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Abstract

Purpose—To provide a holistic and complete comparison of the five most advanced AI 

algorithms in the augmentation of low dose 18F-FDG PET data over the entire dose reduction 

spectrum.

Methods—In this multicentre study, five AI algorithms were investigated for restoring low-

count whole-body PET/MRI, covering convolutional benchmarks – U-Net, enhanced deep super-
resolution network (EDSR), generative adversarial network (GAN) – and the most cutting-edge 

image reconstruction transformer models in computer vision to date – swin transformer image 
restoration network (SwinIR) and EDSR-ViT (vision transformer). The algorithms were evaluated 

against six groups of count levels representing the simulated 75%, 50%, 25%, 12.5%, 6.25%, 

and 1% (extremely ultra-low-count) of the clinical standard 3 MBq/kg 18F-FDG dose. The 

comparisons were performed upon two independent cohorts – (1) a primary cohort from Stanford 

University and (2) a cross-continental external validation cohort from Tübingen University – 

in order to ensure the findings are generalizable. 476 original count and simulated low-count 

whole-body PET/MRI scans were incorporated into this analysis.

Results—For low-count PET reconstruction on the primary cohort, the mean structural similarity 

index (SSIM) scores for dose 6.25% were 0.898 (95% CI, 0.887–0.910) for EDSR, 0.893 (0.881–
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0.905) for EDSR-ViT, 0.873 (0.859–0.887) for GAN, 0.885 (0.873–0.898) for U-Net, and 0.910 

(0.900–0.920) for SwinIR. In continuation, SwinIR’s performance was also discreetly evaluated at 

each simulated radiotracer dose levels. Using the primary Stanford cohort, the mean SSIM scores 

were 0.970 (0.959–0.981) for dose 75%, 0.947 (0.931–0.962) for dose 50%, 0.935 (0.917–0.952) 

for dose 25%, 0.913 (0.890–0.934) for dose 12.5%, 0.914 (0.896–0.932) for dose 6.25%, and 

0.848 (0.816–0.880) for dose 1%.

Conclusion—Swin transformer model outperforms the conventional convolutional neural 

network benchmarks, enabling 6.25% low-dose PET reconstruction with better structure fidelity 

and lesion-to-background contrast. A radiotracer dose reduction to 1% of the current clinical 

standard radiotracer dose is out of scope for current AI techniques.
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INTRODUCTION

The use of artificial intelligence (AI) technology for medical image reconstruction has 

accelerated rapidly in the past decade. AI-powered deep learning neural networks are 

increasingly being used to augment low-count medical images, such as those acquired by 

positron emission tomography (PET)[1]. PET has been considered as the gold standard 

for staging and treatment monitoring of patients with solid cancers[2–4]. However, the 

disadvantages of PET imaging as compared to magnetic resonance imaging (MRI) are 

its high cost and ionizing radiation exposure[5–7]. Reductions in radiotracer dosage 

could minimize radiation exposure, and reductions in scan time could enhance patient 

throughput and reduce scan costs. However, reductions in radiotracer dosage and scan 

times lower the detection of PET annihilation events, resulting in low-count PET scans 

with reduced diagnostic image quality (DIQ)[8]. Based on a comprehensive literature 

review, the reconstruction of a standard full-count PET imaging from this reduced DIQ 

cannot be achieved by simple postprocessing operations such as denoising, since lowering 

the number of coincidence events in the PET detector introduces both noise and local 

uptake value changes[9]. Hence, sophisticated AI-powered deep learning techniques for 

image reconstruction became increasingly more popularized to facilitate PET image 

reconstruction[10–12].

Multiple algorithms have emerged in recent years to enhance low-count PET scans[13–

15], with some convolutional neural network (CNN) methods approved by the U.S. Food 

and Drug Administration (FDA)[16]. However, the FDA does not recommend which 

specific FDA-approved software should be used for a given medical problem. Most 

available AI-powered PET reconstruction publications feature a single AI algorithm. As 

such, the literature currently lacks an unbiased, systematic evaluation comparing multiple 

state-of-the-art AI algorithms in this context. Moreover, the rapid rate of progress in 

AI and deep learning research has given way to transformer-based models with innate 

global self-attention mechanisms capable of outperforming CNN-based benchmarks in a 

variety of imaging-related tasks including image reconstruction[17–20]. To our knowledge, 

transformers have not yet been well-adapted and utilized for PET reconstruction, nor have 
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they been directly compared against the state-of-the-art CNNs. Thus, we herein seek to 

fulfill an unmet need by performing a comprehensive comparison of state-of-the-art AI 

algorithms for low-count whole-body (WB) PET imaging reconstruction.

Reducing the 18F-FDG dose increases image artifacts, because the image quality 

is proportional to the number of coincidence events in the PET detector following 

radiopharmaceutical positron annihilation[1]. Such significant artifacts and noise introduce 

challenges for the recovery of true radiotracer signal by AI models. Three recent studies 

have explored AI-based augmentation in WB PET images at 50%[16, 21], 25%[1], and 

6.25%[22] of the clinical standard doses. To date, few efforts have been reported on 

conducting a comprehensive assessment across the dosage reduction spectrum[16]. There 

is also a lack of PET databases containing list-mode data that can be used to generate a wide 

array of dose-reduced images for direct comparison[23]. A key question that has not yet 

been addressed in low-count PET image augmentation is that of model limitation (i.e. what 

is the lowest reduction percentage that a given AI algorithm can enhance with acceptable 

clinical utility).

To close the gaps on the aforementioned challenges, our study aimed to compare five 

different AI-algorithms in the augmentation of low dose 18F-FDG PET data. Using 

two cross-continental independent PET/MRI datasets, we examined six PET dose level 

percentages ranging from 75% to 1% against the five most advanced algorithms – 

spanning the CNN and transformer categories. The five algorithms include three CNN 

benchmarks: U-Net[24], enhanced deep super-resolution network EDSR[22], generative 
adversarial network (GAN)[25], and two transformer models: SwinIR[17] and EDSR-
ViT[18]. Notably, the recent advancement – Swin transformer – was leveraged for whole-

body PET reconstruction for the first time in this study.

To integrate these AI-powered low-count PET reconstruction in a clinical setting, a 

comprehensive investigation is critical. Hence, we considered different anatomical regions 

for the training of our algorithm, which has been underexplored in previous studies. This 

study is pertinent for implementers developing AI models optimized for achieving PET 

imaging that preserves the best image quality with the lowest possible radiation exposure to 

patients. To promote the continued advancement of this domain, we have open-sourced the 

code underpinning the five AI algorithms tailored for PET/MRI reconstruction.

MATERIALS AND METHODS

Participants and Dose Reduction Spectrum

In this multicentre, restrospective evaluation of data from the Health Insurance Portability 

and Accountability (HIPAA)-compliant clinical trials, two participating centers (University 

of Tübingen, Germany, and Stanford University, CA, USA) obtained approval from their 

institutional review board (IRB). Written informed consent was obtained from all adult 

patients and parents of pediatric patients. Stanford cohort: Between July 2015 and June 

2019, we collected 48 whole-body PET/MRI scans (Supplementary pp 1-2) from 22 

children and young adults (13 females, 9 males) with lymphoma and a mean age (standard 

deviation; range) of 17 years (7; 6–30 years). Tumor histology consisted of 14 patients with 
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Hodgkin lymphoma, six with non-Hodgkin lymphoma, and two patients with posttransplant 

lymphoproliferative disorder (PTLD). Tübingen cohort: 20 whole-body PET/MRI scans 

(Supplementary pp 1-2) from 10 patients (5 females, 5 males) with a mean age (standard 

deviation; range) of 14 years (5; 3–18 years) were collected. The distribution of tumor 

histologies was eight with Hodgkin lymphoma and two with non-Hodgkin lymphoma.

Radiotracer input data were used to generate images. Full-dose (3 MBq/kg) PET data were 

acquired in list mode, which helps detect coincidence events across the entire duration of 

the PET bed time (3 minutes 30 seconds). Low- dose PET images were retrospectively 

simulated by unlisting the PET list-mode data and reconstructing them based on the 

percentage of coincidence events[26]. List-mode PET input data were collected over time 

periods: the first block of 3 minutes 30 seconds, 2 minutes 38 seconds, 1 minute 45 seconds, 

53 seconds, 26 seconds, 13 seconds, and 2 seconds. These were used to simulate 100%, 

75%, 50%, 25%, 12.5%, 6.25%, and 1% 18F-FDG PET dose levels, respectively. This 

resulted in 476 original count standard-dose and simulated low-count PET/MRI images (336 

from the Stanford cohort and 140 from the Tübingen cohort) included in this study.

Study Design

Five different AI-algorithms were trained and tested separately over six dose reduction 

percentages ranging from 75% to 1% (of the clinical standard-dose) on the primary 

Stanford PET/MRI images; the GAN model was only evaluated on 6.25% dose due to 

its underperformance relative to the other algorithms. This resulted in 25 AI models in total. 

All of the 25 AI models were further tested on the Tübingen external validation cohort. 

The Tübingen cohort was not included in the training of each algorithm, making it a true 

external test set. The same image pre-processing steps (Supplementary p 2) were applied 

to all PET/MRI images from each cohort. Using an approach which aimed to alleviate 

additional burden on the network learning methods to find patterns between images for final 

reconstruction, the top and bottom 0.1% of the pixels in PET images were clipped. This 

operation was critical for model convergence and training stability, as these pixels possessed 

high noise and were therefore outliers of the distribution.

The 3D whole-body volume was inferenced in a slice-by-slice fashion and the predicted 

2D slices were stacked together to reconstruct the final 3D PET prediction. We adopted 

2.5D input scheme to ensure vertical spatial consistency. Five consecutive axial slices from 

both PET and MRI modalities were fed into the model as combined inputs, resulting in 

ten input slices in total for one evaluation. Five-fold cross-validation was applied to ensure 

generalization in model performance. A combination of mean square error (MSE) and the 

structural similarity index measure (SSIM) loss was used to train the model (Supplementary 

pp 2-3).

Five AI Algorithms Evaluated

The framework illustrating the five AI algorithms in low-count PET reconstruction is shown 

in Figure 1. We investigated three CNN benchmarks (U-Net, EDSR, and GAN) and two 

transformer models (EDSR-ViT and SwinIR). Below, we detailed the algorithms and their 

algorithmic advantages.
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U-Net

Proposed in 2015[24], the U-Net was first invented for biomedical image segmentation and 

has rapidly become the most well-recognized and classic AI model in the medical imaging 

community. Previous studies[1, 16] have utilized U-Net in low-count PET reconstruction. 

The name “U-Net” borrows intuitively from the U-shaped structure of the model diagram, 

as shown in Figure 1A. It consists of (1) the left side encoder, where convolution layers 

intercalate with max-pooling layers that gradually reduce the dimensions of the image, and 

(2) the right side decoder, where a set of convolution operations and upscaling brings the 

feature map back to the original dimensions. This architecture is well-suited for middle-level 

segmentation tasks, as the semantic information extracted from the encoder, along with the 

spatial information kept from the skip connection and decoder, provides almost everything 

needed for semantic segmentation in biomedical images.

EDSR

Investigated on 6.25%-low-count PET/MRI reconstruction in 2021[22], the adapted EDSR 

is inspired by the classic enhanced deep super-resolution network[27] model in computer 

vision. The main innovation of EDSR is the organization and optimization of the building 

block, with only two convolutions, a rectified linear unit (ReLU) activation in between, and 

an add residual – as shown in Figure 1B. The unnecessary modules – batch normalization 

and follow-up ReLU activation – in conventional residual networks, ResNet[28] and 

SRResNet[29], are removed.

GAN

First proposed in 2014[30] and now widely used in image generation, generative adversarial 

networks (GAN) originated from the notion of having two neural networks, a generator and 

a discriminator, pitted against one other as adversaries in order to generate new, synthetic 

instances of data that can pass for real data (Figure 1C); in short, the generator’s goal is to 

fool the system by trying to produce images that the discriminator cannot distinguish from 

real-world ones[31]. Several studies[25, 32] have explored GANs in PET reconstruction. 

However, most of the superior performance has been achieved by introducing additional 

clinical data – e.g. amyloid status within the brain[25] – which are not always available 

in real practice. Moreover, the longstanding challenges with GAN training, i.e. model 

collapse, non-convergence, and instability[33], preclude widespread use in the medical 

image community.

EDSR-ViT

Originally designed for sequence-to-sequence prediction in natural language processing 

(NLP)[34], transformer applications had been expanded to image processing very recently 

and soon became a game-changing technique in computer vision[35]. As opposed to FCN, 

where the receptive fields are gradually expanded through a series of convolution operations, 

the self-attention operations inherited in Transformers allow full coverage of the entire input 

space at the beginning, demonstrating exceptional representation power. Vision Transformer 

(ViT) – a transformer adapted for image processing – has shown impressive performance 

on high-level vision tasks[36, 37], but few efforts have been made to explore its role in 
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image reconstruction. In order to examine its performance on PET/MRI reconstruction, we 

tailored the original ViT by adding an EDSR CNN encoder on top of the transformer block, 

as shown in Figure 1D. The rationale for this is that the global long-range dependency from 

ViT and the precise localization from CNN encoder are complimentary for low-level vision 

tasks[38].

SwinIR

Proposed in 2021[17], SwinIR is among the pioneering efforts in Transformer utilization 

for image restoration, showing surperior performance over a variety of state-of-the-art 

methods spanning image super-resolution, image denoising, and JPEG compression artifact 

reduction. The highlight of SwinIR is the adoption of Swin Transformer[19]. Swin 

Transformer is a hierarchical transformer whose representation is computed with shifted 

windows, reducing the border artifacts in ViT – as ViT usually divides the input image into 

patches with fixed size (e.g. 48*48). This brings greater efficiency by limiting self-attention 

computation to these local shifted windows and allowing cross-window connection to 

capture global dependency (Figure 1E). According to a recent study[19], Swin Transformer 

outperformed ViT in high-level tasks including image classification, object detection, and 

semantic segmentation. In this study, we adopted the backbone of SwinIR[17], which 

consists of 24 Swin Transformer blocks for PET reconstruction.

Evaluation Framework

We adopted three quantitative metrics to measure the quality of the reconstructed PET 

images: SSIM (the structural similarity index), PSNR (peak signal-to-noise ratio), and 

VIF (Visual information fidelity). SSIM is the most widely used metric in radiology 

imaging reconstruction[39] (which are a combination of luminance, contrast, and structural 

comparison functions). Specifically, the SSIM score was derived by comparing the AI-

reconstructed PET to the original standard-dose PET sequences and quantifying similarity 

on a scale of 0 (no similarity) to 1 (perfect similarity). PSNR is most commonly used to 

measure the reconstruction quality of a lossy transformation[40]. The higher the PSNR, the 

better the degraded image has been reconstructed to match the original image. SSIM and 

PSNR mainly focus on pixel-wise similarity; thus, we introduce VIF, which uses natural 

statistics models to evaluate psychovisual features of the human visual system[41]. The 

code for calculating the performance was written with Python using SciPy and Scikit-image 

toolkits (script; Supplementary p 3).

To investigate the utility of AI-reconstructed PET scans in providing quantitative measures 

of tumor metabolism required for clinical PET interpretations, we measured standardized 

uptake values (SUVs) for the tumors and used liver as an internal reference standard. SUVs 

are the most widely used metric in clinical oncologic imaging and play a germane role in 

assessing tumor glucose metabolism on FDG-PET[42, 43]. The SUVmax of target lesions 

and SUVmax of liver were measured by placing separate three-dimensional volumes of 

interest over tumor lesions and the liver. SUVs were measured using OsiriX version 12.5.1. 

(OsiriX software; Supplementary p 3). SUV values were calculated based on patient body 

weight and injected dose by using the equation in Supplementary p 3.
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Statistical Analysis

We used Wilcoxon signed-rank t test as implemented in R software (V4.0.3) to assess 

the significance of the difference between two algorithms. We used a predefined P < 0.05 

for significance. The performance tables show the mean, standard deviation (SD), and the 

first (25%) and third (75%) quartiles of the data. The evaluation metrics are provided with 

two-sided 95% confidence intervals (CIs). All algorithms were written in Python3, with 

model training and testing performed using the Pytorch package (version 1.10).

RESULTS

Both baseline and follow-up WB PET/MRI scans of 32 children and young adult lymphoma 

patients were collected and six dose levels (75%, 50%, 25%, 12.5%, 6.25%, and 1%) were 

simulated, resulting in 476 PET/MRI scans (336 from the primary Stanford cohort and 140 

from the Tübingen external cohort). The cross-continental PET/MRI cohorts were used to 

examine the generalization of our findings. To the best of our knowledge, large pooled 

PET/MRI databases containing PET list-mode data amenable to simulate low-dose PET for 

AI model evaluation do not exist. As such, our collected cohort is unique in that it is among 

the first PET/MRI databases for AI-enabled dose reduction studies.

CNN Models on Low-Count PET Reconstruction

The classic U-Net[24] model, which is the most well-recognized approach in PET 

reconstruction, ranked 4 out of 5 in the SSIM metric on the 6.25%-low-count Stanford 

testing cohort (Table 1). The possible explanation is that the frequent sparse operations from 

U-Net – down-sampling and up-sampling – inevitably lose localization in the pixel space, 

thus rendering U-Net less suitable for precise low-level PET reconstruction task. EDSR, 

which has been investigated on 6.25%-low-count PET/MRI reconstruction in 2021[22], 

ranked 2 in SSIM on the 6.25%-low-count Stanford cohort. Unlike U-Net, no sparse 

operation is introduced in EDSR, ensuring spatial information integrity. Even so, EDSR with 

its limited receptive field and lack of global understanding of the input image might restrict 

its performance for low-count PET reconstruction. The last CNN approach we investigated 

was generative adversarial networks (GAN). In our experiment, GAN ranked the lowest on 

6.25%-low-count PET reconstruction (Table 1). Comparisons of the five AI algorithms in 

low-count PET reconstruction is summarized in Table 2.

Transformer-Based Models on Low-Count PET Reconstruction

The quantitative metrics of EDSR-ViT did not improve as compared with EDSR on the 

6.25%-low-count Stanford testing cohort (Table 1), but EDSR-ViT – with the help of 

transformer addition – did recover more texture details and alleviate the over-smoothing 

issue of the conventional CNN approach (Figure 2D). One noteworthy limitation of ViT is 

that its use requires substantial computational resources, as it relies heavily on large-scale 

datasets – such as ImageNet-21k[44] and JFT-300M (which are not publically available) – 

for model pretraining[45].

SwinIR demonstrates significant advantages in low-count whole-body PET reconstruction, 

ranking one in all metrics on the 6.25%-low-count Stanford testing cohort (Table 1). It 
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shows superiority in retaining lesion-to-background contrast and structural fidelity (Figure 

2). Another advantage of SwinIR in low-count PET/MRI reconstruction is that no pre-

training is needed according to our experiments, which saves computational resources and 

introduces flexibility for model tailoring. A major drawback, however, is the large number of 

operations required in SwinIR – resulting in training and testing times that were 10x longer 

compared to other state-of-the-art models (Table 2).

Five AI Algorithms on Six Dose Reduction Percentages

To provide a holistic comparison of the five AI algorithms, all algorithms were evaluated 

in the reconstruction of low-count whole-body PET images at six reduction percentages 

(75%, 50%, 25%, 12.5%, 6.25%, and 1% of the clinical standard 3 MBq/kg 18F-FDG dose). 

The quantitative performance metrics of all AI algorithms over the entire dose reduction 

spectrum are shown in Figure 3. Model comparisons at doses 25% and 12.5% revealed 

that SSIM scores were highest for SwinIR and lowest for EDSR-ViT on the Stanford 

internal test set. At dose 6.25%, SSIM scores were highest for SwinIR and lowest for 

U-Net. Differences in SSIM score became apparent between algorithms at dose 6.25%, 

ranging from 0.883 (U-Net) to 0.914 (SwinIR). At dose 1%, SSIM scores were highest 

for SwinIR and U-Net, and lowest for EDSR and EDSR-ViT. Differences in SSIM score 

between algorithms were the least appreciable at dose 1%, ranging from 0.842 (SwinIR and 

U-Net) to 0.848 (EDSR and EDSR-ViT). For the Tübingen cohort, SwinIR also achieved 

the best performance in the SSIM metric with doses below 50% (Figure 3). More detailed 

performance metrics for 6.25% low-count PET reconstruction are shown in Table 1. Dose 

6.25% was the lowest dosage with around 40 dB PSNR for the AI reconstruction and 

thereby became our dose of choice for further investigation. The systematic evaluation 

presented herein is rendered in summary form, with mean and median quantitative values 

over the four-fold cross-validations on the two cohorts of interest (Table 1). SwinIR achieved 

the best quantitative results, with the highest SSIM score of 0.910 (95% CI 0.900–0.920), 

PSNR score of 39.9 (39.1–40.6), and VIF score of 0.485 (0.469–0.501) on the primary 

Stanford test set. It was also generalized to the external Tübingen test set with the highest 

SSIM score of 0.950 (0.942–0.958) and VIF score of 0.483 (0.464–0.502), demonstrating 

superior model generalization across different institutions and scanner types.

The qualitative comparisons between the five AI algorithms on 6.25% low-count 

reconstruction are shown in Figure 2. The PET images reconstructed from the SwinIR 

model were superior in reflecting the underlying anatomic patterns of the tracer uptake 

(the basal ganglia; Figure 2A) when compared to the images generated from the other 

four models. Meanwhile, though lesions could be detected on all AI-reconstructed scans 

(Figure 2B-D), lesion-to-background contrast and confidence for lesion detection were 

significantly improved on SwinIR – especially for small lesions (Figure 2C). Compared 

to the standard-dose 18F-FDG PET scans, the simulated 6.25% low-count PET images had 

significantly higher SUVmax values of the liver as a result of increased image noise. All 

five AI algorithms managed to recover SUVmax values of the liver similar to the values in 

standard-dose PET, demonstrating good denoising capability. All tumors had SUV values 

above that of the liver on all AI-reconstructed PET images. For small lesions less than 
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1.5 cm3, high lesion-to-liver SUV contrast (i.e. the commonly used standard employed by 

radiologists for lesion detection) was only retained by SwinIR (Figure 2B,C).

Reconstruction Across the Dose Reduction Spectrum

Next, we examine the AI-powered PET reconstruction through the lens of dose reduction 

spectrum. AI-reconstructed PET images consistently achieved improved SSIM, VIF, and 

PSNR over original low-count PET images at dose 25%, 12.5%, 6.25%, and 1% (Figure 

3). Among the six dose reduction percentages, the improvement from AI reconstruction 

was largest at dose 6.25%. The average improvement scores for the five AI algorithms 

were 0.106 (95% CI 0.102–0.110) in SSIM, 3.97 dB (3.78–4.16) in PSNR, and 0.183 

(0.178–0.188) in VIF on Stanford internal test cohort; 0.211 (0.208–0.215) in SSIM, 3.54 

dB (3.20–3.88) in PSNR, and 0.196 (0.190–0.202) in VIF on Tübingen external test set. 

Pair-wise t-tests between the AI-reconstructed PET images and the low-count PET images 

revealed p-values consistently less than 0.001, suggesting that all AI algorithms possessed 

statistically significant capacities for reconstruction and generalization. Figure 4 provide 

the detailed qualitive PET image comparisons between different dosages. With reduction in 

simulated radiotracer dose, PET images exhibited higher noise and information loss, leading 

to markedly increased SUVmax values in the liver and tumors (Figure 4D). The AI models 

tested herein reduced artifacts for the low-count PET images and recovered the SUVmax 

values of liver and tumors to values commensurate with those derived from standard-dose 

PET (Figure 4C,D).

For doses 75% and 50%, there were discrepancies between quantitative metrics and visual 

appearances. All AI models have enhanced the 75% and 50% low-count PETs visually with 

reduced image noise (Figure 4), but the improvements were not reflected quantitatively 

(Figure 3). A possible explanation is that 75% and 50% low-count PET images are 

sufficiently similar to standard-dose PET. Their PSNR values are greater than the threshold 

– 40dB – which corresponds to nearly undiscernable differences, and thus passes the 

considerations for good image quality[46, 47]. Therefore, the quantitative metrics might 

not be able to reasonably depict improvements above this threshold.

In general, the quantative metrics – SSIM, VIF, and PSNR – of both original low-count PET 

and AI-reconstructed PET images decreased over the dose reduction spectrum. However, 

AI reconstructions (powered by SwinIR, EDSR, and EDSR-ViT) between doses 12.5% and 

6.25% achieved similar performance in the three metrics (Figure 3). This is partly owing 

to the smoothing effect of 6.25% low-count reconstruction (the liver area in SwinIR-6.25p; 

Figure 4D). The AI models in 6.25% low-count reconstruction converged on an approach 

that smoothed particular regions with significantly decreased noise.

From doses ranging from 6.25% to 1%, there was a steep drop (Figure 3) in SSIM, PSNR, 

and VIF across both Stanford and Tübingen cohorts, indicating the challenge of extreme-

low-count PET reconstruction. Indeed, AI reconstruction introduced hallucinated signals and 

erroneous upstaging in 1% low-count PET reconstruction (Figure 4C,D; far right column). 

Qualitatively, all of the AI reconstructed PET images in Figure 4 closely resemble the true 

standard-dose PET, except for dose 1%. The extreme-low-count scenario degraded PET 

images with substantial artifacts and information loss that were difficult for the current AI 
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techniques to handle without the incorporation of additional information. Supplementary 

Figure 2 shows the whole-body PET reconstruction from the coronal view, across the dose 

reduction spectrum powered by SwinIR.

Model Training Strategy

Figure 5 demonstrates an interesting observation when training SwinIR in 6.25% low-count 

PET images. In epoch 24, the trained model was able to reconstruct the shape and contrast 

of the basal ganglia in the brain, but failed to clearly depict a small lesion (less than 1.5 cm3) 

in the liver. Meanwhile in epoch 4, the brain structure was not well-reconstructed, but the 

diagnostic conspicuity of the small lesion was preserved. Our experiment suggested that the 

discrepancies in reconstruction quality between different anatomical regions were agnostic 

to specific model architectures. The possible reasons may be two-fold: (1) the commonly 

used loss functions – mean square loss (MSE loss) and the structural similarity index loss 

(SSIM loss) – were originally proposed for natural image reconstruction and not specifically 

designed for diagnostic radiology images, thus limiting their ability to guide model training 

for these specific clinical needs; and (2) whole-body PET images have large intra-patient 

uptake variation. The metabolic activities of the brain and bladder are greater than other 

anatomical locations, shown as hyperintensities in PET images. As the training progresses, 

the focus of model optimization can shift to these hyperintense regions easily, as they can 

possess larger absolute loss penality values; this can in turn cause over-smoothing of other 

relatively low-intensity regions (e.g. the liver).

DISCUSSION

In this study, we provide the first unbiased and comprehensive investigation of AI-enabled 

low-count whole-body PET reconstruction from two perspectives: the reconstruction 

algorithms and the dose reduction percentages. Six reduction percentages covering the entire 

dose spectrum – 75%, 50%, 25%, 12.5%, 6.25%, and 1% (extreme low count) of the clinical 

standard 18F-FDG dose – were investigated. In addition, we adapted five state-of-the-art 

AI algorithms for this task, including the classic CNN benchmarks and the most advanced 

transformer models. Two cross-continental PET/MRI cohorts were used to examine the 

generalization of our findings.

All five AI algorithms possess PET reconstruction capability. In particular, transformer 

models – especially Swin transformer – demonstrated superior performance in restoring 

structural details and lesion consipicuity in low-count PET reconstruction. The transformer 

approach complemented the conventional CNN approaches in that the innate global self-

attention mechanisam provided long-range dependency that is otherwise lacking in CNNs 

due to the limited receptive field of convolution operations. The only work to date applying 

transformers on PET reconstruction is focused on 25% low-count brain images[48], 

whereas our investigation leverages WB scans over the complete dose reduction spectrum. 

Additionally, this is the first study utilizing Swin transformer – the most recent advancement 

in computer vision – for whole-body PET reconstruction. The improved Swin transformer 

model (SwinIR) with its shifted window mechanism further improved the depiction of 
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structural details and small lesions that could be missed if the fixed partition operations of 

ViT transformer alone were used.

While AI deep learning architectures are essential in low-count PET reconstruction, equally 

important is the model training strategy, i.e. the procedure used to carry out the learning 

process; this includes specific considerations such as the loss function and when to stop 

training. To date, few efforts have been made to reconcile these considerations. We made 

an oberservation about the discrepancy in reconstruction quality among different anatomical 

regions on PET reconstruction over the course of training. This observation underscores the 

role of training strategy in building up the optimal model for low-count whole-body PET 

reconstruction. Our findings suggest that engaging radiologists in the model development 

loop is imperative so that the PET reconstruction training process can be effectively and 

efficiently guided by domain experts in a task-specific fashion. Another possible direction is 

region-based reconstruction that takes the regional differerence priors into consideration for 

effectively designing WB PET reconstruction models.

Another key contribution of this study is the examination of AI-powered PET reconstruction 

over six groups of count levels, representing 75%, 50%, 25%, 12.5%, 6.25%, to extremely 

ultra-low-count 1% (of the clinical standard 3 MBq/kg 18F-FDG dose). In order to perform 

a holistic assessment of low-count PET reconstruction, we adapted multiple AI algorithms – 

with the exception of GAN – upon the complete dose reduction spectrum. The GAN model 

was excluded due to its underperformance and difficulty of training relative to the other 

models. The most relevant work to our study, published in 2021[16], evaluated the FDA-

approved U-Net software across various dosages. This commercially available software 

was trained only on 25% low-count PET images and was tested at other percentages. In 

contrast, our study takes the approach of training and testing images in a manner consistent 

with the relevant reduced dosage. To our best knowledge, this study is the first complete 

investigation of AI-powered PET reconstruction over the entire dose reducing spectrum. 

The most cutting-edge AI algorithms enabled low-count PET reconstruction of doses above 

6.25%, while dose 1% without additional clincal information was out of scope for the AI 

techniques evaluated herein.

This study has the following limitations. Simulated low-dose PET images were used 

instead of injecting multiple different PET tracer doses in a single patient, considering 

ethically feasiblity. Though previous data have shown that simulated low-dose images have 

characteristics similar to those of actual low-dose images[49], evidence of AI-reconstruction 

in true injected low-dose cases is needed. In addition, this study only included patients 

scanned with FDG, due to its clinical prevalency. The use of the deep-learning approaches 

to reconstruct images obtained with non-FDG radiotracers may entail different performances 

dependent upon signal-to-noise ratios, and the uptake dynamics and locations.

In conclusion, the findings from this study hold important implications for implementers 

developing the optimal AI model in order to achieve PET imaging with the lowest radiation 

exposure to patients and non-inferior DIQ. Mitigation of ionizing radiation exposure from 

medical imaging procedures holds critically important potential for clinical impact, as 

reducing such exposure could minimize the potential risk of secondary cancer development 
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later in life[5, 50, 51]. This is especially important for pediatric patients or patients receiving 

therapies that require repeat imaging with reoccurring radiation exposure. Toward further 

advancement of this domain, we open-sourced the five AI algorithms specifically tailored 

for low-count PET/MRI reconstruction. Of note, our code may easily be applied to other 

medical imaging modalities (e.g. MRI, CT) and could thereby potentially serve as a common 

foundation for medical image reconstruction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic overviews of AI algorithm frameworks for low-count PET reconstruction
(A) The classic U-net model. (B) The adapted EDSR (enhanced deep super-resolution 

network) model. (C) The GAN (generative adversarial network) model. (D) The EDSR-ViT 

model. EDSR-ViT takes the feature encoder part from the adapted EDSR (B) directly, and 

makes use of the ViT (Visual transformer) block to obtain global self-attention within the 

image. (E) The SwinIR model, consisting of Swin transformer blocks. The main difference 

of Swin transformer and ViT transformer is where the self-attention operation applies. For 

Swin transformer block, the self-attention is applied within each of the local windows, 

including the regular window partitions (Layer l) and the following shifted-windows (Layer 

l+1, etc). For ViT, the self-attention is applied within the global image, which is equally 

partitioned into fixed-size patches.
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Figure 2: PET image comparison across five state-of-the-art AI algorithms on 6.25% low-count 
PET reconstruction.
(A) Representative 18F-FDG PET scan of a 29-year-old female patient with Hodgkin 

lymphoma (HL). The enlarged patches are shown on the second panel (yellow arrows: 

basal ganglia). The structural similarity index (SSIM) and visual information fidelity (VIF) 

metrics are presented under each PET image. (B) Representative 18F-FDG PET scan of 

a 14-year-old male patient with HL. The SUVmax of the lesion (delineated by red circle) 

and liver for this patient are shown under each PET image. (C) The same patient as (B). 

The small lesion (less than 1.5 cm3; 5mm < width <10mm; height > 10mm; red arrow ) 

is enhanced by SwinIR with the lesion-to-liver contrast of SUVmax retained. The lesions 

(black arrow) are also clearly depicted by SwinIR, in contrast with being blurred and 

mixed together by the other reconstructions. (D) Representative 18F-FDG PET scan of a 

17-year-old female patient from the external Tübingen testing cohort. All AI algorithms 

successfully denoise the 6.25% low-count images and provide similar diagnostic conspicuity 

of the lesion (red circle; red arrows) as the standard-dose PET, demonstrating the model is 

generalizable across different institutions for all AI algorithms. SwinIR shows superiority in 

retaining lesion-to-liver contrast and structural fidelity.
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Figure 3: Quantitative metrics over the dose reduction spectrum.
The five AI algorithms were adapated for the low-count PET reconstruction task. The AI 

models were trained on 75%, 50%, 25%, 12.5%, 6.25%, and 1% of the clinical standard 
18F-FDG dose PET/MRI images from the primary Stanford cohort. One round of cross-

validation was adopted. The trained models were then evaluated on the corresponding 

low-count PET/MRI test set. The performance on the Stanford internal test set is shown 

on the top panel, and the performance on the external Tubingen test cohort is shown on 

the bottom panel. Measures of performance include structural similarity index (SSIM), peak 

signal-to-noise ratio (PSNR), and visual information fidelity (VIF). For all three metrics, 

higher represents better reconstruction. All comparisons are made against the ground-truth 

standard-count PET images. The blue line presents the original low-count PET images 

without AI enhancement and serves as the baseline for direct comparisons.
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Figure 4: PET image comparisons across the dose reduction spectrum from 75% to 1% (of the 
clinical standard 3 MBq/kg 18F-FDG dose).
Representative 18F-FDG PET scan of 13-year-old male patient with Diffuse large B cell 

lymphoma (DLBCL). The SUVmax of two tumors and liver were measured for each 

PET image. SwinIR and U-Net are our demonstration models of choice, representing the 

transformer and CNN categories, respectively. (A) The coronal slice of the standard-dose 

PET, showing the chest region. SUVmax of two tumors and liver were measured for direct 

comparison. (B) The original low-count PET images with SUVmax measured under the same 

regions of tumors and liver as in (A). (C) U-Net reconstructed low-count PET images. The 

red arrows point to corrupted reconstruction in mediastinum and erroneous upstaging in 

liver. Red rectangle: enlargement of false upstaging in the liver area. U-Net-75p = U-Net 

reconstructed 75% low-count PET image. (D) SwinIR reconstructed low-count PET images. 

The red arrows point to the erroneous upstaging. Red rectangle: enlargement of the degraded 

reconstruction in liver. SwinIR-75p = SwinIR reconstructed 75% low-count PET image.
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Figure 5: Representative discrepancy in reconstruction quality between different anatomical 
regions over the course of model training.
SwinIR is the model of choice for this demonstration. The performance is based on the 

primary Stanford PET/MRI cohort. The line chart shows the SSIM metric of the Stanford 

validation set over models at different training epochs. PET images illustrate cases from the 

Stanford testing set. The patches (top panel) are enlarged crops of a, b, and c, respectively. 

As the training progresses from epoch 4 to epoch 24, the structure of the basal ganglia 

within the brain becomes better reconstructed, while the small lesion (less than 1 cm3) 

within the liver gets over-smoothed.
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Table 1.
Performance metrics of five state-of-the-art AI algorithms on 6.25% low-count PET 
reconstruction.

Measures of performance include structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and 

visual information fidelity (VIF). Performance is based on the Stanford primary cohort (32 scans from 21 

patients; indicated by test) and the Tübingen external validation cohort (20 scans from 10 patients; indicated 

by external). All comparisons are calculated with the ground truth standard-count PET images.

Model SSIMtest PSNRtest VIFtest SSIMexternal PSNRenternal VIEexternal

EDSR

 Mean (SD) 0.898 (0.033) 39.7 (2.37) 0.454 (0.048) 0.949 (0.020) 39.5 (1.14) 0.466 (0.041)

 Median 
(Q1.Q3)

0.908 
(0.878,0.923)

40.3 (38.6,41.3) 0.462 
(0.415,0.481)

0.952 
(0.931,0.966)

39.8 (38.8,40.2) 0.478 
(0.432,0.501)

EDSR-ViT

 Mean (SD) 0.893 (0.035) 38.7(1.83) 0.433 (0.051) 0.947 (0.021) 38.4 (1.00) 0.436 (0.042)

 Median 
(Q1,Q3)

0.901
(0.864,0.921)

38.9 (37.7, 
39.9)

0.438 
(0.399,0.457)

0.950 
(0.925,0.964)

38 5 (38.0, 38.9) 0.449 
(0.395,0.475)

GAN

 Mean (SD) 0.873 (0.040) 37.4(2.14) 0.417 (0.047) 0.939 (0.022) 35.7 (0.957) 0.427 (0.039)

 Median 
(Q1,Q3)

0.875 
(0.845,0.912)

37.6 (36.2, 
38.6)

0.420 (0.386, 
0.445)

0.939 
(0.921,0.957)

35.7 (35.2,36.1) 0.435 (0.385, 
0.459)

U-net

 Mean (SD) 0.885 (0.036) 39.1 (2.39) 0.442 (0.048) 0.947 (0.020) 39.6 (1.29) 0.454 (0.042)

 Median 
(Q1,Q3)

0.893 
(0.859,0.919)

39.5 (38.1,40.8) 0.447 (0.410, 
0.471)

0.951 (0.928, 
0.964)

39.8 (38.7, 40.4) 0.463 (0.413, 
0.494)

SwinIR

 Mean (SD) 0.910 (0.029) 39.9 (2.26) 0.485 (0.046) 0.950 (0.019) 39.1 (1.08) 0.483 (0.043)

 Median 
(Q1,Q3)

0.918 (0.889, 
0.934)

40.3 (38.5,41.5) 0.492 
(0.453,0.516)

0.952 (0.933, 
0.966)

39 3 (38.5,39.7) 0.491 (0.443, 
0.524)

6.25% low-count PET

 Mean (SD) 0.786 (0.047) 35.0(2.42) 0.263 (0.046) 0.735 (0.030) 34.9(1.43) 0.257 (0.030)

 Median 
(Q1,Q3)

0.802 
(0.749,0.816)

35.4 (33.4, 
36.6)

0.261 (0.234, 
0.289)

0.730 (0.711, 
0.751)

35.1 (34.3,35.1) 0.249 (0.230, 
0.282)

All P-values, calculated using Wilcoxon signed-rank test between the Al-reconstructed PET and the low-count PET, are below 0.001
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Table 2.
Comparions of five AI algorithms in low-count PET reconstruction.

The five advanced AI algorithms are compared from nine perspectives. 1) Number of parameters of the model. 

M = million; 2) Number of operations running the algorithm. Gflops = one billion floating point operations; 3) 

Time cost for training; 4) Inference time for one low-count PET/MRI scan; 5) Algorithm category – 

convolutional neural network or transformer category; 6) Model requirement for pretraining; 7) Overall pros of 

the model; 8) Overall cons of the model; 9) FDA approval status.

Criteria U-net EDSR EDSR-ViT GAN SwinIR

Number of Parameters 
(M)

17.27 0.94 19.03 28.44 7.78

Number of Operations 
(Gflops)

40.38 63.34 51.72 42.66 504.48

Training Time (min/
epoch)

7 4 4 9 129

Inference Time (sec/
subject)

10 13 15 10 122

Model Category CNN CNN ViT Transformer CNN Swin Transformer

Pretraining Scheme None None ImageNet2lk-ViT I mageNet-ResNet None

Pros of the model Stable Good performance Retain more texture 
details than EDSR

✗ Superior 
performance

Cons of the model Average 
Performance

Prone to over 
smooth image

Sensitive to training 
strategy

Difficult to train; 
Additional clinical 

information is 
needed

Huge number of 
operations

FDA-approved ✓ ✗ ✗ ✗ ✗

Training is performed on 4 GeForce RTX 3090 GPUs; Inferencing is performed on 4 GeForce GTX 1080 Ti GPUs
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