Table 2.
Sample size (patients) Sample ratio(patients) |
230, 79.9% for training, 58, 20.1% for validation, total 288 | ||||
Favor: 148, 51.4%; poor:140, 48.6% | |||||
Favor: 118, 51.3%; poor:112, 48.7% for training | |||||
Favor: 30, 51.7%; poor: 28, 48.3% for validation | |||||
Model details |
|
||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
Model performance (validation data) | Class | Precision | Recall | F1-score | Support |
Poor(0) | 0.767 | 0.821 | 0.793 | 28 | |
Favor(1) | 0.821 | 0.767 | 0.793 | 30 | |
Macro average | 0.794 | 0.794 | 0.793 | 58 |
Abbreviations: CNN, convolutional neural network; RMSProp, root mean squared propagation; ReLU, rectified linear units; ROI, region of interest; AUC, area under the curve; CI, confidence interval.