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Abstract

Neurocognitive impairment continues to be common comorbidity for people living with HIV 

(PLWH). Given the chronic nature of HIV disease, identifying reliable biomarkers of these 

Christina S. Meade (christina.meade@duke.edu). 

HHS Public Access
Author manuscript
IEEE J Biomed Health Inform. Author manuscript; available in PMC 2024 July 30.

Published in final edited form as:
IEEE J Biomed Health Inform. ; PP: . doi:10.1109/JBHI.2023.3240508.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impairments is essential to advance our understanding of the underlying neural foundation 

and facilitate screening and diagnosis in clinical care. While neuroimaging provides immense 

potential for such biomarkers, to date, investigations in PLWH have been mostly limited to either 

univariate mass techniques or a single neuroimaging modality. In the present study, connectome-

based predictive modeling (CPM) was proposed to predict individual differences of cognitive 

functioning in PLWH, using resting-state functional connectivity (FC), white matter structural 

connectivity (SC), and clinical relevant measures. We also adopted an efficient feature selection 

approach to identify the most predictive features, which achieved an optimal prediction accuracy 

of r = 0.61 in the discovery dataset (n = 102) and r = 0.45 in an independent validation HIV 

cohort (n = 88). Two brain templates and nine distinct prediction models were also tested for better 

modeling generalizability. Results show that combining multimodal FC and SC features enabled 

higher prediction accuracy of cognitive scores in PLWH, while adding clinical and demographic 

metrics may further improve the prediction by introducing complementary information, which 

may help better evaluate the individual-level cognitive performance in PLWH.
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I. Introduction

Widespread use of combination antiretroviral therapy (cART) has greatly extended the 

lifespan of people living with HIV (PLWH), but prevalence rates of neurocognitive 

impairment remain high, although deficits are usually mild to moderate [1]–[3]. The 

persistence of HIV-associated neurocognitive disorders (HAND) in PLWH may result from 

an irreversible central nervous system injury before the initiation of treatment [4], as 

well as a process of immune activation which persists after treatment [5]. HIV-associated 

neurocognitive deficits manifest in various areas, such as executive function, motor control, 

attention/working memory, and visuospatial processing [6], [7]. These deficiencies can 

impact the daily activities of PLWH, significantly decreasing the quality of their life [8]–

[10], and they are also associated with HIV disease progression and increased risk of 

mortality [11]–[13]. Tracking changes in cognitive performance following HIV infection 

allows for early diagnosis to optimize long-term neurocognitive outcomes [14], [15].

While neuropsychological (NP) assessments are essential in diagnosing HAND among 

PLWH, they have several potential flaws. Specifically, NP batteries need to be completed 

and evaluated by a professional neuropsychologist and advised by an infectious disease 

clinician, which is not readily available in many communities. The tests can be sensitive to 

practice effects, limiting the ability to administer across short intermissions repeatedly. In 

addition, linguistic and cultural differences between PLWH around the world may affect the 

effectiveness of standardized tests, requiring additional validation and norms appropriate for 

each region [16], [17]. Meanwhile, some neuroimaging studies of HIV disease have shown 

that magnetic resonance imaging (MRI) may be sensitive in detecting brain abnormalities 

associated with neurocognitive impairments [18]–[20]. Given the relative objectivity of MRI 
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results, neuroimaging has excellent potential to provide a readily operable and clinically 

relevant biomarker of HAND. Many studies have consistently suggested that MRI can 

efficiently identify subtle brain changes that occur prior to the clinical onset of overt 

behavioral deficits [21], which can improve the accuracy and diagnostic efficiency of HAND 

and help understand the mechanisms underlying neurocognitive impairment.

While both functional and structural MRI have independently revealed a neurobiological 

basis of neuroHIV, leveraging multimodal imaging has the potential to provide 

complementary information and offer new insights into HIV disease. Specifically, diffusion-

weighted tractography has been used to explore microstructure variances in white matter 

(WM) tracts [22], [23]. PLWH typically display WM impairment across diffuse projection, 

association, and commissural tracts relative to healthy controls (HC) [24]. While deficits 

in the corpus callosum have been most frequently observed [25], the uncinate fasciculus 

and forceps minor are also commonly affected in HIV disease [26]–[28]. Resting-state 

functional MRI (rs-fMRI) analyses have identified HIV-related impairments in functional 

connectivity (FC) patterns involving the striatal, dorsolateral prefrontal cortex, parietal 

regions, and default mode network (DMN) [29]–[31]. DMN and frontoparietal network as 

well as DMN and sensorimotor network have demonstrated high connectivity, while inherent 

hypo-connectivity also have been found between the salience network and executive network 

[32], [33]. Both diffusion and functional imaging have been associated with impaired 

cognitive function in PLWH [18], [34], [35]. However, few studies have investigated the 

neurobiological substrates of HIV using multimodal neuroimaging features.

Despite the well-documented association between cognitive function and neuroimaging 

measures [36], most neuroHIV studies utilized univariate analysis methods (e. g., t-test and 

ANOVA), which primarily provide information about cognitive impairment at the group 

level. In addition, recent neuroHIV studies used neuroimaging features to classify persons 

into cognitively normal versus cognitively impaired using machine learning approaches 

[37], [38]. However, cognitive dysfunction is a continuous degenerative process, and 

forward-looking prediction of cognitive ability at the individual level is critical to determine 

appropriate remediation strategies before severe cognitive impairment occurs. As a popular 

machine learning method, connectome-based predictive modeling (CPM) can make full use 

of structural connectivity (SC) and/or FC measurements to quantitatively predict individuals’ 

cognitive performance [39], and has been used effectively to predict various cognitive 

behaviors from brain connectivity patterns, such as personality traits [40], [41], attention 

[42], creative capability [43], [44], and fluid intelligence [45], [46]. To date, one study 

applied CPM to predict global cognitive scores of 102 PLWH based on FC, with a predictive 

accuracy of r = 0.578 for the training set and r = 0.359 for the testing set [47]. Although 

some studies have successfully established correlations between FC and SC characteristics 

and cognitive behavior using prediction models [48], other studies have come to different or 

even opposite conclusions. For example, some researchers have used biological measures, 

SC, and FC signatures to better predict cognitive performance [49]–[51]. However, Mellem, 

et al. [52] developed prediction models that included a clinical scale assessment and both 

SC and FC features and found that structural features did not substantially contribute to 

the prediction strength of these models. Since white matter degradation is a characteristic 

feature of neuroHIV [53], we hypothesized that utilizing multimodal connectivity data, 
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especially white matter SC and FC with CPM would improve the prediction accuracy of 

cognitive function in PLWH.

This study aimed to investigate the neural substrate in PLWH of cognitive dysfunction 

in the context of individualized prediction using multimodal MRI data. Specifically, we 

incorporated SC and FC as features into the CPM pipeline. In addition to incorporating 

demographics into the model, the impact of HIV characteristics and substance use was 

also taken into account. Considering that HIV clinical features and substance use are 

independently predictive of cognition in PLWH [38], [54], [55], we believed combining 

these characteristics with neuroimaging data may substantially improve estimation of global 

neurocognitive impairment.

II. MATERIALS AND METHODS

A. Participants and Study Procedures

Through advertisements in local infectious disease clinics, communities, and the internet, we 

recruited PLWH from the Raleigh-Durham area of North Carolina, USA. All participants 

had a confirmed diagnosis of HIV and were linked to HIV care. The discovery dataset 

included 102 participants recruited from 2010 to 2018, as described in [38]. The validation 

dataset was an independent cohort of eighty-eight participants recruited using similar 

strategies from 2017 to 2020. The parent studies examined the effects of substance use 

(including alcohol, marijuana, and/or cocaine) combined with HIV on the brain. The age 

range of all participants was 21–56. The exclusion criteria included any illicit drug use other 

than marijuana and cocaine for two days or more, less than eight years of education or 

severe learning disability, lack of fluency or illiteracy in English, unresolved neurological 

disorders or neuroinfectious, severe traumatic brain injury, severe mental illness or impaired 

mental status, and any MRI contraindications.

After screening interviews, including clinical interviews, questionnaires, and urine drug 

tests, eligible participants completed NP testing and the MRI scan on a subsequent day. 

Participants also signed release forms to allow staff to review their medical records, 

check for any exclusionary conditions, and abstract relevant clinical variables. Participants 

provided written informed consent, and all procedures were approved by the Duke 

University Health System Institutional Review Board.

B. NP Testing and Clinical Features

Cognitive function was assessed across 7 domains: (1) executive function (Trail Making Test 

Part B [56] and Stroop Interference [57]); (2) processing speed (Trail Making Test Part A 

[56] and Stroop Color Naming [57]); (3) attention/working memory (Paced Auditory Serial 

Addition Task-50 [58] and NAB Digit Span: forward & backward [59]); (4) verbal fluency 

(FAS letter fluency and category fluency – animals [60]); (5) learning (Hopkins Verbal 

Learning Test-Revised (HVLT-R), immediate trials [61]); (6) motor functioning (Grooved 

Pegboard Test, dominant and non-dominant hands [62]); (7) memory (HVLT-R, delayed trial 

[61]). The test battery was the same in the discovery and validation datasets, except that the 

validation dataset did not include the NAB Digit Span scores. Demographically corrected 
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T-scores (mean ± standard deviation = 50 ± 10) were derived from raw scores for each test 

[58], [59], [63], [64]. Domain T-scores were calculated by averaging all tests in a domain, 

and global T-scores were calculated by averaging seven domain T-scores.

HIV clinical data were abstracted from participant medical records, including HIV disease 

duration, current and nadir CD4+ T-cell count, and the recent HIV viral load. Participants’ 

self-reported demographic characteristics such as age, gender, race, and education. The 

Addiction Severity Index-Lite assessed substance uses in the past 30 days, including alcohol, 

cigarettes, marijuana, and cocaine [65].

C. Image Acquisition and Preprocessing

All scans were collected on the same 3T GE Discovery MR750 imaging system with an 

8-channel head coil at Duke University Hospital. The discovery dataset were acquired across 

three protocols and the potential effects were controlled using the ComBat method [66].

High-resolution T1-weighted images were collected using a spoiled echo sequence. The 

sequence parameters included: repetition time (TR) = 8.16/8.10 ms, echo time (TE) = 3.18 

ms, voxel size = 1 mm × 1 mm × 1 mm, field of view (FOV) = 256 mm2, 256 × 256 matrix, 

12° flip, 166/168 slices. For the validation dataset, the sequence parameters included: TR = 

8.16 ms, TE = 3.18 ms, voxel size = 1 mm × 1 mm × 1 mm, FOV = 256 mm2, 256 × 256 

matrix, 12° flip, 168 slices.

Diffusion-weighted imaging (DWI) was acquired in the axial plane using a single shot spin-

echoplanar imaging (EPI) sequence (FOV = 256 mm2, voxel size = 2 mm × 2 mm × 2 mm, 

128 × 128 matrix, 90° flip, 2 mm thickness). TE was set to use the minimum signal-to-noise 

ratio, and minimum TE ranged from 77.9 to 86.7. Additional parameters differed slightly 

between protocol (b-values = 900 or 800 s/mm2, TR = 10,000/8,000 ms, 73/67 slices, 30/64 

directions). For validation dataset, DWI were collected using 64 directions, the sequence 

parameters included: FOV = 256 mm2, voxel size = 2 mm × 2 mm × 2 mm, 256 × 256 

matrix, 90° flip, 2 mm thickness, b-value = 1,000 s/mm2, TR = 8,000 ms, minimum TE 

= 80.8 ms, 2 mm thickness, 67 slices. Using MATLAB dot() function (inner product) to 

downsample 64 direction data which identified the diffusion coding directions that were 

most similar to those in the protocol with 30 directions [67].

Diffusion-weighted imaging (DWI) was acquired in the axial plane using a single shot 

spin-echoplanar imaging (EPI) sequence (FOV = 256 mm2, voxel size = 2 mm3, 128 × 

128 matrix, 90° flip, 2 mm thickness). TE was set to use the minimum signal-to-noise 

ratio, and minimum TE ranged from 77.9 to 86.7. Additional parameters differed slightly 

between protocol (b-values = 900 or 800 s/mm2, TR = 10,000/8,000 ms, 73/67 slices, 30/64 

directions). For validation dataset, DWI were collected using 64 directions, the sequence 

parameters included: FOV = 256 mm2, voxel size = 2 mm3, 256 × 256 matrix, 90° flip, 

2 mm thickness, b-value = 1,000 s/mm2, TR = 8,000 ms, minimum TE = 80.8 ms, 2 mm 

thickness, 67 slices. Data harmonization consisted of using a dot() function (inner product) 

to downsample 64 direction data which identified the diffusion coding directions that were 

most similar to those in the protocol with 30 directions [67]. Whole-brain, open-eye resting-

state BOLD images were collected using T2*-weighted EPI (TR = 2,000 ms, voxel size 
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=3.75 mm × 3.75 mm × 3.8 mm, FOV = 240 mm2, 64 × 64 matrix, interleaved data 

acquisition). For the discovery dataset, additional parameters varied slightly between one 

protocol (TE = 27 ms, 77° flip, 39 slices) and the other two protocols (TE = 25 ms, 90° flip, 

35 slices). For validation dataset, additional parameters included: TE = 25 ms, 90° flip, 35 

slices. The analysis included the first 150 volumes for consistency.

rs-fMRI data were oriented to LAS, and the first six volumes were excluded to ensure steady 

state. The processing pipeline was run using FSL v6.0.3. It included the following steps: 

slice-timing correction using Slicetimer, motion correction using MCFLIRT [68], rigid-body 

transformation, calculation of the affine registration of the functional data to the anatomical 

data, and non-linear registration of the anatomical data to MNI 2mm space using ANTs [18], 

[69] intensity normalization (scaling median intensity of each subject’s voxel data within the 

brain mask to 10,000), ICA-AROMA [70] to remove additional noise confounds, estimating 

and removing cerebrospinal fluid and WM signal components, high-pass temporal Gaussian 

filtering at 0.01 Hz, spatial smoothing using a Gaussian kernel with 6 mm full width at half 

maximum, and finally applying the previously-calculated registration to bring the data into 

common MNI space. All included scans had a relative motion cutoff of < 0.3 mm, measured 

using MCFLIRT with the middle volume as the reference.

Preprocessing of DWI data included denoising using dwide-noise [71]. For every denoised 

B0, a ”synthetic” undistorted B0 was created using Synb0-DisCo [72]. We then used FSL 

[73] and MRtrix3 [74] tools to process the denoised diffusion data. FSL’s topup [75] 

estimated and corrected the susceptibility-induced off-resonance field using the original and 

synthetic B0 images and applied the correction to the full diffusion data. The data were 

then run through FSL’s eddy [76], MRtrix’s dwi2mask [77], and FSL’s BET [78] to create 

a consensus mask, and MRtrix’s dwibiascorrect (for B1 field inhomogeneity correction). 

Diffusion images were registered to the MNI-space standard brain using ANTs [69], [79], 

with a rigid-body registration from the distortion-corrected B0 to the same subject’s T1-

weighted images and a non-linear registration from the T1-weighted images to the FSL 

standard brain. Deterministic tractography was performed using MRtrix3’s tckgen, using the 

anatomically-constrained (ACT) algorithm with a five-tissue-type (5TT) segmentation of the 

T1 image using the Freesurfer-based algorithm in 5ttgen [73]. 100,000 tracks were generated 

from random seed points in 0.2 mm steps in the mask image, limited to a maximum angle 

of 60° between steps, excluding tracks with a length beyond the range of 4 mm-200 mm. 

100,000 tracks were generated from random seed points in 0.2 mm steps in the mask image, 

limited to a maximum angle of 60° between steps, excluding tracks with a length beyond the 

range of 4 mm–200 mm [80].

D. Regression Modeling

The DWI data was parcellated into 170 ROIs according to the Automated Anatomical 

Labeling (AAL) template [81], the streamline count between every pair of nodes was 

extracted into weighted, undirected matrices with dimensions of 170 × 170 using 

tck2connectome [74]. We excluded edges consisting of fewer than three streamlines. In 

addition, to eliminate the effect of region size, the number of streamlines was normalized 

by the average of the two region sizes connected by each edge [80]. SC was defined as the 
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number of streamlines/regions connecting each pair of nodes. rs-fMRI data was parcellated 

into 264 ROIs according to the Power atlas [82]. We obtained the timecourse of brain 

activity from each region across 144-time points and computed correlations between all 

possible pairs of regions to create the respective correlation matrices with dimensions of 264 

× 264 for each subject, and the Fisher transform was performed on correlation matrices. 

Correlations between nodes less than 20mm apart were not calculated, as close physical 

proximity may artificially inflate the correlation values [83].

After removing the diagonal elements, we extracted the upper triangle part of the SC and 

FC matrices. Overall, the SC features were reshaped in a vector of (170 × 169)/2 = 14,365, 

while the FC features were reshaped in a vector of (264 × 263)/2 = 34,716.

The CPM was implemented to estimate global T-scores using FC and SC. Fig. 1 summarizes 

the analysis flowchart. Leave-one-out cross-validation (LOOCV) strategy was utilized for 

global T-score prediction in the discovery set. On each iteration of cross-validation, the 

model was trained on data from 101 participants and tested on the left-out individual. 102 

rounds of cross-validation were conducted such that each subject was sequentially used as 

the testing sample [47] Each iteration included feature selection, model construction, and 

model application for the left-out individual. For details, see Algorithm 1.

Algorithm 1:

The Training and the validation strategy for connectome-based predictive modeling

Require: global T-scores, functional and structural connectivity, and biological measures

1: for subject i = 1 : Ndo

2:  for threshold= 0 : 0.001 : 0.05 do

3:   N-1 subject as training set and the ith as testing set;

4:   All edges that were positively or negatively correlated with global T-scores and p < threshold constitute the 
positive and negative network;

5:   The positive and negative network strength was calculated by summing the correlation coefficients of each 
edge in the positive and negative network;

6:   Make predictions using simple or multiple linear regression models;

7:  end for

8:  Use models to predict global T-scores of ith subject;

9: end for

10: Apply predictive models trained in the entire N subjects using consensus network to the external validation set.

In the feature selection step, we calculated the Pearson correlation between global T-scores 

and edges of FC/SC in the training set (after regressing out age, sex, education, and 

race). To maximize predictive accuracy using optimal p-value thresholds determined by 

the data, we selected edges obtained from significant correlation s [44], [45]. Edges that 

were positively correlated with global T-scores with a p < positive threshold (0 : 0.001 : 

0.05) made up the positive network or high cognitive network, in which positive network 

strength was calculated by summing the correlation values of all edges in this network; 

similarly, edges negatively correlated with global T-scores with a p < negative threshold 

(0 : 0.001 : 0.05) made up the negative network or low cognitive network, and the negative 

network strength was calculated the same way. Positive network strength was calculated 
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by summing the correlation coefficients of edges in the positive network, negative network 

strength was calculated by summing the correlation coefficients of edges in the negative 

network. Network strength was utilized as the imaging feature for model construction.

27 combinations (3 combinations of imaging features [SC, FC, SC + FC] × 3 combinations 

of strength features [positive network strength, negative network strength, positive and 

negative network strength] × 3 combinations of non-imaging characteristics [imaging only, 

demographic characteristics, demographic characteristics + clinical measures]) were treated 

as input features of the simple/multiple linear regression models to estimate the relationship 

between network strengths and the true global T-scores. Considering our aim is to explore 

whether integrating more modalities and clinical information could yield higher prediction 

accuracy, we did not test the prediction performance of two modalities combined HIV 

measure.

We quantified model performance by calculating Spearman rank correlation between 

observed and predicted global T-scores, and the coefficient of determination prediction R2. 

We determined the significance of any successful models based on a p-value calculated 

from 5,000 permutation tests. The specificity of the predictive model was determined by 

calculating the partial correlation between the predicted global T-scores and the true global 

T-scores when controlling for covariates, such as in Cui, et al. [84].

To assess whether prediction performance would be affected by different prediction models, 

we also probed performance with a variety of modeling algorithms for comparison. We 

used four prediction algorithms, which included three regularized general linear model 

regression algorithm, least absolute shrinkage, and selection operator (LASSO), partial least 

square regression (PLSR), and elastic net, and one nonlinear regression model algorithm, 

support vector regression (SVR) with RBF (nonlinear) kernels for the modeling. Positive 

and negative edges were selected the same way as in CPM (i.e., by thresholding the 

correlation with behavior in the training set using a statistical threshold) and both positive 

and negative edges were input as imaging features. All models were validated using LOOCV 

in the discovery set, and the model that performed best in the discovery set was used for 

evaluating the generalizability in the validation set.

E. Predictive Structural and Functional Networks

To simplify the characterization of the biological substrates, the edges within the CPM were 

further grouped into nine macroscopic brain regions functionally defined by the Yeo atlas 

[85], along with a cerebellar network (CB) and subcortical network (SUB) [86], [87]. Next, 

we employed a calculation to index the relative contribution of each of the nine networks 

[88]. That is, the contribution of edges was normalized for network size, such that a value of 

1 indicates a proportionate contribution and larger values indicate a greater contribution of 

that network pair to the model than would be expected for its size.

F. External Validation

As selected features in each iteration were not wholly the same because of the LOOCV 

strategies, we then constructed a final model. Final predictive FC/SC edges applied to the 

validation dataset were determined by putting features that appeared at least 82 times among 
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102 loops (> 80% identification rate in all cross-validation) together. We defined these as 

the consensus FCs/SCs network. The external validation dataset was neither used to train 

the models nor to select parameters. Predictive models trained in the entire discovery dataset 

using consensus FCs/SCs network were applied to the external validation dataset. Spearman 

rank correlation between observed and predicted global T-scores and the coefficient of 

determination prediction R2 were calculated to evaluate predictive power. We determined the 

significance of any successful models based on a p-value calculated from 5,000 permutation 

tests. As a reference, we also examined the partial correlations between the global T-scores, 

controlling for demographic correlates.

III. RESULTS

A. Sample characteristics

Detailed information of sample characteristics of the discovery cohort (n = 102) and the 

validation cohort (n = 88) are summarized in Table I.

We analyzed the distribution differences of the characteristics between the two cohorts 

using two-sample t-tests for continuous demographic variables (age, education, and duration 

of HIV disease) and chi-square tests for categorical variables (gender, ethnicity, HIV 

suppression, and recent substance use). Wilcoxon rank-sum test was used to compare 

cohort differences between non-normally distributed demographic variables (current and 

nadir CD4+ T-cells counts). The significance threshold was two-sided, p <. No significant 

differences were found between the two datasets regarding demographic variables and recent 

substance use. However, participants in the validation dataset were infected with HIV longer, 

were more likely to be virally suppressed, and had higher current CD4+ T-cells count.

B. Individualized Prediction of global T-scores

CPM achieved appreciable estimations of global T-scores, using SC, FC, or a combination of 

both. For SC, the predictive accuracy ranged from 0.28 to 0.40, permutation test p <1.0e-3. 

For FC, the predictive accuracy ranged from 0.35 to 0.54, permutation test p < 1.0e-5.

C. Predictive Structural Networks and Functional Networks

Fig 2. Performance of predictive models in discovery dataset. The 27 Connectome-based 

predictive models (3 combinations of imaging features [SC, FC, SC + FC] × 3 combinations 

of strength features [positive network strength, negative network strength, positive and 

negative network strength] × 3 combinations of no-imaging characteristics [imaging only, 

demographic characteristics, demographic characteristics + clinical measures]), and 36 

comparison models (3 combinations of imaging features [SC edge, FC edge, SC and 

FC edge] × 3 combinations of no-imaging characteristics [imaging only, demographic 

characteristics, demographic characteristics and clinical measures] × 4 prediction algorithms 

[LASSO, PLSR, elastic net, and SVR]) were assessed by correlating predicted and observed 

individual scores. Since models may consistently outperform others, we identified the 

consensus edges that appeared in more than 80% of all LOOCV loops. These edges are 

visualized on 3D glass brains in Fig. 3a–b. All SC and FC nodes belong to consensus edges, 

and their degrees are listed in Supplementary Table I and Supplementary Table II.
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For SC, the low-cognitive (negative) network included eight edges (~0.06% of the 14,365 

total structural edges). Nodes with the highest k degrees (the number of edges identified 

in the final model) were the postcentral gyrus (k = 3) within the somatomotor network 

(SM). Greater SC in these edges was associated with lower global T-scores. In contrast, the 

high-cognitive (positive) SC network included one edge with 1 degree in the right anterior 

cingulate cortex (ACC), a hub region of the DMN, suggesting increased connectivity within 

the DWM was associated with higher global T-scores.

The consensus edges for the FC were more significant than the SC, which had 59 edges 

for the high-cognitive network (~0.17% of the 34,716 total functional edges) and 60 

edges for the low-cognitive network (~0.17% of the 34,716 total functional edges) (Fig. 

3b). In the low-cognitive network, the high degree nodes (k ≥ 3) were primarily in the 

sensory/somatomotor hand network (SM-H) and DMN, with greater connectivity associated 

with lower global T-scores. In the high-cognitive network, the high degree nodes were 

primarily in the sensory/somatomotor mouth network (SM-M), and frontal-partial network 

(FPTC), with greater connectivity associated with higher global T-scores. The FC positive 

network expressed a more substantial number of edges than the FC negative network. The 

distribution of SC nodes belonging to five macroscale brain regions defined by the AAL 

atlas are presented in Fig. 3c, while the distribution of FC nodes belonging to thirteen 

macroscale brain regions defined by the Power atlas are presented in Fig. 3d. To compare 

SC and FC at a homologous scale, we divided FC and SC nodes into nine macroscopic brain 

networks defined by the Yeo atlas along with CB and SUB. Matrices in Fig. 3e–f indicted 

edges’ contributions and the number of edges for each macroscopic brain region. The 

macroscopic networks showed that worse cognitive function was correlated with stronger 

SC within the SM, between the DAN and the frontal-partial network (FP), and between 

the DAN and SM. Higher cognitive function was related to increased SC within the DMN. 

Furthermore, worse cognitive function was associated with stronger FC between SM and 

DMN, and between the SM and SUB. Higher cognitive function was related to stronger FC 

within the SM, limbic network, and SUB, between the SUB and CB, between the SUB and 

DMN, and between the ventral attention and visual network.

D. External Validation

To evaluate the generalizability of the CPM built from the discovery dataset, we utilized 

the 9 SCs, and 119 FCs to predict the global T-scores for an independent validation cohort. 

As shown in Table III, the model successfully predicted the global T-scores in most (but 

not all) iterations with the validation dataset. The models combined with demographic 

characteristics and clinical features outperformed the imaging only models in the validation 

dataset. Specifically, the highest predictive accuracy was obtained with the negative FC 

networks (r = 0.47, p = 1.3e-5, R2 = 0.21), followed by the model with both positive and 

negative SC and FC (r = 0.45, p = 2.5e-5, R2 = 0.18) (Fig. 4). Even after controlling 

for demographic characteristics, the model taking clinical features into account was still 

significant (Supplementary Table V).

Li et al. Page 10

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2024 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. DISCUSSION

The current study successfully implemented a modified CPM approach that integrated 

structural and functional MRI features to predict global cognitive function in PLWH. Here 

are some key points we found. First, we noticed that features from SC and FC could 

make complementary contributions to global T-score prediction, demonstrating the added 

value of incorporating multimodal MRI features into CPM. Second, we found that adding 

clinical characteristics, notable markers of HIV disease, and substance use improved model 

accuracy. We obtained fairly accurate prediction models relative to similar CPM studies. 

Importantly, we also investigated the generalizability of these connection-based biomarkers 

in a validation dataset comprising an independent cohort. The results of this study revealed 

that the combination of SC and FC features could yield sensitive markers of cognitive 

function in PLWH. Connectomes are particularly suited to uncover neural network deficits 

in neuroHIV. By incorporating nodes across the brain, we can take a holistic approach to 

study how cognitive function is associated with structural and functional connectivity within 

and between brain networks. Our approach is not limited to univariate mass techniques or 

a single neuroimaging modality, so it can uncover networks related to cognitive function in 

PLWH that might not typically be considered.

While CPM has been applied to successfully predict cognitive and behavioral dysfunction 

across multiple neural disorders such as Parkinson’s disease [89], cognitive impairment [90], 

and multiple sclerosis [91], only one study to date has used CPM to investigate neuroHIV 

[47]. Our results match the study by Yang, et al. [47] in which higher cognitive function 

was associated with increased FC between CB, SUB, and FP. However, we also found many 

additional functional networks associated with cognitive function. Importantly, our study 

builds upon this by incorporating both FC and SC into the CPM, allowing for an expanded 

investigation into how brain connectivity relates to neurocognitive function.

A. Contributions of Structural and Functional Networks to Models

Using a multimodal analytic model, we can identify complementary information between 

SC and FC that informs possible neural linkages. We observed higher within-network FC in 

the SM associated with low cognitive functioning. In contrast, higher within-network SC in 

SM was associated with high cognitive functioning. SM is associated with motor function, 

a prevalent cognitive dysfunction in PLWH [92]. Reduced within-network FC in SM has 

been observed in PLWH relative to HC [93]. Since SC indicates connections between nodes, 

FC represents the strength of nodes functionally co-activating. Therefore, higher SC is not 

necessarily linear with FC.

Greater within FC of the SUB was associated with higher cognitive function. HIV is 

commonly associated with disrupted functional connectivity in the SUB [94]. Other studies 

using seed-based approaches have also shown that increased FC in the SUB was associated 

with higher cognitive function [30], [95], [96]. Meanwhile, we found that higher cognitive 

function was correlated with greater connectivity between the SUB with CB and DMN. 

PLWH have been shown to have decreased connectivity between regions of SUB and DMN 

relative to HC [97].
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Stronger FC between CB and SUB was associated with high cognitive function. As stated 

above, this effect was also observed in Yang, et al. [47]. Deficits in FC between the CB and 

SUB have been implicated in other diseases characterized by neurocognitive dysfunction 

[98]. While the CB is commonly associated with motor function, it has been shown that this 

region is heavily implicated in multiple facets of cognitive function [99]. FC in CB appears 

to be an important, albeit overlooked, function of neuroHIV and should be included in future 

cognitive models of this disease.

B. Limitations and Future Directions

Although this study obtained a high prediction accuracy for our multimodal CPM, which 

was replicated in an independent dataset, some limitations should be considered. The 

prediction performance of the external validation set is not as high as the prediction accuracy 

of the discovery dataset. This difference in prediction accuracy may be due to heterogeneity 

across samples. For example, participants in the validation cohort were more likely to have 

HIV viral suppression and had higher CD4+ T-cells counts. Moreover, differences in the 

measurement of the test battery between the discovery and validation cohorts can also be a 

potential reason. Further studies can include more heterogeneous subjects in both discovery 

and validation cohorts, which could expand the range of observed behavioral performance 

and add statistical power to the analysis. Furthermore, the model’s prediction accuracy using 

SC and FC features on the validation dataset is slightly lower than the model using only FC. 

Considering that changes in SC may occur over longer timescales than FC, it is likely to 

explain legacy neurobiological factors, such as HIV disease duration and nadir CD4+ T-cells 

count. However, the external validation prediction performance was still higher than that 

found in Yang, et al. [47], demonstrating the importance of multimodal data in predicting 

cognitive function in PLWH.

It should be noted that we found more FC features associated with cognition relative to 

SC. It may be that FC displays more sensitivity towards cognitive function relative to SC, 

which displays more specificity relative to associations with cognitive function. Since our 

diffusion images contained only thirty diffusion directions, a result could be less detailed 

mapping of SC with lower sensitivity to detect correlations with neurocognitive impairment. 

Future studies could use high angular resolution diffusion images to build upon our findings 

using denser structural connectomes. Additionally, due to the relative brevity of our NP 

battery, we focused on global cognition. Further research is needed to identify network 

models predictive of deficits in specific cognitive domains. Considering the interpretability 

of models and the limitation of samples, neural network modeling may be used in future 

studies. While the sample size is relatively small compared with previous CPM studies, it is 

sizable for the neuroHIV field. It provides a significant step forward in understanding neural 

biotypes of neurocognitive impairment in PLWH.

V. Conclusion

In this study, we integrated multimodal neuroimaging data into the CPM method. We 

established an adjusted global T-scores prediction model based on CPM and LOOCV 

strategies, which can be seen as a substantial improvement over the current cognitive 
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prediction work in PLWH. Moreover, the proposed model can be generalized to an 

independent, demographically matched PLWH cohort and achieved appreciable estimation 

accuracy. We demonstrated that FC and SC provide complementary information. When 

combined with non-imaging behavioral data, these features can produce a set of potential 

biomarkers for global cognition. Such biomarkers are able to predict the global T-scores of 

novel individuals. In summary, this work helps us better understand the association between 

neuroimaging, HIV disease characteristics, and cognitive impairment in PLWH, which 

could improve neurocognitive impairment screening accuracy and diagnostic efficiency 

before manifesting behavioral deficits in PLWH. While promising, our CPM model requires 

additional refinement with additional validation evidence before being applied in clinical 

settings. In particular, research is needed to evaluate the predictive accuracy of CPM models 

on cognitive performance over time. Given our success in implementing multimodal CPM, 

Future studies could consider other morphological connectivity features, including gray 

matter structural connections, combined with longitudinal data to explore the longitudinal 

changes between SC, FC, and cognitive impairment.
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Fig. 1. The prediction and validation flowchart incorporating feature selection and regression 
analysis.
In the study, we estimate individuals’ global T-scores using functional, structural features or 

both in the connectome-based predictive models. Significantly, integrating both functional 

and structural features improved prediction accuracy. The rigorous validated analysis 

showed that the structural connectivities in sensorimotor and default mode network and 

functional connectivities linking subcortical, limbic, and dorsal attention networks are the 

most predictive connectome features.
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Fig. 2. Performance of predictive models in discovery dataset.
The 27 Connectome-based predictive models (3 combinations of imaging features [SC, 

FC, SC + FC] × 3 combinations of strength features [positive network strength, negative 

network strength, positive and negative network strength] × 3 combinations of no-imaging 

characteristics [imaging only, demographic characteristics, demographic characteristics + 

clinical measures]), and 36 comparison models (3 combinations of imaging features [SC 

edge, FC edge, SC and FC edge] × 3 combinations of no-imaging characteristics [imaging 

only, demographic characteristics, demographic characteristics and clinical measures] × 4 

prediction algorithms [LASSO, PLSR, elastic net, and SVR]) were assessed by correlating 

predicted and observed individual scores.
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Fig. 3. Distribution of the predictive functional and structural connections.
In brain figures, edges belonging to the high-cognitive network are in red and the 

edges belonging to the low-cognitive network are in blue in structural connections (a) 

and functional connections (b). The size of nodes represent higher degree (i.e., more 

connections). Ring plots illustrate intra- and inter- region connections for the high-cognitive 

(red) and low-cognitive (blue) structural networks (c) and functional networks (d),ribbon 

size is proportional to the number of edges. Matrices present the contributions (lower 

triangular) and raw number of edges (upper triangular) for each macroscale brain region for 

the high-cognitive (red) and the low-cognitive (blue) structural (e) and functional networks 

(f). Colored bars depict contributions. Region acronyms: SM-H = sensory/somatomotor 

hand; SM-M = sensory/somatomotor mouth; Cing-oper = cingulo-opercular task control; 

AUD = auditory; DMN = default mode; Memory = memory retrieval; VIS = visual; FPTC 

= frontal-partial task control; SAN = salience; SUB = subcortical; VAN = ventral attention; 

FP=frontal-partial; DAN = dorsal attention; CB = cerebellar; CC = cognitive control; SM = 

somatomotor; LIM = limbic.
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Fig. 4. Scatter plot for best predictive models in the discovery and the external validation dataset.
The accomplished robust prediction of global T-score using connectome-based prediction 

modeling in the sample of 102 PLWH (a), and the identified neuromarkers were generalized 

to validation cohort (n = 88) (b). Each dot in the scatter plot, represents a single participant 

from the dataset and their measured global T-scores score and predicted score.The dashed 

diagonal line represents a perfect 1-to-1 linear relationship between measured and predicted 

values. Values in the x-axis and y-axis were standardized to z-scores for visualization.
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TABLE I

Characteristics for Discovery and Validation Datasets

Variables Discovery set (N=102) Validation set (N=88) Statistic (p)

Demographic Variables

Age, years 41.5±9.49 43.4±8.81 t188=1.43(0.16)

Female 74(72.55) 70(79.55) x2
1=0.93(0.34)

African-American race 84(82.35) 70(79.55) x2
1=0.31(0.58)

Education, years 13.4±2.40 13.8±2.61 t188=1(0.32)

Substance Use

Daily cigarette smoking 47(46.08) 31(35.23) x2
1=0.16(0.69)

aAlcohol 66(64.71) 66(75) x2
1=0.88(0.35)

aCocaine 33(32.35) 24(27.27) x2
1=0.22(0.64)

aMarijuana 39(38.23) 43(48.86) x2
1=0.08(0.78)

HIV Clinical Measure

HIV Disease Duration, years 10.9±7.95 13.4±7.01 t188=2.25*(2.6e-2)

bCurrent CD4+ (cells/μL) 615(346.5,854) 759.5(464.5,970.5) S=8610**(8.7e-3)

bNadir CD4+ (cells/μL) 236(100,437) 199(65.5,353) S=10292(0.14)

cViral load 23(22.77) 6(6.82) x2
1=16.84**(9.1e-4)

Values are n(%) or mean ± standard deviation unless indicated. HIV, human immunodeficiency virus;

a
Any substance use in the past 30 days;

b
median (interquartile range);

c
< 50 copies/μL;

*
p < 0.05;

**
p < 0.01.
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TABLE II

Prediction Performances of Prediction Methods in Discovery Dataset

Model Added Covariate A+B+Imaging A+Imaging Imaging only

CPM

M1. SC(+) + Covariate 0.46 (2.0e-6) 0.46 (1.6e-6) 0.32 (1.3e-3)

M2. SC(-) + Covariate 0.50 (2.1e-7) 0.44 (7.0e-6) 0.28 (5.2e-3)

M3. SC(+, -) + Covariate 0.56 (2.7e-9) 0.53 (2.9e-8) 0.40 (4.7e-5)

M4. FC(+) + Covariate 0.59 (3.5e-10) 0.58 (6.5e-10) 0.35 (4.8e-4)

M5. FC(-) + Covariate 0.52 (4.6e-8) 0.51 (1.3e-7) 0.45 (3.5e-6)

M6. FC(+, -) + Covariate 0.59 (2.3e-10) 0.59 (3.9e-10) 0.54 (1.6e-8)

M7. SC(+) + FC(+) + Covariate 0.46 (2.0e-6) 0.37 (1.9e-4) 0.24 (1.8e-2)

M8. SC(-) + FC(-) + Covariate 0.58 (4.0e-10) 0.58 (7.4e-10) 0.50 (2.1e-7)

M9. SC(+,-) + FC(+,-) + Covariate 0.61 (2.8e-11) 0.55 (6.5e-9) 0.53 (1.9e-8)

SVR

M3. SC(+, -) + Covariate 0.46 (1.2e-6) 0.41 (2.3e-5) 0.30 (1.8e-3)

M6. FC(+, -) + Covariate 0.48 (4.7e-7) 0.47 (5.0e-7) 0.43 (7.5e-6)

M9. SC(+,-) + FC(+,-) + Covariate 0.57 (4.2e-10) 0.51 (4.0e-8) 0.47 (5.9e-7)

Elastic net

M3. SC(+, -) + Covariate 0.47 (9.7e-4) 0.44 (6.6e-6) 0.30 (1.9e-3)

M6. FC(+, -) + Covariate 0.52 (6.5e-8) 0.45 (1.6e-6) 0.39 (4.1e-5)

M9. SC(+,-) + FC(+,-) + Covariate 0.56 (4.0e-9) 0.38 (NS) 0.32 (8.9e-4)

LASSO

M3. SC(+, -) + Covariate 0.47 (7.8e-7) 0.41 (1.6e-5) 0.31 (1.6e-3)

M6. FC(+, -) + Covariate 0.50 (1.3e-7) 0.51 (4.1e-8) 0.50 (1.3e-7)

M9. SC(+,-) +FC(+,-) + Covariate 0.50 (1.3e-7) 0.51 (4.0e-8) 0.50 (1.2e-7)

PLSR

M3. SC(+, -) + Covariate 0.51 (7.2e-8) 0.50 (2.3e-7) 0.37 (2.0e-4)

M6. FC(+, -) + Covariate 0.58 (6.5e-11) 0.55 (2.7e-11) 0.52 (3.5e-8)

M9. SC(+,-) + FC(+,-) + Covariate 0.59 (6.4e-11) 0.58 (2.0e-11) 0.53 (2.9e-8)

Correlation between predicted and observed scores (corresponding p-value). Bolded values correspond to the highest correlation in their respective 
models. Values in red correspond to the highest correlation when added the same covariate among five models. A – Demographic; B – HIV 
Measure; + = positive; - = negative; SC = structural connectivity; FC = functional connectivity; NS= not significant.
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TABLE III

External Validation Results of Connectome-Based Models

Added Covariant A+B+Imaging A+Imaging Imaging only

M1. SC(+) + Covariant 0.38 (4.4e-4) 0.27 (1.5e-2) 0.22 (0.05)

M2. SC(−) + Covariant 0.44 (5.3e-5) 0.35 (1.0e-3) 0.28 (0.01)

M3. SC(+, −) + Covariant 0.43 (8.7e-5) 0.34 (2.0e-3) 0.25 (0.02)

M4. FC(+) + Covariant 0.18 (8.1e-2) 0.17(8.8e-2) -

M5. FC(−) + Covariant 0.47 (1.3e-5) 0.39 (3.2e-4) 0.33 (2.5e-3)

M6. FC(+, −) + Covariant 0.20 (5.0e-2) 0.17 (1.0e-1) 0.02 (8.6e-1)

M7. SC(+) + FC(+) + Covariant 0.17 (0.1) 0.17 (0.1) -

M8. SC(−) + FC(-) + Covariant 0.46 (1.5e-5) 0.39 (3.1e-4) 0.33 (0.03)

M9. SC(+, −) + FC(+, −) + Covariant 0.45 (2.5e-5) 0.38 (4.9e-4) 0.30 (3.0e-3)

Correlation between predicted and observed scores (corresponding p–value). Bolded values correspond to the highest correlation in models. A – 
Demographic; B – HIV Measure; + = positive; − = negative; SC = structural connectivity; FC = functional connectivity
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