specific differen-
tially expressed genes (DEGs).H The number of DEGs for each predicted cell type.
I Significantly enriched functional annotations using DEGs of the predicted AT2
cells: most enriched Gene Ontology Biological Processes (top) and ToppCell Gene
Sets (bottom). Functional enrichment analysis was performed using ToppGene
(https://toppgene.cchmc.org/enrichment.jsp). The minimum false discovery rate
(FDR) was set to 1e−300. Please see Fig. 2 for definitions of cell type abbreviations.
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types (AT2, aCAP, Pericyte,Mesothelium, Peribronchialfibroblasts and
Adventitial fibroblasts, etc.) (Fig. 8D). Hence, both atlases provide
unique and informative predictions, each with distinct benefits.

Next, we compared data integration in the human lung CellRef
andHLCAusing Local Inverse Simpson’s Index (LISI)17, whichcalculates
two metrics for each cell in the integration: (i) iLISI that measures the

number of data batches in the neighborhood of each cell, and (ii) cLISI
that measures the number of cell types in the neighborhood of each
cell. Based on the assumption of LISI, iLISI scores are close to the batch
numbers for a well mixing of balanced data batches, meanwhile the
ideal cLISI score is close to 1 for a well separation of cell types in the
integration. Since the total number of batches in CellRef and HLCA are
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different, for each reference, we calculated the iLISI scores for cells
within each cell type and normalized the scores by the total number of
batches in each cell type. The overall distributions of iLISI scores in
both CellRef and HLCA are not ideal, on average about 15% for CellRef,
and 5% for HLCA, respectively (Supplementary Fig. 11), likely due to
that both atlases were constructed using large collections of hetero-
geneous data from different biological regions and conditions rather
than a well-designed balanced cohort. We speculate whether LISI is a
suitable approach to evaluate large-scale heterogenous single-cell data
integration. Nevertheless, CellRef consistently outperforms HLCA on
the measurements of iLISI, and has the cLISI scores close to 1, indi-
cating a well separation of the CellRef cell types (Supplemen-
tary Fig. 11).

Last, we evaluated the LungMAP mouse lung CellRef using the
three stability metrics calculated by scTriangulate18 and the marker-
based AUC analysis30 (“Methods” and Supplementary Data 6). Results
supported thehigh accuracy, cluster stability, andmarker specificity of
ourmouse lung reference cell types (Supplementary Fig. 12;meanAUC
95.8, mean SCCAF score: 0.970, mean Reassign score: 0.881, mean
TFID10 score: 0.892).

Discussion
In the present study, we developed a computational approach to
integrate large scale and heterogeneous sc/snRNA-seq datasets and
constructed comprehensive lung single-cell references, termed Lung-
MAP Human Lung CellRef and LungMAP Mouse Lung Development
CellRef, in accordance with a well-defined cell type dictionary derived
from LungMAP CellCards10. Evaluation functions were developed in
our pipeline to perform fast and comprehensive evaluation of the
predicted cell type annotations. User-friendly web interfaces were
developed to facilitate access, visualization, and utilization of the
LungMAP CellRefs. For advanced users who are interested in anno-
tating their own datasets using the LungMAP CellRefs, we established
Azimuth instances to support online automated cell type annotations
of users’ own scRNA-seq or independently produced compendiums.
Regarding the choice of the classification algorithm (Azimuth), this
algorithm leverages Seurat’s label transfer method, which performs
well in prior diverse benchmarking evaluation studies40 and has been
broadly used. Importantly, it is currently the fastest and most acces-
sible approach for reference-based label transfer, data pre-processing
and exploration, and is compatible with datasets containing hundreds
of thousands of cells processing in just a fewminutes. LungMAP plans
to update the specific version of Azimuth as it is updated in the future.

The LungMAP Human Lung CellRef contains a total of 347,970
cells and 48 well-defined lung cell types, covering major cellular het-
erogeneity in the four regions: trachea, bronchi, SMG, and lung par-
enchyma. The CellRef identified cell types mapped to the cell type
nomenclature in the LungMAP CellCards10. In addition, based on
unbiased clustering analysis, we identified cell types that are not yet

included in the CellCards but reported in recent scRNA-seq analyses,
including deuterosomal cells14, suprabasal cells14, systemic venous
endothelial cells21, mature dendritic cell subset, SMG duct cells,
respiratory airway secretory cells (RAS, a recently identified multi-
potent secretory cell population in respiratory bronchioles), and
megakaryocyte/platelets15,22. During the CellRef construction, we dis-
covered cell clusters selectively expressing marker genes of these new
cell types, and thus we have included these cell types into the Lung-
MAP Human Lung CellRef. We will continue to incorporate more cell
types in accordance with new findings from single cell and/or func-
tional studies.

To our best knowledge, two earlier versions of human lung
references15,37 have been published or are in preprint. We compared
and incorporated thefirst lung reference intoourCellRef construction.
Further, we carefully compared all annotated cell types in the recently
released integrated version of Human Lung Cell Atlas (HLCA) with
LungMAP CellRef based on the highly variable genes from HLCA and
CellRef. Although not all cell type names are identical, the majority of
the HLCA annotated cells align well with a clearly defined cell type in
LungMAP CellRef. Furthermore, each reference identified several
unique lung cell types or states (i.e., cells that don’t align to any given
cell cluster in the other reference). In addition, we performed a series
of benchmark studies to compare the two integrative lung atlases
including ROC-based analyses to cross-validating the accuracies of
shared cell type identifies in both references and used scTriangulate18,
a recently described cluster stability assessment framework to quan-
titatively assess and compare the cluster stability of the two atlases
based upon three independent statistical metrics. We found that cell
type predictions using CellRef and HLCA were highly consistent, with
discrete and stable populations in both atlases. Each reference had
approximately an equal percentage of cell type predictions that were
more confident in one than the other. Hence, both atlases provide
unique and informative predictions, with benefits to each atlas. Gen-
erating a consensus blueprint of normal human lung with unified cell
ontology and nomenclature is fundamentally important and challen-
ging, requiring cross consortia efforts andopendiscussions among the
pulmonary research community at large. Our efforts herein represent
the beginning of initiatives to build a consensus atlas by mapping a
complex cell group with multiple names across different lung atlases.
Further cross-team discussions and comparisons are needed to reach
the ultimate goal of a unified nomenclature and standardized data
processing that are needed to create an enduring resource for the
research community.

The present LungMAPCellRefs has several unique features: (1)We
developed a computational pipeline and a guided approach to con-
struct and evaluate the reference which can be reused for future
updates of LungMAP CellRef or references of other organs; (2) The
LungMAPCellRef identifies cell types in accordancewith the LungMAP
CellCards10, a rigorous catalog of lung cells validatedbyboth single cell

Fig. 6 | Application of LungMAPHuman Lung CellRef to disease lungs. AUMAP
visualization of a published scRNA-seq of human lungs with LAM1. Cell colors
represent cell identities predicted in Guo et al., 2020, including a unique disease-
related cell population, named LAMCORE cells (magenta cell cluster). B UMAP
visualizations of cells predicted using the CellRef Seed as reference. Basal and
suprabasal cells were combined in theprediction. Prediction scores (between0and
1) were calculated by the Seurat v4 MapQuery function for each cell. Cells with
prediction score >= the default cutoff (i.e., the mean minus 1 standard deviation
value) were shown. Three singleton cell type predictions were not included.
C Evaluation of cell type predictions using expression of representative CellRef
marker genes. Megaka./Platelet: Megakaryocyte/Platelet.DDistributions of the cell
type prediction scores in each of the original cell identities (n = 18 cell types;
abbreviations were defined in Guo et al.1). The black and red horizontal line
represents the mean and (1 standard deviation lower than the mean) value of the
prediction scores, respectively. E–G UMAP and boxplot visualizations of

application of CellRef to a published scRNA-seq of human lungs with idiopathic
pulmonary fibrosis (IPF)11. EUMAP visualization of cells predicted using the CellRef
Seed. Basal and suprabasal were combined, T cell subsets, and monocyte subsets
were combined in the prediction. F UMAP visualization of cells colored by the
prediction scores. G Left: UMAP visualization of cells colored by the original cell
identities (n = 31 cell types; abbreviationswere defined inHabermann et al.11). Right:
boxplot visualization of the distribution of prediction scores in each of the original
cell identities. The black and red horizontal line represents the mean and (1 stan-
dard deviation lower than the mean) value of the prediction scores, respectively.
The disease-associated KRT5-/KRT17+ cells had prediction scores below the cutoff
line. The number of data points in each boxplot in (B) and (G) can be found in Fig. 6
source data table. In (D) and (G), Box center lines, bounds of the box, and whiskers
indicate medians, first and third quartiles, and minimum and maximum values
within 1.5×IQR (interquartile range) of the box limits, respectively. Please see Fig. 2
for definitions of CellRef cell type abbreviations.
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and functional studies. The CellCards10 curation effort, is now a pan-
consortium effort which includes multiple laboratories outside of
LungMAP to define standardized cell populations, labels, markers, and
functional descriptions, leveraged by CellRef. Thus, we consider Cell-
Ref a more knowledge driven as opposed to solely cluster driven,
which in our view represents a sustainable and reliable model; (3)

During CellRef construction, we identified the best seed populations
for each cell type (CellRef Seeds), whichwas not only used to construct
the complete CellRef but can be independently used for automated
cell type annotation and online visualization with improved compu-
tational efficiency and hardware requirements; (4) We constructed
LungMAPCellRef for both human andmouse, the twomost commonly
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Fig. 7 | Assessment of cell type prediction accuracy of the LungMAP Human
Lung CellRef. A Heatmap visualization of Pearson’s correlations of cell types
between the human lung CellRef and the Human Lung Cell Atlas (HLCA)37. A
pseudo-bulk profile was created for each cell type of either CellRef or HLCA by
averaging each gene’s expression in the cells of the cell type. Cell types were
clustered into four modules, each corresponding to one of the four major cell-
lineages. Correspondences of CellRef and HLCA cell types within each of the four
modules were shownbased on the hierarchical clustering analysis.B,CAssessment
of cell type accuracy based on marker gene expression. B Area under the receiver
operating characteristic (ROC) curve (AUC) values for each of the mapped cell
types (n = 42) in CellRef (orange) and HLCA (blue) calculated using the cell type
selective marker genes identified from the HLCA study. Left: summary of the AUC

values using violin plots. Middle: AUC values for each of the mapped cell types.
Right: using CellRef AF2 (HLCA adventitial fibroblasts) as an example to show the
ROCcurves labeledwithAUCvalues and90%confidence interval.CAUCs values for
each of the mapped cell types (n = 42) in the CellRef (orange) and HLCA (blue)
calculated using the cell type selective marker genes identified by CellRef (Sup-
plementary Data 5). Left: summary of the AUC values using violin plots. Middle:
AUC values for each of the mapped cell types. Right: using CellRef AF2 (HLCA
adventitial fibroblasts) as an example to show the ROC curves labeled with AUC
values and90%confidence interval. In both (B) and (C), the black dot and error bars
represent mean ± SEM. p value represents significance of difference assessed using
two-tailed paired Welch’s t test. CellRef cell type abbreviations are described
in Fig. 2.

Fig. 8 | Assessment of cell type stability of automatedannotationusingCellRef.
A, B UMAP projection of scRNA-seq (Travaglini et al.15, n = 3 human lungs) with
Azimuth projected cell type annotations using the LungMAP Human Lung CellRef
Seed (A) or using the Human Lung Cell Atlas (HLCA)37 (B) as the reference.
C Corresponding cell-population assignments of CellRef and HLCA (mapping
percentage relative to CellRef). D Cells colored by “winning” annotations from
CellRef or HLCA determined by scTriangulate based on stability assessments
(shown in E) annotations. E Violin plot visualization of stability metric scores

calculated using scTriangulate, including reclassification accuracy (SCCAF and
reassign) ormarker gene specificity (TF-IDF score), for all Azimuth assigned CellRef
or HLCA cell populations (n = 42 cell populations predicted using the CellRef Seed;
n = 48 cell populations predicted using HLCA) in Travaglini et al. 2020. The black
dots and error bars represent mean± SEM. p value represents significance of dif-
ference assessed using two-tailed unpaired Welch’s t test. Please see Fig. 2 for
definitions of CellRef cell type abbreviations.
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used species, and provide options for users to use either scRNA-seq or
snRNA-seq based CellRef separately based upon the input sequence
type to achieve better performance on cell type annotation; (5) Web
portals were developed by our LungMAP research centers and data
coordination center to facilitate resource sharing andmaximize use of
the constructed references by the research community.

While these efforts illustrate the power of reference-guided clas-
sification from a comprehensive reference, we note there are still
several areas for improvement in both CellRef and independent
initiatives. First, the current iteration of CellRefs does not yet clearly
define the spectrum of possible immune sub-populations and transi-
tional cell states. Such populations are likely to vary with age and
disease. Antibody-based approaches, e.g., CITE-seq or flow cytometry,
are likely to aid in the annotation of lung immune cell sub-
populations41. Future lineage/compartment specific reference con-
structions will be useful in providing enhanced resolutions and gran-
ularity at sub-cell type and cell transitional states levels. Further, the
current data collections do not have sufficient statistical power for
precise annotation of certain rare lung cell types, e.g., SMG duct cells.
Region specific Laser Capture Microdissection (LCM) and cell sorting
will be useful in identifying and capturing rare lung cell types and their
RNA expression patterns. Finally, there are unique disease-associated
cell-populations, including infiltrating cell populations, which will
likely necessitate the classification and inclusion of disease specific cell
populations and cell-states1,11. Thus, data integration and annotations
across independently derived normal healthy and disease atlases or
clustering solutions are a likely a new direction for future atlas efforts.

In summary, we developed a computational pipeline utilizing a
cell type dictionary to consolidate single-cell transcriptomic datasets
and constructed LungMAP CellRefs and CellRef Seeds for normal
human and mouse lung. CellRef Seed has an equivalent prediction
power and produces consistent cell annotation as the full CellRef, but
with significantly improved computational efficiency and hardware
requirements; facilitating utilization for automated cell type annota-
tion and online visualization, addressing a significant computational
challenge for single-cell reference applications. Using independent
datasets, we demonstrated the utility of CellRefs for automated cell
type annotations of normal lung and for potential identification of
disease-related cells based on their deviation from normal pulmonary
cells. Our CellRefs, along with the developed analytic and web-based
tools, are freely available to the pulmonary research community to
facilitate hypothesis generation, research discovery, and identification
of cell type alterations in disease conditions.

Methods
Ethical approval
UPenn LungMAP cohort used samples from de-identified non-used
lungs donated for organ transplantation via an established protocol
(PROPEL, approved by University of Pennsylvania Institutional Review
Board)with informed consent in accordancewith institutional andNIH
procedures, and provided by next of kin or healthcare proxy. All
patient information was removed before use. This use does not meet
the current NIH definition of human subject research, but all relevant
guidelines and regulations and all institutional procedures required for
human subject research were followed throughout the reported
experiments. CCHMC LungMAP cohort used de-identified human
bronchus samples provided by the Marsico Lung Institute Tissue
Procurement andCell Culture Core at the University of North Carolina,
Chapel Hill, NC (UNC) from lung transplant organ donors. Participants
did not receive monetary compensation and consent was obtained by
United Network for Organ Sharing affiliated Organ Procurement
Organizations (UNC Office of Human Research Ethics protocol # 03-
1396). For mouse study, animal protocols (2C12114, 2015-0060, 2018-
0072, and 2021-0053) were approved by the Cincinnati Children’s

Hospital Medical Center Institutional Animal Care and Use Committee
in accordance with NIH guidelines.

Collection and pre-processing of single cell/single nucleus
RNA-seq of human lung
We collected eight published and two unpublished sc/snRNA-seq
datasets of human lung for LungMAP human lung single-cell reference
construction. For the published datasets, unique molecular identifier
(UMI) countmatrix of gene expression in single cellswere downloaded
from Gene Expression Omnibus (GEO), European Genome-phenome
Archive (EGA), or Synapse.org using the following accession numbers:
GSE12296012, GSE13589311, GSE13417416, GSE1368322, GSE16138213,
EGAS0000100408214, GSE1715243, syn2104185015. For all datasets,
hg38-alignment-based data from normal/control lung samples
were used.

The CCHMC LungMAP cohort performed scRNA-seq experiments
of human lung submucosal glands (SMG) obtained from five de-
identified normal lungs. We isolated SMG tissue (~1mm in long) from
the human lung bronchus by microdissection under a stereo micro-
scope (Leica M165 FC) using fine scissors and forceps, followed by
dissociating the SMG in cocktail of prewarmed digestion solution of
0.2mg/mL collagenase II (Thermo Fisher; cat. no. 1710105) and 0.1mg/
mL DNase I (Sigma-Aldrich; cat. no. DN25) in PneumaCult-EX medium
(Stem cell technologies; cat. no. 05008) containing 1% Penicillin-
Streptomycin (Thermo Fisher; cat. no. 15-140-163) for 30min. The
dissociated single cells were filtered using a strainer (100 µm; Corning;
cat. no. 431752) and centrifuged at 300 × g for 5min, the supernatant
wasdiscarded. The single cellswere resuspendedwithHanks’Balanced
Salt Solution (Thermo Fisher; cat. no. 88284) and analyzed using a 10x
Single Cell 3’ v3 sequencing kit following the protocol provided by the
company. Sequencing read alignment to the hg38 human genome and
UMI-based gene expression matrix generation were performed for
each sample using 10x Cell Ranger v5.

The normal samples used for the UPenn cohort in this study were
from de-identified non-used lungs. scRNA-seq experiments (10x Single
Cell 3’ v2 and v3 chemistry)wereperformed asdescribed in Basil et al.4.
In brief, pleura and visible airways/blood vessels were dissected away,
mechanically minced into ~2mm pieces, and processed into a single-
cell suspension. After a single-cell suspension was obtained, cells were
loaded onto a GemCode instrument (10x Genomics, Pleasanton, CA,
USA) to generate single-cell barcoded droplets (GEMs) according to
themanufacture’s protocol. The resulting libraries were sequenced on
an Illumina HiSeq2500 or NovaSeq instrument.

Data pre-processing. For published datasets with original cell type
annotations, we included cells selected in the original analyses. For
published datasets without original cell type annotations (Reyfman
et al.12) and unpublished datasets (UPenn LungMAP cohort and
CCHMC LungMAP cohort), the following quality control (QC) criteria
were applied to cell prefiltering, including 500–7500 expressed genes,
less than 25% of UMIs mapped to mitochondrial genes, and less than
50,000 total UMIs. For scRNA-seq data from Donor29 in the CCHMC
LungMAP cohort, we used 1500–7500 as the criterion for the “number
of expressed genes” based on its unique cell distributions. After pre-
filtering, Scrublet42 (v0.2.3) was performed to identify and remove
potential doublet cells from each data sample. In total, 505,256 cells
from 148 sc/snRNA-seq samples from 104 donors were used as input
for our guided pipeline to construct the single-cell reference of normal
human lung.

Mice and Drop-seq of mouse lung development
C57BL/6J mice (Jackson Laboratories), embryonic days (E) 16.5, 18.5 to
postnatal days (PND) 1, 3, 7, 10, 14, 28, were used for single-cell RNA-
seq experiments using Drop-seq43. All mice were time mated. The
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presence of a vaginal plug was defined as E0.5. PND1 was defined as
24 ± 6 h after birth.

Lung dissection, single cell suspension, and Drop-seq library
preparation of mouse lungs were described in the Methods of Guo
et al.22. Data from PND1 was published in Guo et al.22. The alignment of
paired-end sequence reads to mouse genome (mm10) and the gen-
eration of digital expression matrix were processed using Drop-seq
tools (https://github.com/broadinstitute/Drop-seq/, v2.3.0) with
default parameters. The expression matrix was generated by counting
the number of uniquemolecular identifiers (UMIs) per gene per cell. In
total, gene expression in 17 Drop-seq samples from eight time points
(Supplementary Data 3) of mouse lung development were generated.
For each data sample, the following pre-processing steps were per-
formed. EmptyDrops44 in the Bioconductor package DropletUtils
(v1.4.3) was used to identify cell barcodes with expression profiles
significantly deviated from the profiles of empty droplets in each data
sample with the parameters: lower = 100, FDR <0.01. Filters were then
applied to keep cells with 400–7500 genes, less than 40,000 UMIs,
and less than 10% UMIs mapped to mitochondrial genes. Potential
doublet cells in each sample were predicted and removed using
Scrublet42. Ambient background RNAs were cleaned from gene
expression in each cell using SoupX (v1.6.2) using contamination
fractions automatically estimated from data.

Guided construction of single-cell reference
Our guided single-cell reference (CellRef) construction workflow
consists of four major steps: data integration, candidate cell cluster
identification, seed cell identification, and consensus prediction for
CellRef. We compiled a cell type dictionary containing a list of cell
types and associated marker genes, including positive (selectively
expressed in the cell type) and negative (no expression in the cell type)
markers. We required at least two positive markers for each defined
cell type to be included in our CellRef construction.

(i)Data integration. Multiple algorithms have been integrated into
our Rworkflow, includingmutual nearest neighbor (MNN)matching45,
reciprocal principal component analysis (RPCA) in Seurat20 (v4.1.0),
and Harmony17 (v0.1.0). By default, we use the align_cds function in
Monocle 3 (v1.0.0) to perform MNN matching based data integration
and batch correction. This is based on the UMAP inspection on the
batch removal effects and cluster stability metrics measurement after
applying different integration methods. Before integration, we merge
data from all datasets into a single gene expression matrix, use it to
construct aMonocle 3 cell_data_set object, and use the preprocess_cds
function in Monocle 3 to normalize data to address read depth dif-
ferences, regress out cell cycle effects and mitochondrial percentage
differences, and calculate principal components representing major
variances in the data.

(ii) Candidate cell cluster identification. Using the integrated data,
we identify candidate cell clusters for each cell type listed in the dic-
tionary using a combination of unbiased clustering algorithm and
marker-based single-cell ranking. We perform unsupervised clustering
analysis to group cells into distinct cell clusters basedon transcriptomic
similarity. By default, we perform clustering using the Leiden
algorithm46 implemented in the cluster_cells function in Monocle 3.

Followed by the clustering analysis, we perform a “single cell
ranking” for each cell type i listed in the dictionary. Let Pi be the set of
positive marker genes of cell type i. For each marker gene x 2 Pi, we
identify Zxi, a set of cells with positive (>0) zscore-scale expression of
x, and generate Rxi, a ranking of cells in Zxi in the descending order
based on zscore-scaled expression of x. We then aggregate all rankings
Rxi∣x 2 Pi

� �
into a single global ranking of cells, denoted as Ri, for the

cell type i, aiming to identify cells that are ranked highly by multiple
cell type marker genes. The aggregation was performed using an
order-statistics-based robust rank aggregation algorithm, which
assigns a score to each cell in Ri to represent significance of the cell

that is ranked consistently better than expected under a null hypoth-
esis derived from Rxi∣x 2 Pi

� �
. Cells passing selection criteria were

used as candidates for cell type mapping.
Using the clustering and single cell ranking results, we determine

candidate cell clusters for each cell type i as follows. Letφi be the set of
cells passed selection criteria (by default, significance score <0.1) cells
in Ri and

P
be the cell clusters that we obtained from the unbiased

clustering analysis. We calculate the precision and recall values
for each cluster σj 2

P
as follows: precision i, jð Þ= ∣φi \ σj ∣=∣σj ∣,

recall i, jð Þ= ∣φi \ σj ∣=∣φj ∣, where ∣φj ∣ and ∣σj ∣ denote the number of cells
in φj and σj , respectively, and ∣φi \ σj ∣ denotes the number of cells in
both σj and φj . The candidate cell clusters for cell type i is determined
as Ai = fσj 2

P
∣precision i, jð Þ≥ F , recall i, jð Þ≥ S,F 2 0,1½ �,S 2 0,1½ �g. By

default, we use F =0.05 and S = 0.25. A QC inspection of the candidate
cell clusters is recommended to ensure the accuracy for the CellRef
construction.

In summary, in step 2, we use unsupervised clustering in con-
jugation with marker-based single-cell ranking to select most relevant
cell groups candidates. The use of unbiased clustering before seed cell
identification can also provide an opportunity to discover new cell
types that have not yet been defined in the dictionary. For example, if
the marker genes of a newly reported cell type are co-selectively-
expressed in our cell clusters, this new cell type and marker genes are
added to the cell type dictionary and then included in the downstream
seed cell identification and CellRef construction.

(iii) Seed cell identification. In this step, we aim to identify cells that
best represent the identity of each cell type using single-cell ranking
based on marker genes in the dictionary. These cells will then serve as
seeds to construct the CellRef. For a cell type i, we first identify cells
with expression of any negativemarkers of i or expressed less than two
positivemarkers of i and remove those cells fromAi (the candidate cell
clusters of cell type i that we identified in step 2). Using the remaining
cells inAi, weperform single cell rankingusing the positivemarkersof i
as described in step 2 and generate an aggregated ranking of cells.
Top-ranked cells in the aggregated list will be selected as the seed cells
for cell type i.

(iv) Consensus prediction. Once all seed cells are identified, we use
them to predict cell type annotations of all cells in the collection using
two independent automated cell type annotation algorithms, Seurat’s
label transfer5,20 and SingleR6 (v1.6.1). For the Seurat’s label transfer
based prediction, we integrate scRNA-seq data of the “seed” cells using
SCTransform normalization based reciprocal principal component
analysis (RPCA) integration, perform SCTransform normalization on
gene expression in each of our collected datasets, and predict cell type
annotations using theMapQuery function in Seurat v4. A predicted cell
type and an associated prediction score were assigned to each query
cell based on transcriptomic similarity between the query cell and the
“seed” cells. Cells with low prediction scores (by default, lowest 10%)
were excluded from the CellRef construction. For the SingleR-based
prediction, we normalize gene expression in the seed cells and in a
query dataset by total UMIs per cell and use the SingleR function with
default parameters to predict cell type annotations for the query cells.
We removed poor-quality or ambiguous predictions using the prune-
Scores function. Let Y be the set of cells with consistent cell type
predictions in both methods. We calculated a k-nearest-neighbor
purity (kNN-purity)metric for each cell in Y , measuring the percentage
of the cell’s k nearest neighbors (by default, k = 20) that have the same
cell type prediction. The complete CellRef was comprised of the seed
cells and the cells that have consistent cell type predictions in both
methods and with kNN-purity > =0.6.

Construction of the LungMAP Human Lung CellRef
We constructed a cell type dictionary for normal human lung (a list of
cell types and their associated marker genes) based on the cell types
and marker genes listed in the LungMAP CellCards10. In addition, we
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extended the dictionary to include seven human lung cell types
reported in recent single-cell studies but not yet inCellCards, including
systemic venous endothelial cell (SVEC), deuterosomal cell, sub-
mucosal gland (SMG) duct cell, megakaryocyte/platelets, suprabasal
cell, mature dendritic cell (maDC), and respiratory airway secretory
cell (RAS). In total, 48 cell types are defined in the dictionary.

Using this cell type dictionary, we performed the guided CellRef
construction described above using seven scRNA-seq datasets. The
original data were aligned to three versions of 10x Cell Ranger hg38
reference genome. To reduce the impact of reference genome differ-
ences on the data integration, we used the expression of 32,278
common gene features (based on Ensembl IDs) among the three
reference genome versions to perform data integration (considering
104 donors as individual batches) and candidate cell cluster identifi-
cation as described above. A curation was performed on the candidate
cell cluster assignment by inspection of marker genes expression in
the cell clusters. Based on the curated candidate cell clusters for each
cell type, we selected up to the top 200 cells with the lowest scores as
the seed cells for a cell type. In total, 8080 seed cells were identified for
48 normal human lung cell types. We named this collection of seed
cells as the LungMAPHumanLungCellRef Seed. To facilitate the use of
the CellRef Seed for automated cell type annotation, we normalized
gene expression in the seed cells of each datasets using SCTransform,
integrated data from different datasets using the RPCA pipeline, and
performed UMAP analysis on the integrated data.

We performed a power analysis and determined the minimum
cell numbers required for a lung cell type to achieve a power > =0.8.
The analysis was performed as follows. First, a Cohen’s d effect size
was calculated for each cell type using the averaged mean expres-
sion and variance of all genes in the cell type of each individual
donor when compared to those in all the other cells. We grouped
effect size values to the following categories: small (0:2≤d<0:5),
medium (0:5≤d<0:7), large (d ≥0:7) and then used the gPower
software to calculate a sample size required by each cell type using
the following parameters: alpha=0.01, two-tailed t test, beta = 0.2,
allocation ration = 1. Based on the calculation, aminimumof 50 cells
is required to reach the statistical power. 44 out of the 48 human
lung cell types meet the criteria; 4 cell types had less than 50 seed
cells identified, including chondrocytes (n = 6), ILC (n = 14), mega-
karyocyte/platelets (n = 29), maDC (n = 34).

Using the identified seed cells, we further predicted cell type
annotations for all other cells in the 10datasets collected. Both Seurat’s
label transfer and SingleR were applied as described above. The
LungMAP Human Lung CellRef (n = 347,970 cells) was comprised of
the seed cells and the cells with consistent cell type predictions and
with kNN-purity scores >=0.6. 157,286 cells that did not pass the cri-
teria were not included, considering the current version of CellRef is
guided by a knowledge-based cell directory, those cells may include
transitional states or cell types that have not yet defined by the current
CellRef.

To facilitate the use of the LungMAP Human Lung CellRef for
automated cell type annotation, we normalized gene expression in
each donor in the CellRef using SCTransform, integrated data from
different donors using the RPCA pipeline, and performed UMAP ana-
lysis on the integrated data. During the RPCA integration, we identified
“anchors” using the FindIntegrationAnchors function, filtered out
“anchors” mapping cells with different cell type predictions, and then
used the remaining “anchors” for data integration using the Inte-
grateData function.

Construction of the LungMAPMouse LungDevelopment CellRef
We constructed a cell type dictionary for mouse lung (Supplemen-
tary Data 4) based on our constructed dictionary derived from the
LungMAP CellCards. In addition, because of the developmental
design of the mouse data, we extended the mouse lung cell type

dictionary to include progenitor and transitional cells reported in
recent single-cell studies, including Sox9 + /Id2+ distal epithelial
cells23,24, AT1/AT2 cell, Foxf1 + /Kit+ endothelial progenitor cells29,
and proliferative mesenchymal progenitor cells30,31. We used Seurat
to perform SCTransform based data normalization and performed
UMAP analysis on the identified LungMAP Mouse Lung Develop-
ment CellRef Seed and the constructed LungMAP Mouse Lung
Development CellRef.

Automated CellRef annotation of scRNA-seq of normal and
diseased human lung
We downloaded and processed published scRNA-seq datasets from
normal and disease human lung to demonstrate the utility of auto-
mated cell type annotation using the LungMAP human lung CellRefs.

Processed data of scRNA-seq of normal human lung were down-
loaded from GEO using access numbers GSM5388411, GSM5388412,
GSM5388413, GSM4504966, GSM4504967, and GSM4035472. For
GSM5388411, GSM5388412, and GSM5388413, cells reported in the
original study33 (n = 6228, 8329, and 7143 cells, respectively) were
included. For GSM4504966, GSM4504967, and GSM403547, cells
(n = 8381, 8034, and 5767, respectively) passing the following criteria
were included: at least 500 expressed genes and less than 10% of UMIs
mapped to mitochondrial genes.

For scRNA-seq of human lung with lymphangioleiomyomatosis
(LAM), we re-processed the data using hg38 reference genome and
selected cells (n = 12,374) reported in the publication1 for the auto-
mated CellRef annotation. For scRNA-seq of human lung with idio-
pathic pulmonary fibrosis (IPF), we downloaded the Seurat object
(GSE135893_ILD_annotated_fullsize.rds.gz) from GEO GSE135893. Data
(n = 57,682 cells) from 19 scRNA-seq samples from 12 IPF lungs were
used for the automated CellRef annotation.

Automated CellRef annotation of each testing dataset was per-
formed using the Seurat reference mapping algorithm5,20 (Find-
TransferAnchors and MapQuery functions) using the LungMAP
Human Lung CellRef or LungMAP Human Lung CellRef Seed as the
reference. FindTransferAnchors was run with the following para-
meters: normalization.method = ‘SCT’, reference.reduction = ‘pca’,
dims = 1:200. MapQuery was run with the following parameters:
reference.reduction = ‘pca’, reduction.model = ‘umap’.

Evaluation of automated CellRef annotation based on prior
knowledge
We developed an R script to evaluate cell type annotations pre-
dicted by the LungMAP CellRefs based on prior knowledge (CellRef
markers, cell type signature genes, and enriched gene sets or
pathways). Currently, the functions include: (i) Dotplot visualiza-
tion of expression levels and frequencies of CellRef marker genes in
each of the predicted cell types. Selective and abundant expression
of marker genes in their corresponding cell types (p value of two-
tailed Wilcoxon rank-sum test <0.05, fold change > =1.5 and
expression percentage >=0.2) indicate a concordance of cell iden-
tities in the predictions and in the CellRef. (ii) Identification of sig-
nature genes for each of the predicted cell types. By default, the
identification was performed using Seurat’s FindAllMarkers func-
tion based on the following criteria: adjusted p value of two-tailed
Wilcoxon rank-sum test <0.1, pct > =20%, and fold change > =1.5. A
sufficient number of signature genes (e.g., >=50 genes) would be
expected to define a distinct cell type. (iii) Gene sets functional
enrichment analysis (Gene Ontology Biological Process, Pathways)
associated with the identified cell type signature genes. Functional
enrichment analysis was performed using R package gprofiler2
(v0.2.1). Given scRNA-seq data with automated cell type annota-
tions, the R script can generate the visualizations and evaluations
for all predicted cell types at once and compile results into an
evaluation report using R markdown.
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Evaluation of automated CellRef cell type annotation using
original annotations of published scRNA-seq data
We downloaded the original cell type annotation (45 cell types and
states)33 of scRNA-seq of adult human lung (GSM5388411,
GSM5388412, and GSM5388413) from GEO using GSE178360. The cell
type nomenclature and resolutions in the original annotation were
different from the CellRef annotations. To match the cell populations
in the two annotations for comparison, we performed the following:
(i) exclude cell types or states with less than 50 cells, (ii) exclude
unique cell types/states that were only present in one annotation, and
(iii) merged cell sub-populations that were defined at different gran-
ularities between the original and the CellRef annotations. After the
processing, 24 matched cell populations were used for the compar-
ison, including AT1, AT2, basal, secretory, SCGB3A2+, ciliated, CAP1,
CAP2, arterial/venous/lymphatic/systemic venous endothelial, airway/
vascular smooth muscle, alveolar fibroblast, macrophage, dendritic,
monocyte, B, plasma, mast/basophil, neutrophil, natural killer, and
T cells. For each cell population, we calculated precision, recall,
accuracy, F1 score, and Matthews correlation coefficient (MCC) to
quantify the consistency between the original andCellRef annotations.
These metrics are defined as follows: precision=TP=ðTP + FPÞ,
recall =TP=ðTP + FNÞ, accuracy= ðTP +TNÞ=ðTP +TN + FP + FNÞ,
F1 = 2 × ðprecision× recallÞ=ðprecision+ recallÞ, and MCC = ðTP ×TN�
FP × FNÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP + FPÞ× ðTP + FNÞ× ðTN + FPÞ× ðTN + FNÞ

p
. For a cell

population i, TP (True Positive) represents the percentage of popula-
tion i cells predicted by the CellRef that were also identified as popu-
lation i cells in the original annotation; FP (False Positive) represents
the percentage of population i cells predicted by the CellRef that were
not in the population i of the original annotation; TN (True Negative)
represents the percentage of cells not annotated as population i by the
CellRef andwere also not in the population i of the original annotation,
FN (FalseNegative) represents the percentage of cells not annotated as
population i by the CellRef but were in the population i of the original
annotation.

Evaluation of CellRef cell type annotations using 10-fold cross
validation
We performed 10-fold cross validation for both LungMAP human and
mouse CellRefs. In each case, we randomly divided the data into 10
equal parts using the KFold function in the R package rBayesianOpti-
mization (v1.2.0). The partitions were performed for each cell type so
that each of the 10 data parts contains similar cell type distributions.
Cell types with more than 500 cells were used in the cross validation
analysis so that eachdata part containedmore than 50 cells of each cell
type. The design is based on our power analysis whichdetermined that
50 is theminimumcell numbers required for a lung cell type to achieve
a power > =0.8. For each round of validation, we used 9 parts as
training data to predict cell types of the remaining part (testing data)
using the Seurat reference mapping algorithm. In total, 10 runs of the
training and testing were performed. At each run, a different data part
was used as the testing data and the prediction performance was
measured by calculating an F1 score and a Matthews correlation
coefficient (MCC) for each cell type in the testing data. We reported
the distributions of the F1 and MCC scores of all cell types in a cross
validation analysis and considered the median scores as the overall
performance.

Cell type stability analysis
We calculated cell type stability metrics (SCCAF39, Reassign18,
TFIDF1018) using scTriangulate18 (v0.12.0, https://github.com/
frankligy/scTriangulate). Single-cell clustering assessment framework
(SCCAF) randomly splits data into a training and a testing set, con-
siders all features in the training set to build a classifier to predict cell
labels of a testing set and compare with the reference annotations in
the CellRefs or HLCA. The reassign scores measure cell-to-cluster re-

assignment accuracy bymeasuring the fraction of cells in each cluster
that can be re-classified to its own centroid. TFIDF10 scores measure
cluster marker gene specificity by the strength of the 10th most
exclusively expressed feature in a cluster. The HLCA core reference
(v1.0) was downloaded as an h5ad file from the cellxgene (https://
cellxgene.cziscience.com/). We applied scTriangulate to the LungMAP
Human andMouse Lung CellRefs and the HLCA, separately, calculated
the SCCAF, Reassign, and TFIDF10 scores for each cell type in the
human lung CellRef, mouse lung CellRef, and HLCA. LogNormalize
gene expression datawas used in the calculations. ForCellRef, we used
the annotations of 48 human lung and 40 mouse lung cell types. For
HLCA, we used the ann_finest_level original annotation of 58 cell
types37.

We also assessed the stability of human lung CellRef and HLCA by
projecting their annotations to the previously-reported human lung
scRNA-seq atlas15, which was downloaded as an h5ad file from cellx-
gene (https://cellxgene.cziscience.com/) and supplied as an input to
Azimuth instances for the cell type annotation using the LungMAP
Human Lung CellRef Seed (https://app.lungmap.net/app/azimuth-
human-lung-cellref-seed) and the integrated HLCA (https://app.
azimuth.hubmapconsortium.org/app/human-lung-v2). The mapped
annotations from the CellRef and HLCA were analyzed and visualized
(UMAP) in scTriangulate18 using default program options.

Assessment of cell type identity mapping between CellRef and
HLCA using pseudo-bulk-based correlation analysis
To assess the cell identity andmapping of cell types in the human lung
CellRef and HLCA, we first created a pseudo-bulk gene expression
profile for each cell typeby averaging the expressionof eachgeneof all
cells in the given cell type. Then Seurat’s FindVariableFeatures was
used to find the top 2000 highly variable genes (HVGs) among the
pseudo-bulkprofiles of theCellRef, denoteHVG1, and theHVGs among
thepseudo-bulkprofiles of theHLCA, denoteHVG2.We took theunion
of HVG1 and HVG2 and kept the genes that are present in both refer-
ences, resulting in 2501 HVGs. We performed zscore scaling of the
expression of 2501 genes among the CellRef and the HLCA pseudo-
bulk profiles, separately. Pearson’s correlations among all the pseudo-
bulk profiles of CellRef and HLCA were calculated using the scaled
expression of 2501 HVGs. Hierarchical clustering analysis was per-
formed using R package pheatmap (v1.0.12) using the correlation
matrix as input.

Marker-based assessment of cell type accuracy using receiver
operator characteristics (ROC) analysis
In this analysis, we used area under the ROC curve (AUC) to assess the
accuracy of each cell type in a single-cell reference based on its con-
sistency with the expression of cell type selective marker genes. Let X
be the set of all cells in the reference, Xi �X be the cells of cell type i in
the reference, and Y i be the set of marker genes of the cell type i. For
eachmarker gene y 2 Y i, we generated a ranking of X according to the
decreasing order of the zscore-transformed expression of y in X . Then
we generated a global ranking of X by merging all the rankings by Y i

using the aggregateRanks function in the R package RobustRankAg-
greg (v1.2.1). The AUC score for the cell type i was calculated by
comparing this global ranking with the cell type annotation in the
reference, i.e., all cells in Xi were considered as positive instance;
otherwise, negative. The AUC scores were calculated using the roc
function in the pROC (v1.18.0) package with default parameters.

The human lung CellRef cell type selective markers were gener-
ated by including dictionarymarker genes (SupplementaryData 2) and
top selectively expressed markers for each cell type. Up to 10 marker
genes were selected for each cell type using the following criteria. For
each cell type in the human lung CellRef, we identified its specific
differentially expressed genes (DEGs) in CellRef andCellRef Seed using
the following criteria: adjusted p value of two-tailed Wilcoxon rank-
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sum test <0.1, expression percentage >= 30%, fold change of average
expression >=1.5, and recall >10%. Top-ranked cell type specific DEGs
(ranked by fold change in average expression)were combinedwith the
known markers genes to form the CellRef cell type selective marker
gene list (Supplementary Data 5, up to 10 genes for each of the 48
CellRef human lung cell types). DE tests were performed using the
FindAllMarkers function in Seurat (v4.1.0) with the following para-
meters: test.use = ”wilcox”, assay = ”RNA”, only.pos=T. The recall of a
gene expression in a cell type was calculated as the number of cells in
the cell type with positive expression (>0) of the gene divided by the
total number of cells with positive expression of the gene. Using the
same approach, the mouse lung CellRef cell type selective marker
geneswere selected (SupplementaryData 6, up to 10marker genes per
cell type) and used for the AUC based assessment of mouse lung
CellRef. The human and mouse CellRef markers are also openly
accessible at LGEA CellRef (https://research.cchmc.org/pbge/
lunggens/CellRef/LungMapCellRef.html). The HLCA predicted mar-
kers genes were downloaded from Sikkema et al.37, which contains up
to 10 genes for each of the 58 HLCA cell types.

Assessment of single-cell data integration using the Local
Inverse Simpson’s Index (LISI) metrics
We assessed the data integration in the LungMAP CellRefs and HLCA
using the LISI metrics (https://github.com/immunogenomics/LISI,
v1.0), including integration LISI (iLISI) and cell-type LISI (cLISI). Given a
single-cell data integration (CellRef or HLCA), an iLISI score was cal-
culated for each cell in each cell type using the compute_lisi function in
LISI package with the following parameters: the UMAP coordinates of
all cells in the selected cell type and the batch information (donor or
data sample) of all cells in the selected cell type. We normalized the
iLISI scoreof eachcell using the total numberofbatches in the cell type
of the cell. Given an integrated single-cell data, a cLISI score was cal-
culated for each cell using the compute_lisi function in LISI package
with the following parameters: theUMAP coordinates and the cell type
information of all cells in the integration. For the CellRef, we used the
annotation of 48 cell types for the cLISI calculation. For the HLCA, we
used the ann_finest_level annotation of 58 cell types for the cLISI
calculation.

Statistical analysis
Statistical analyses of differences in the area under the receiver oper-
ating characteristics curves (AUCs), cell type stability scores, and data
integration scores were performed in R (v 4.1.0) using Welch’s t test
(two-tailed, unequal variance). Multiple testing correction was per-
formed using Bonferroni correction. The results are expressed as
violin plots or box plots representing 25%, 50%, and 75%quantiles,with
mean± SD or SEM error bars, as noted in individual figure legends.
Differential expression analysis of single-cell gene expression was
performed in the R package Seurat (v 4.1.0) using two-tailed Wilcoxon
rank-sum test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Published single cell/nucleus RNA-seq of human lung used in the
human lung CellRef are available in the Gene Expression Omnibus
under accession codes “GSE135893”, “GSE136831”, “GSE122960”,
“GSE134174”, “GSE161382”, “GSE171524”, in the European Genome-
phenome Archive under accession code “EGAS00001004082 [https://
ega-archive.org/studies/EGAS00001004082]”, and in the Synapse.org
under accession code “syn21041850 [https://www.synapse.org/#!
Synapse:syn21041850]”. The LungMAP CCHMC and UPenn data used
in this study are available in the LungMAP.net under accession code

“LMEX0000004396”. Drop-seq of mouse lung data used in themouse
lung CellRef are available in the Gene Expression Omnibus under
accession code “GSE122332” and in the LungMAP.net under accession
code “LMEX0000004397”. Published single cell RNA-seq of human
lung data used in the evaluation analysis are available in the Gene
Expression Omnibus under accession codes “GSE178362”,
“GSE135893”, “GSE135851”, and “GSE149563”. TheHLCA core reference
(version 1.0) used in the benchmarking analysis is available at FAS-
TGenomics under accession code “dataset-427f1eee6dd44f50-
bae1ab13f0f3c6a9 [https://beta.fastgenomics.org/datasets/detail-
dataset-427f1eee6dd44f50bae1ab13f0f3c6a9]”. Web interfaces for the
human andmouse lung CellRefs are available at Lung Gene Expression
Analysis (LGEA) web portal (https://research.cchmc.org/pbge/
lunggens/CellRef/LungMapCellRef.html) and LungMAP.net (https://
lungmap.net/cell-cards/, “CellRef scRNA-seq” tab). All other data sup-
porting the findings of this study are available within the article and its
supplementary files. Any additional requests for information can be
directed to, and will be fulfilled by, the lead contact. Source data are
provided with this paper in ‘SourceData.zip’.

Code availability
The code of LungMAP CellRef construction pipeline and the code to
reproduce the analyses are available on GitHub: https://github.com/
xu-lab/CellRef19.
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