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Graphical Abstract

scGTP-seq is a third-generation sequencing (TGS) platform-based single-cell
multi-omics method that enables simultaneous sequencing of the genome and
transcriptome. Thismethod can efficiently detect ecDNA and SVs and determine
how these genomic variations impact transcriptomes at the single-cell level. It is a
powerful tool to investigate the regulatorymechanisms of ecDNA and SVs across
diverse cell types and clinical tumour samples.
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Abstract
Background: Cancer cells often exhibit large-scale genomic variations, such as
circular extrachromosomal DNA (ecDNA) and structural variants (SVs), which
have been highly correlated with the initiation and progression of cancer. Cur-
rently, no adequate method exists to unveil how these variations regulate gene
expression in heterogeneous cancer cell populations at a single-cell resolution.
Methods: Here, we developed a single-cell multi-omics sequencing method,
scGTP-seq, to analyse ecDNA and SVs using long-read sequencing technologies.
Results and Conclusions: We demonstrated that our method can efficiently
detect ecDNA and SVs and illustrated how these variations affect transcriptomic
changes in various cell lines. Finally, we applied and validated this method in
a clinical sample of hepatocellular carcinoma (HCC), demonstrating a feasible
way to monitor the evolution of ecDNA and SVs during cancer progression.
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1 INTRODUCTION

In 1965, extrachromosomal DNA (ecDNA) fragments were
reported for the first time in neuroblastoma and pae-
diatric brain tumour cells.1,2 In recent years, a growing
number of studies have reported that ecDNA is abun-
dantly present in cancer and senescent cells, suggesting
its involvement in the initiation and development of
tumours and senescence.3–6 Pan-cancer research showed
that ecDNA can be effectively detected in many human
cancer types with abundant variation, and confirmed that
it is highly correlated with poor clinical outcomes.7,8 It has
been proposed that oncogenes and drug-resistant genes
can be amplified with ecDNA replication, leading to an
increase in gene expression, which contributes to the
development and evolution of cancer cells.4,9 In addi-
tion, efficient replication and asymmetric partitioning of
ecDNA to two daughter cells serve as potential mech-
anisms of tumour heterogeneity and evolution.4,10–12 In
2019, Wu and colleagues investigated how the structure
of ecDNA affected oncogene expression independently of
copy number amplification, as ecDNA-derived oncogene
expression was found to be higher than that on lin-
ear chromosomes after normalizing with copy number.13
ATAC-seq and Hi-C sequencing further showed that ecD-
NAs lack the higher-order compaction that is characteris-
tic of chromosomal DNA, display significantly enhanced
chromatin accessibility and interacts more often with
active chromatin regions. These results suggested that the
loose compaction of ecDNA and its sub-nuclear local-
ization close to active chromatin regions are associated
with the enhanced expression of ecDNA-carried genes.13
Other studies reported that enhancer elements included
in the ecDNA structure are involved in the transcrip-
tional regulation of ecDNA genes14 and chromosomal
oncogenes.15 Moreover, genome remodelling caused by
the reintegration of ecDNA structures could have pro-
found effects on gene expression including the disruption
of tumour suppressor genes and the augmentation of
oncogenes.16 The circular recombination of ecDNA in
seismic amplification can further promote genomic ampli-
fication and evolution in cancer cells.9 Another study
demonstrated that the novel mutagenesis of ecDNA was
mediated by APOBEC3.17 Hung et al. showed protein-
tethered ecDNAhubs and delineated their roles in promot-
ing intermolecular enhancer–gene interactions and onco-
gene overexpression.18 A CRISPR-based live-cell imaging
method, ecTag, was developed to identify uneven segrega-
tion of ecDNA and transcriptionally active ecDNA hubs in
cancer cells.19 However, to date, efficientmethods to reveal
how ecDNA regulates gene expression in heterogeneous
cancer cell populations at single-cell resolution have not
been reported.

The emergence of single-cell sequencing technology
during the past decade has made it possible to investigate
heterogeneous cell populations with unprecedented
resolution, and to unveil previously hidden details from
the averaged signal obtained from bulk sequencing
analysis.20–22 Single-cell sequencing can be used to study
genomic sequences,23–25 DNA methylome,26,27 chromatin
accessibility,28–30 transcriptome,31–34 and histone modi-
fications or transcription factor binding.29,35–42 However,
most single-cell sequencing approaches are based on
next-generation sequencing (NGS) platforms that are
typically biased for library fragments shorter than 1 kb.
Recently, the development of third-generation sequencing
(TGS) has overcome the limitations associated with
short-read lengths obtained from NGS.43 For example, it
is difficult to identify the splicing variants of transcripts
from short reads. However, in recent years, TGS-based
single-cell RNA sequencing (scRNA-seq) methods have
been developed to accurately identify alternative splicing
events from full-length transcripts.44,45 Previous NGS-
based single-cell whole-genome sequencing (scWGS)
enabled an investigation of the heterogeneity of copy
number variation (CNV) and single-nucleotide variation,
allowing the analysis of cell lineage tracing. However,
due to the length limitations of NGS sequencing reads,
these scWGS methods are not suitable to analyse large-
scale variations at the genomic level, such as structural
variants (SVs) and ecDNA, that are frequently observed
in various diseases. Conversely, the long reads obtained
from the TGS platform serve as a promising feature that
enables the identification of SVs and ecDNA. The TGS
platform nanopore has been used in ecDNA sequencing,
both at the bulk level,18 and after isolation with a novel
targeted ecDNA purification method, CRISPR-CATCH.46
In addition, TGS-based scWGS methods have recently
been developed that permit the identification of SVs and
ecDNA.47
Single-cell multi-omics technologies have enabled the

integration of information from multiple sequencing
modalities, and have facilitated the establishment of a
more accurate correlation between genotype (genomic
sequence, DNA methylome and chromatin accessibility)
and phenotype (transcriptome and proteome).48 Accord-
ing to the central dogma,49 genomic variation can lead to
transcriptional variation and underlie phenotypic plastic-
ity among single cells. Multi-omics analysis helps not only
to investigate the heterogeneity of cells within a tissue,
but also to depict the intertwined regulatory relationships
between different omics layers. Moreover, cell lineage tra-
jectories reconstructed by multi-omics can identify the
causal mutations that regulate the transition between cel-
lular states.50–52 In addition, the integration of data from
multi-omics can enhance the accuracy of variant calling,
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which is crucial, for example, to the diagnostic screening
of blastomeres.53 In 2014, the first method that co-detected
DNA and RNA from a single cell was developed,54 which
was followed by genomic DNA and mRNA sequencing,55
Genome & Transcriptome sequencing,56 the simultane-
ous isolation of genomic DNA and total RNA,57 and
TARGET-seq.58 These studies consistently found a positive
correlation between CNVs and transcription levels. This
suggests that once the genomic patterns of SVs/ecDNA
mutations and transcriptome are simultaneously analysed
in the same single cell, it will be possible to precisely
determine how different genomic mutations influence the
downstream phenotype.
Here, we developed a novel multi-omics method termed

single-cell paralleled genome and transcriptome sequenc-
ing on a third-generation platform (scGTP-seq). To achieve
the co-detection of genomic DNA and mRNA, we physi-
cally separated the transcriptome and the genome, then
modified the SMOOTH-seq procedure47 with paralleled
scRNA-seq analysis using Smart-seq2.59 We also devel-
oped the ecDNAFinder pipeline to facilitate scGTP-seq
data analysis, and confirmed that it can efficiently identify
ecDNAs from TGS reads. The ecDNAs in different cancer
cell types showed cell-type specificity. Specifically, the
ecDNAs were abundantly detected in certain genomic
regions with high copy numbers, suggesting ecDNA
hotspots. Moreover, the same ecDNA found in different
cell types showed distinct abundance, while different
ecDNA genes exhibited variable copy numbers in the
same cells. Although the ecDNA genes showed globally
higher expression levels, this variation does not linearly
correlate with the ecDNA copy number. We further
analysed whether SVs induced downstream transcriptome
alterations and identified multiple deletion and insertion
events that led to altered transcripts. Finally, we applied
scGTP-seq on a clinical hepatocellular carcinoma (HCC)
sample, which contained multiple cell types, and identi-
fied ecDNA from both cancer cells and non-cancer cells.
Thus, scGTP-seq can serve as a powerful tool to investigate
the effects of ecDNA and SVs in heterogeneous cancer
samples.

2 RESULTS

2.1 Design and optimization of
scGTP-seq

In design, we used carboxylic acid magnetic beads to
separate DNA and RNA molecules in each single cell
to obtain the DNA and RNA separately for downstream
amplification and sequencing. The magnetic beads can
accumulate around the cell surface to hold the cell in the

pellet, while the RNAwas released to the permeabilisation
buffer in the supernatant (Supporting Information Figure
S1A). Then, Smart-seq2 was applied to amplify the RNA
in the cell lysate. Subsequently, the adjusted TGS-based
scWGS method, SMOOTH-seq47 procedure and library
construction for TGS were performed with the genomic
DNA attached to the magnetic beads (Figure 1A). We
applied scGTP-seq in four cultured cell lines, including
human embryonic kidney cell line HEK293T, osteosar-
coma cell line U2OS, colon cancer cell line COLO320DM
and prostate cancer cell line PC3, to validate the robust-
ness of the method. First, we evaluated the sensitivity
and accuracy of transcript detection in different single
cells. For the majority of cell types, the average number of
detected genes per cell is approximately 9000, except for
COLO320DM cells, which is 7951 (Figure 1B and Support-
ing Information Table S1). To examine whether separating
the genomic DNA in scGTP-seq interfered with transcrip-
tome detection, we then analysed the RNA modality of
U2OS cells and HEK293T cells generated by scGTP-seq,
and compared to that scRNA-seq profiles of same cell lines
generated using whole-cell Smart-seq2. We found no sig-
nificant difference between the number of detected genes
in both cell lines (Figure 1B), suggesting that scGTP-seq
has comparable RNA detection sensitivity with whole-cell
Smart-seq2. Furthermore, principal component analysis
(PCA) and unsupervised clustering revealed that the cells
belonging to the same type clustered together. Both U2OS
and HEK293T cells matched well to the corresponding
whole-cell Smart-seq2 controls (Figure 1C and Support-
ing Information Figure S1B), suggesting no detectable
bias in scGTP-seq. In addition, the U2OS cells that were
performed in different experimental batches showed no
difference on both the PCA plot and the cluster dendro-
gram (Figure 1C and Supporting Information Figure S1B),
indicating that the scGTP-seq workflow is highly repro-
ducible. In summary, the transcriptome data of scGTP-seq
exhibit advanced sensitivity, accuracy and stability in
different cell types.
The initial amount of DNA required for TGS library con-

struction is approximately at the microgram level, and the
length of the DNA fragments should reach several kilo-
bases. Thus, the current scWGA methods are not suitable
for TGS analysis. Hence, we addressed the demands of
scWGS on the TGS platform based on the SMOOTH-seq
method, with modifications to facilitate the amplification
of separated DNA on magnetic beads (Figure 1A). Differ-
ent combinations of Tn5 adaptors, as well as transposase
reaction duration, were systematically tested to examine
the resulted length and yield of genomic amplicons. The
results showed that,when compared to the heterotypic I5I7
adaptor, longer genomic fragments were obtained using
the Tn5 enzyme loaded with the homotypic I5 adaptor.
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F IGURE 1 Development of scGTP-seq.
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This implementation also improved the yield of the PCR
amplification product, which may be due to the fact that
only 50% of the library molecules contain two different
adaptors at each end of the molecule that can be ampli-
fied by the heterotypic I5I7 adaptor PCR60 (Figure 1D and
Supporting Information Figure S2A). Further sequenc-
ing revealed that the genome coverage obtained with the
homotypic adaptor was higher than that achieved with
the heterotypic adaptors (Figure 1E). These suggest a bet-
ter genome capture efficiency with Tn5 transposase loaded
with the homotypic adaptor sequences.
The isolated single-cell DNA was tagmented with Tn5

for a time series ranging from 5 to 10 min. The DNA frag-
ments obtained by a 5-min Tn5 treatment were larger in
length than those achieved by 7- and 10-min treatments,
which showed similar length distributions (Supporting
Information Figure S2B). However, the amplification yield
of fragments obtained from the 5-min Tn5 treatment was
the lowest, which may be due to the difficulty in ampli-
fying large DNA fragments with PCR (Figure 1D). Even
though no essential difference was observed in the size
distributions of the DNA fragments obtained from 7- or
10-min Tn5 treatment, the latter resulted in a signifi-
cantly higher amplification yield (Figure 1D). In addition,
we evaluated the amplification bias by calculating the
genome coverage at different read depths and compared
the results from cells amplified using our method with
published data using other methods.61 Our single-cell
DNA amplification method (scGTP-seq cell#1, scGTP-seq
cell#2) outperformed other single-cell DNA amplification
methods including MALBAC, MDA and eWGA (Support-
ing InformationFigure S2C). Taken together,we decided to
use homotypic I5 adaptor-loaded Tn5 transposases to treat
the single-cell DNA isolated with the magnetic beads for
10 min in scGTP-seq to achieve a high yield of long DNA
amplicons.
Considering the high cost of using scWGS on the TGS

platform, we decided to first conduct the scRNA-seq
analysis, followed by scWGS analysis for single cells
that showed high scRNA-seq data quality. Accordingly,
the single-cell DNA attached to the magnetic beads has
to be stored for a certain amount of time, which could
potentially affect the quality of the subsequent scWGS
data. We experimentally confirmed that sample storage
in −80◦C for 4 weeks did not impair scWGS data qual-
ity. To our surprise, the frozen samples outperformed
the fresh ones in terms of DNA library yield and read
mapping ratio. In addition, the frozen samples showed
significantly higher genome coverage (Supporting Infor-
mation Figure S2D). These data suggest that scGTP-seq
could be adapted in practical settings with excellent
robustness.

2.2 Analysis and verification of ecDNA
identified by scGTP-seq

The DNA amplicons of each cell contained a 16-bp
cell barcode sequence that is compatible with TGS plat-
forms. Twelve single cells were pooled together consid-
ering the sequencing cost and the requirement of initial
DNA amount for TGS library construction. Nanopore and
PacBio are two representative TGS sequencing platforms
utilizing different principles. As SMOOTH-seq has only
been tested on the PacBio platform, we further compared
sequencing results from both technologies, specifically the
Nanopore PromethION and the PacBio sequel II with
HiFi mode using 12 cells in a library. The reads obtained
from both platforms showed over 98% mapping ratios in
individual cells, with PacBio data showing slightly better
stability (Supporting Information Figure S3A). However,
single cells sequenced on the Nanopore platform had a
higher number of mapped reads (Supporting Information
Figure S3B). The averaged read lengths varied among dif-
ferent cell types, which were likely caused by variable
enzymatic activity of Tn5 transposase when applied to dif-
ferent genomes (Supporting Information Figure S3C,D).
For U2OS cells, much longer read lengths were obtained
with the Nanopore sequencing, which may lead to a rel-
atively lower mapped read ratio (Supporting Information
Figure S3A). The scWGS data acquired from the Nanopore
platform exhibited enhanced genome coverage due to
its higher read output (Supporting Information Figure
S3E,F), thereby offering better capability in identifying
structural genomic variations. The error rate from the
Nanopore platform is much higher than the PacBio plat-
form (Supporting Information Figure S3G), which could
potentially affect ecDNA and SVs identification. Besides,
there was a positive correlation between read length and
error rate, indicating longer reads may contain more
sequencing errors (Supporting Information Figure S3C,G).
We next tried to find ecDNA using the scGTP-seq

data. Previous studies have developed analytical tools to
resolve ecDNA using WGS reads from NGS platforms.7,62
However, few software tools exist for the identification
of ecDNA from TGS reads. To address this, we estab-
lished a bioinformatics pipeline named ecDNAFinder
(Figure 2A and Supporting Information Figure S4, Meth-
ods). Briefly, multiple aligned read intervals were assigned
to the most consistent genomic regions, and secondary
mapping reports within the largest mapped interval were
removed. The short, duplicated sequenceswithin the reads
were merged as they might be generated by sequencing
errors. Afterwards, reads that contained separate inter-
vals assigned by at least two reversely located mapped
genomic regions were extracted as candidate ecDNA
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F IGURE 2 Analysis and verification of ecDNAs.

spanning reads. Stringent filtering criteria were adopted
to remove false positives. SVs and tandem repeats can
generate chimeric reads, which would be identified as
false-positive ecDNA by our ecDNAFinder pipeline. Thus,
we removed the candidate ecDNA whose cyclization site
appeared within 500 bp-distance of any SVs identified
by Sniffles (including deletions, insertions, translocations,

etc., seeMethods),63 aswell as the candidate ecDNAwhose
300 bp sequences flanking the cyclization site overlapped
with simple tandem repeats for at least 30 bp. In addi-
tion, random chimeric reads can also be generated by
PCR amplification. To remove these artifacts, we filtered
ecDNA that had less than three de-duplicated support
reads with the rationale that the likelihood that random
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junctions happened in the same position over three times
in a PCR reaction is very low. After filtering, the ecDNA
identified in single cells was merged according to their
genomic coordinates of cyclization sites. The ecDNA type
was determined by how many genomic fragments were
detected within one ecDNA. Only ecDNA spanning reads
were used to quantify the abundance of the corresponding
ecDNA in each cell, and the read coverage for each ecDNA
in single cells was also calculated. This algorithm allowed
us to obtain information regarding the ecDNA types, the
chromatin intervals, the coordinates of cyclization sites,
the number of supported reads in single cells, the num-
ber of supported cells in each cell line and the located
genes for each ecDNA (Supporting Information Table S2).
Compared with short NGS reads, the several-kilobases
long reads obtained from TGS platform can give more
accurate sequence and assemble information of ecDNA.
For large ecDNAs, the scGTP-seq reads could only cover
a small region flanking the cyclization sites. The short
ecDNAs, including mitochondria DNA (mtDNA), could
be fully covered by a single or multiple scGTP-seq reads
(Figure 2B and Supporting Information Figure S5A-D).
Besides, both single and multiple fragments ecDNAs can
be identified by ecDNAFinder pipeline (Figure 2B and
Supporting Information Figure S5A-E).
To validate the efficiency of scGTP-seq methods and

ecDNAFinder pipeline, 16 types of circular plasmids (range
from 3 to 27 kb long) were added to each scGTP-seq
reaction. Each plasmid was quantified via digital PCR
and pooled together according to a concentration gradient
(Supporting Information Table S3). The midpoint of the
unique region of each plasmid was defined as the cycliza-
tion site, and ecDNAFinder enabled the detection of all the
types of incorporated plasmids. Moreover, the number of
ecDNA reads for the plasmid showed a positive correlation
with the absolute plasmid copy numbers (Figure 2C and
Supporting Information S6). The high correlation of the
measured counts and the actual copy numbers (averaged
R2 = 0.8) indicated that scGTP-seq is able to efficiently cap-
ture circular DNAs and that can be accurately identified
by ecDNAFinder (Figure 2C and Supporting Information
Figure S6). Additionally, it was also possible to recover the
mtDNA present in each cell (Figure 2C and Supporting
Information Figure S6). We quantified the copy number
of mtDNA in different cell types. The results showed that
themtDNA copy number varied among different cell types
(Supporting Information Figure S5E).
While a higher number of mappable reads were

obtained from each single cell using Nanopore sequenc-
ing, this did not imply that more authentic ecDNA could
be foundwithNanopore sequencing reads due to its higher
error rate. Hence, a comparison was performed between
scGTP-seq data from U2OS cells using both Nanopore and

PacBio platforms. We found that Nanopore sequencing
identified five times more ecDNAs compared to PacBio
sequencing, with 59% of the ecDNAs found using PacBio
sequencing also detected by Nanopore (Supporting Infor-
mation Figure S7A). Next, 13 ecDNA candidates were
chosen from both datasets for validation. We designed
divergent PCR primers at both ends of the putative
ecDNA region and conducted outward PCR amplification
using genomic DNA from U2OS and human embryonic
stem cells (hESCs) as templates. The results showed that
10/10 of the ecDNAs identified with Nanopore sequenc-
ing data were amplified with expected sizes (Figure 2D
and Supporting Information Table S4). Sanger sequencing
results also confirmed the candidate cyclization sequences
(Figure 2E and Supporting Information Figure S7B). None
of the three ecDNA candidates supported only by the
PacBio platform could be validated via PCR or Sanger
sequencing (data not shown). According to these results,
the Nanopore platform outperforms PacBio HiFi sequenc-
ing for ecDNA identification in scGTP-seq, likely because
the Nanopore platform enabled higher genome coverage
and generated a higher number of longer reads that could
bemapped to the genome. Thus, in the following work, we
mainly used Nanopore data to build ecDNA profile.
To validate that ecDNAFinder pipeline-derived ecDNA

candidates are bona fide ecDNA, we labelled the oncogene
MYC- located ecDNA in U2OS cells with fluorescence in
situ hybridization (FISH) probe tiling on 200 kb sequences
in the head, tail and middle parts of the ecDNA to ver-
ify its circular structure (Figure 2F). Considering U2OS
is a cultured cell line that might have an altered kary-
otype, we labelled non-ecDNA gene AC019257.8 on chr8
as a karyotype reference. FISH assay revealed an aver-
age of 20 copies of MYC gene and only two copies of
AC019257.8 gene within one nucleus (Supporting Infor-
mation Figure S7C), as well as about 10 copies of each
labelled MYC ecDNA fragments (Figure 2G), suggesting
that these genomic regions were co-amplified within the
ecDNA. Moreover, the distance between the head and tail
fragments of the ecDNA was shorter than that between
the head and middle fragments, demonstrating the cir-
cular structure of the ecDNA (Figure 2G). Overall, the
results showed that the scGTP-seq workflow combined
with the ecDNAFinder pipeline enabled the identification
of endogenous ecDNAs.

2.3 Characterization of ecDNA in
different types of cells

We constructed ecDNA profiles of U2OS, COLO320DM
and PC3 cells using scGTP-seq data analysed by the
ecDNAFinder pipeline. In each cell line, the ecDNA
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F IGURE 3 Characterisation of ecDNAs in cancer cell lines.

cyclization sites and their respective abundance were
summarized in a circular map of the whole genome
(Figure 3A, Supporting Information S8A and S8B). To
evaluate whether ecDNAs have a potential impact on
genetic and transcriptomic features of the cell, the genome
copy numbers and the gene expression levels were also
analysed using scGTP-seq data. In all the analysed cell
types, the majority of the ecDNAs ranged from 3 to 10
Mb (Supporting Information Table S2). Generally, ecDNA
regions showed elevated genome copy number. For exam-

ple, abundant ecDNAs were derived from chr8 q23.11,
chr13 q14.2 and chr16 q21 in COLO320DM cells, where
more than two copies of the genome can be detected from
these regions (Supporting Information Figure S7A). As
for PC3 cells, the chromosomal regions chr5 q23.1-q23.2,
chr10 q22.2 and chr14 q24.3 contained a large number of
ecDNAs and increased copy number (Supporting Infor-
mation Figure S8B). U2OS cells contained an increased
copy number of chr8 q23.1 and chr22 q11.22-q11.23, which
might also be caused by the presence of ecDNAs within



CHANG et al. 9 of 22

these regions (Figure 3A). Moreover, we found numerous
ecDNAs within the region overlapping the MYC gene in
all the three cell types, especially in COLO320DM cells.
This indicates that there might be some ecDNA hotspots
in cancer cells. Using a non-ecDNA gene AC019257.8 on
chr8 as a karyotype reference, we co-labelled the MYC
and the AC019257.8 genes in the three cancer cell lines
along with hESCs (Figure 3B, Supporting Information
Figures S7C and S9A), and found a significantly higher
number of MYC gene copies in COLO320DM cells com-
pared to the PC3 cell lines, which was consistent with the
results from the sequencing analysis (Figure 3B-D). In
contrast, there was no increase inMYC gene copy number
in hESCs.
Even though the ecDNA landscapes of the three can-

cer cell types were not the same, we identified several
ecDNA hotspots, such as the oncogene MYC, CDK4 and
CCND1 genomic loci (Figure 3A, Supporting Information
Figure S8A,B). The genes located on ecDNAs in each can-
cer cell line were all enriched in cancer-related functions
(Supporting Information Figure S9B-D). There were 565
ecDNA genes present in all three cell types (Figure 3E),
whose functions were related to cell proliferation and
metabolism including histone modification, response to
radiation, peptidyl-lysine modification and chromosome
segregation, etc. (Figure 3F). Furthermore, the differences
in ecDNA gene profiles of the three cancer cell lines can
provide enough molecular evidence at a single-cell level
to discriminate different cell types (Figure 3G), as cells
within the same population showed more similar ecDNA
patterns than across different populations. We also gen-
erated a catalogue for cell line-specific cancer genes on
ecDNA (Supporting Information Table S5).

2.4 Gene expression alterations
governed by ecDNA and SVs

In a previous study, Wu and colleagues13 reported that
genes located on ecDNAs are the most highly expressed
genes in cancer cell lines and TCGA clinical tumour sam-
ples, as ecDNA can serve as additional DNA template for
transcription. Taking advantages of our parallel genome
and transcriptome sequencing method in single cells, we
first compared the expression levels of ecDNA genes and
non-ecDNA genes in each cell type. As expected, the
ecDNA genes had a significantly higher expression level
than non-ecDNA genes (Figure 4A). We further interro-
gated our data and assessed the correlation between CNV
and ecDNA. Genomic regions enriched for ecDNA also
showed increased copy number (Figure 4B). In addition,
some genomic regions showed enrichment for CNVs but
did not have identifiable ecDNA (Supporting Information

Table S6). We labelled two ecDNA genes by Oligopaint
DNA FISH and found that the abundance of different
ecDNA genes varied including EGFR and MYC in U2OS
cells. The observations from imaging showed a higher
copy number of the MYC gene than the EGFR gene, con-
sistent with the sequencing results (Figure 4C). During
metaphase, the signal points of EGFR and MYC genes
were partially distanced from the condensed chromosome,
which was expected given the extrachromosomal proper-
ties of ecDNAs (Figure 4C). To further evaluate how the
copy number of ecDNA affects the expression level of the
relevant genes, we measured the correlation between copy
number and expression level of ecDNA genes (Figure 4D)
and found that it were not simply positively correlated.
Of note, some ecDNA genes with low copy number had
higher expression levels, which indicated the existence of
other regulatory mechanisms enhancing the transcription
of these ecDNA genes. In addition, an inverse relationship
where high-copy number genes had low expression levels
was also found. Together, our data suggest that the copy
number may not be the only factor that determines the
transcription level of ecDNA genes.
Similar to the identification of ecDNA, long sequenc-

ing reads generated from the TGS platform should also
facilitate the analysis of SVs. To characterize the SVs from
our scGTP-seq data, we used Sniffles63 to identify deletion,
insertion and translocation events, and analysed the cor-
relation between these SVs and gene expression changes
using the scWGS-seq data and scRNA-seq data, both gener-
atedwith scGTP-seq ofU2OS cells. To remove the potential
false-positives produced by TGS sequencing errors, SVs
found in less than three supporting reads were filtered.
This strategy enabled the identification of 1082 deletions,
557 insertions and 1782 translocation events from U2OS
cells (Supporting Information Figure S10A and Table S7),
including some insertions and translocation events on
mtDNA (Supporting Information Figure S10B and Table
S7). We subsequently mapped the scRNA-seq reads to
the genes containing SVs (Methods), and found that a
total of 277 insertions and 292 deletions were transcribed
(but no translocations). The genes with transcribed vari-
ant RNA molecules with more than two supporting cells
for deletions and three cells for insertions were labelled
on the SVs circos map (Supporting Information Figure
S10A). We further experimentally validated six deletion
and insertion events by amplifying these SVs using both
the genomic DNA and the cDNA of U2OS cells. Both types
of SVs were amplified with the expected fragment lengths
using genomic DNA and cDNA (Figure 4E and Supporting
Information Table S8). Sanger sequencing of the ampli-
fied products further confirmed that the inferred gene
structure variation led to transcript variation (Figure 4F
and Supporting Information S10C). Together, scGTP-seq
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F IGURE 4 Gene expression and CNV alterations.
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allowed us to identify transcriptomic changes governed by
SVs in the genome.

2.5 ecDNAs largely exist in HCC cells as
well as non-cancer cells, as revealed by
scGTP-seq

Comparedwith in vitro cultured cancer cell lines, applying
scGTP-seq to the clinical tumour tissues can bemuchmore
challenging, as they have extremely high heterogeneity
and need to undergo a long procedure that includes deliv-
ery, hard digestion and even sorting, prior to subsequent
single-cell amplification and library construction experi-
ments. HCC is the predominant type of liver cancer, which
is one of the top 10 most commonly, diagnosed tumours,
and the third leading cause of cancer death worldwide in
2020.64 Currently, systematic profiling of ecDNA inHCC is
still lacking. To evaluate the performance of scGTP-seq on
discovering ecDNAs from in vivo samples, we applied this
method to investigate whether ecDNA is involved in HCC.
The expense of the TGS platform is much higher than

that of NGS, which has limited us from analysing a large
number of cells via scGTP-seq. To find the most represen-
tative cells in each cell types, we optimized scGTP-seq by
using STRT-based method65 to conduct scRNA-seq, which
can improve the throughput for transcriptome analysis.
First, we verified that the gene number detected through
STRT is comparable to Smart-seq2 in U2OS, COLO320DM
and PC3 cell lines from 6000 to 12 000 (Supporting Infor-
mation Figure S11A). In addition, dimensional reduction
and clustering analysis revealed that the cells belonging to
the same type clustered together on the tSNE plot (Sup-
porting Information Figure S11B). The transcriptome of
384 single cells from a HCC tumour tissue were sequenced
via STRT-based method. After filtering out low quality
cells, we obtained single-cell transcriptome profiles of 319
cells, with an average of 2772 genes detected from each
single cell (Supporting Information Figure S11C). These
cells could be clustered into three cell types with different
gene signatures (Figure 5A and Supporting Information
Figure S11D): hepatic cells (HPCs) were characterized by
expression of KRT8, KRT18, ADH1A, ADH4 and AHSG;
tumour-associated macrophages (TAMs), characterized
by expression of CD14, CD163, CSF1R, CST3, FCGR2A
and LYZ; and tumour-associated endothelial cells (TECs),
characterized by expression of CDH5, ENG, PECAM1 and
VWF (Figure 5B). Among these three cell types, HPCs
population contained mainly cancer cells, as KRT8 and
KRT18 were the marker genes of epithelial cells. The gene
ontology (GO) analysis of differentially expressed genes
in HPCs showed that they were enriched in cell catabolic
and metabolic processes, which were highly related with

cancer genes (Supporting Information Figure S11E). The
inferred CNV obtained from RNA-seq data also indicated
that HPCs had a significantly higher CNV level than the
other two cell types, consistent with the characteristic
cancer feature (Supporting Information Figure S11F). We
further picked 28 HPCs, 8 TECs and 12 TAMs to perform
scGTP-seq. A total of 26 HPCs, 5 TECs and 9 TAMs were
kept after removing cellswith abnormalCNVpatterns. The
scGTP-seq data revealed expected CNV events in HPCs
and the non-cancer cells detected with normal diploid
chromosomes (Figure 5C).
Subsequently, ecDNAs were analysed in each cell type.

In the HPCs, a total of 139 ecDNAs were found, carry-
ing 51 cancer genes including the genes found within
previously described ecDNA such as MYC and CCND1
(Figure 5D). The GO analysis revealed that these ecDNA
genes were associated with common processes in cancer,
including proteasomal protein catabolic process, protein
targeting, peptidyl-lysine modification and regulation of
mRNA metabolic process, etc. (Figure 5E). Surprisingly,
we also identified 42 ecDNAs carrying 5 cancer genes in
the TECs (Supporting Information Figure S12A) and 47
ecDNAs carrying 1 cancer genes in the TAMs (Support-
ing Information Figure S12B). Each cell type had specific
cancer genes on ecDNA (Supporting Information Table
S9). More than half of ecDNA genes in TAMs and TECs
were specific (Supporting Information Figure 5F). Next,
we selected the MYC gene, which was only presented
on ecDNAs in HPCs, for experimental verification using
FISH (Figure 5G). The copy number of theMYC gene was
higher in part of HPCs compared to both TECs and TAMs
(Figure 5G).We also labelledCCND1 gene,which appeared
in both HPCs and TECs as an ecDNA gene, to verify the
authenticity of ecDNAs found in TECs. Indeed, the copy
number of CCND1 significantly increased in TECs com-
pared to TAMs, and also had abnormal increase in some
HPCs (Supporting Information Figure S12C,D). This result
validated that the ecDNAs we detected in TECs were bona
fide ecDNAs. In addition, the ecDNA genes showed sig-
nificantly higher expression levels than non-ecDNA genes
in HPCs, which was consistent with the results from our
previously characterized cancer cell lines (Figure 5H). Fur-
thermore, the ecDNAs were closely correlated to tumour
progression. Among the most highly expressing ecDNA
genes, we found some had a high correlationwith the over-
all survival rate in HCC, for example, TRMT112 and BANF1
(Figure 5I and Supporting Information Figure S12E).
Patientswith low expression of these ecDNAgenes showed
a significantly enhanced overall survival probability. The
multifunctional methyltransferase subunit TRM112-like
protein, encoded by the TRMT112 gene, acts as an activa-
tor of both rRNA/tRNA and protein methyltransferases.66
Barrier-to-autointegration factor encoded by BANF1 is a
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F IGURE 5 ecDNAs identified in HCC.

nonspecific DNA-binding protein that plays key roles in
mitotic nuclear reassembly, chromatin organization, DNA
damage response, gene expression and intrinsic immunity
against foreign DNA.67,68 Both of them have not been char-
acterized as oncogenes. Together, these results indicate
that the ecDNA genes identified from scGTP-seq can serve
as new biomarkers for cancer diagnosis and prognosis.

3 DISCUSSION

The optimization of existing single-cell sequencing meth-
ods requires improving the sensitivity, accuracy, and
coverage of different approaches. The development of
new single-cell multi-omics methods integrates multiple
omics layers and enables comprehensive analysis and



CHANG et al. 13 of 22

precise depiction of cellular heterogeneity. Moreover,
these methods provide new approaches to study how
different omics layers interplay with each other to deter-
mine the fate or status of different cells. In recent years,
many single-cell multi-omics methods have been devel-
oped, allowing investigation on how different genomic
features, such as CNV, DNA methylation,69 chromatin
accessibility,70 or histone modifications,71 might affect
gene expression. The scGTP-seq first incorporates the
TGS platform in single-cell multi-omics analysis, offering
a novel strategy to study genomic structural variation,
including ecDNA and SVs in single cells, and determine
how this variation causes downstream changes in the
phenotype, as revealed by transcriptional changes. We
found that genomic regions found on ecDNAs had higher
expression and copy number than non-ecDNA regions.
We have observed that while the differential trends remain
statistically significant, the effect sizes appear relatively
lower. This phenomenon can be attributed to the inherent
heterogeneity of ecDNA within individual cells, as well
as our limited sample size. In addition, the relationship
between ecDNA copy number and expression level was
complex. Some ecDNA genes with low copy numbers
still had high expression levels, while high copy number
ecDNA genes sometimes had low expression. Our data
suggested that copy number might not be the only factor
that determined gene transcription level in ecDNA.
The detection of ecDNA using computational tools and

WGS data obtained from NGS is quite challenging due to
short-read lengths that require deep sequencing.72 Short
reads also make it extremely difficult to capture more than
one breakpoint at a time.4 Compared to WGS, the circle-
seqmethod can achieve circular DNA enrichment through
the digestion of linear genomic DNA and rolling circle
amplification, which reduces the requirement for sequenc-
ing depth.16,73 However, circle-seq results in the loss of
information in linear DNAs. If an ecDNA experiences
DNA damage and loses its circular structure, it will not be
captured by circle-seq. However, our scGTP-seq method is
still capable of detecting linearly damaged ecDNA, because
the identification of ecDNA candidates relies on the
detection of circularization sites. The characteristic long
sequencing reads of scGTP-seq and SMOOTH-seq, such
as the 5–10 kb sequence reads obtained from Nanopore or
PacBio sequencing platforms, are more likely to capture
the cyclization sites of ecDNA and to providemore conclu-
sive evidence regarding ecDNA frequency and structure.4
The long reads obtained from the TGS platform can also
achieve higher sequencing coverage of ecDNA and benefit
the detection of multiple fragments of ecDNA. Moreover,
for relatively short ecDNA (usually no more than 10 kb),
a single sequencing read can capture its entire sequence.
Although our pipeline can utilize specific sequence fea-

tures of circularization breakpoints to distinguish ecDNA
from most SV events, the distinction between ecDNA and
tandem duplication events can pose challenges, especially
when working with short reads (Supporting Information
Figure S13). Our method, which generates long sequenc-
ing reads with an average length of 6 kb, can help reduce
false positives by directly identifying short tandem repeats
within a single read. Nevertheless, our method may still
encounter difficulties in distinguishing ecDNA from large
duplication events, especially in long ecDNA candidates
that can only be detected through circularization sites.
To minimize false positives, we filtered out ecDNAs that
overlapped with genome regions annotated as tandem
repeats. Additionally, we usedDNAFISH as an orthogonal
approach to validate our ecDNA candidates.
Furthermore, using long reads of scGTP-seq, we

attempted to investigate potential instances of ecDNA
reintegration into the genome. However, none of such
events were captured in our data, possibly due to the rela-
tively low sensitivity of ecDNA detection at the single-cell
level. Additionally, the low throughput and high cost of
TGS hindered us from deeply sequencing the genome
for each individual cell. Understanding the specific
processes involved in the generation and integration of
ecDNAs, as well as their interactions with chromosomes,
is undoubtedly intriguing. However, current sequencing
methods can only provide us with limited candidates of
ecDNA, which is still crucial but leaves more molecular
mechanisms to be explored in future studies.
Currently, the high sequencing cost and limited read

output of TGS platforms make them difficult to apply
in high-throughput single-cell sequencing. Thus, we opti-
mized scGTP-seq by using STRT-basedmethod to improve
the throughput of the RNA modality. After identifying
cell types for each cell, we can choose the cells with
high-quality transcriptome sequencing data from each cell
type of interest and process their corresponding scWGS.
Besides, the sequencing depth of scWGS is also constrained
by low reads output of TGS platforms and limits the detec-
tion sensitivity of ecDNA and SVs in scGTP, which means
low copy number ecDNAs can be missed. The sequencing
cost for each cell in the Nanopore platform is almost half
that of the PacBio platform. Nanopore platform can also
generate more reads for each cell. However, the relatively
high sequencing error rate of TGS platforms, especially
for the Nanopore platform, may induce false positives.
This may be particularly problematic in the case of very
lengthy sequencing amplicons, as longer readsmay induce
more errors. For example, the U2OS cells sequenced by
the Nanopore platform had the longest read lengths but a
significantly lower reads mapping rate (Supporting Infor-
mation Figure S3). With the relatively high errors of
Nanopore sequencing, we do not recommend scGTP-seq
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for the identification of single nucleotide mutations, but
only for detecting large-scale genetic variation. To remove
the false positives induced by sequencing errors as thor-
oughly as possible, we set stringent criteria in ecDNA
reads defining, correction and filtering to find the real ecD-
NAs using ecDNAFinder, which can further improve the
accuracy of ecDNA identification but decrease the sensi-
tivity for low copy ecDNAs. In addition, even though long
reads sequenced by TGS platforms increased ecDNA cov-
erage, most of ecDNA we detected still had low coverage,
which can benefit from further improvement of TGS plat-
forms in reads length and sequencing depth. In summary,
decreases in sequencing cost and sequencing error rate,
and increases in sequencing reads output and read length
of TGS platform can improve the performance of scGTP in
detecting ecDNA and SVs.
Structural variants of the genome, which involve

kilobase- to megabase-sized deletions, duplications, inser-
tions, inversions and translocations, represent a major
source of genetic variability in somatic cells.74 These vari-
ants can lead to substantial genetic heterogeneity and
contribute to disease development and variable responses
to therapy.75 According to our scGTP-seq results, only a
tiny fraction of SVs occurred within genes. While inser-
tions and deletions may produce changes in transcript
structures, it remains unclear whether these variants lead
to changes in protein function or gene regulation. In addi-
tion, we did not capture any fusion transcripts generated
by translocation events. Thismay be explained by chimeric
RNAs being generated during the post-transcriptional
process such as from splicing.76–78
Previous studies emphasized the importance of ecDNA

in cancer. However, all these analyses were conducted
on sequencing data generated from bulk tissue. Thus, it
was difficult to pinpoint how ecDNA affected each cell
type in heterogeneous cancer tissues. According to our
scGTP-seq results of the HCC tissue, ecDNAs are hetero-
geneous within a cell population. Moreover, they not only
appear in cancer cells, but can also be detected in some
non-cancer cells such as TECs and TAMs. In previous
studies, the existence of circular DNA elements in healthy
human somatic tissue was verified through circle-Seq at
the bulk level, with these elements considered common
mutational components in human soma.79 It also men-
tioned that gene products from ecDNA transcripts could
potentially contribute to the phenotype of somatic cells
and tissue, as reported in yeast. In light of this, we spec-
ulate that the ecDNA detected in TAM and TEC might
represent accumulated genomic structural mutations. The
stimuli present in the tumour microenvironment could
select TAM and TEC that carry specific ecDNA. In our
study, only 319 final cells were analysed from a complex
cancer tissue, which was restricted to analyse more dif-

ferent cell types within the tissue. Thus, more studies are
needed to further elucidate the role of ecDNA in different
non-cancer cell types. We believe that the decrease of TGS
sequencing price and the incorporation of automated liq-
uid handling robots in the future will greatly increase the
sample size that can be studied using our method.
In conclusion, scGTP-seq serves as a powerful single-

cell multi-omic tool to study ecDNA biology, as our results
demonstrated that it is feasible to precisely map ecDNAs
in different cell types and clinical tumour samples, and
obtain deeper insights into ecDNA biogenesis and its roles
in cancer progression and evolution.

4 MATERIALS ANDMETHODS

4.1 Cell culture

Human osteosarcoma cell line U2OS, prostate cancer cell
line PC3, colon cancer cell line COLO320DM and embry-
onic kidney cell line HEK293T were purchased from the
Cell Bank of Chinese Academy of Sciences. U2OS and
HEK293T cell lines were cultured in Dulbecco’s modi-
fied Eagle medium (DMEM) with high glucose (Thermo
Fisher Scientific) supplemented with 10% foetal bovine
serum (FBS) (ES cell qualified, VISTECH), 1% peni-
cillin/streptomycin (Thermo Fisher Scientific) and 1%
Glutamine (Thermo Fisher Scientific). The PC3 cell line
was cultured in F12K medium (Thermo Fisher Scientific)
supplemented with 10% FBS, 1% penicillin/streptomycin
and 1% glutamine. The COLO320DM cell line was cultured
in RPMI 1640 medium (Thermo Fisher Scientific) supple-
mented with 10% FBS, 1% penicillin/streptomycin and 1%
glutamine. All the cells were maintained at 37◦C and 5%
CO2 in a humidified incubator.

4.2 Single-cell isolation from the HCC
sample

The cancer tissue was handled within 3 h after exci-
sion from the patient. Briefly, the tissue was cut into
approximately 1 mm3 pieces in DMEM, and then enzymat-
ically treatedwithMACS tumour dissociation kit (Miltenyi
Biotec, Cat. 130-095-929) using 37C_h_TDK_3 program in
the gentleMACS Octo Dissociator with Heaters. Disso-
ciated cells, while re-suspended in DMEM, were subse-
quently filtered through a 70 μm cell strainer (BD) and
centrifuged at 400 g for 10 min at 4◦C. After removing
the supernatant, the cell pellet was re-suspended by 1X
phosphate-buffered saline (PBS) with 10% FBS, and the
red blood cells were removed using the red blood cell lysis
buffer (Roche), according to the manufacturer’s instruc-
tions. Cells were then filtered through a 40 μmcell strainer
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(BD), and single cells were picked up by mouth pipetting
for scGTP-seq.

4.3 Spike-in plasmids preparation

Plasmids with lengths between 3,300 and 27,300 bp were
chosen and each plasmid had a unique sequence. After
extraction from E. coli, the plasmids were digested by
Exonuclease V (RecBCD, NEB, Cat. M0345) to remove
noncircular DNA, and then purified with Ampure XP
beads (Beckman, Cat. A63882). The absolute concentration
of each plasmid was measured by a Naica crystal digital
PCR system (Stilla Technologies). The spike-in plasmids
mixture contained 16 different plasmids with a gradient
ratio from 1 to 100 (Supporting Information Table S3).

4.4 ScGTP-seq library preparation and
sequencing

After digestion, single cells were placed into 5-μL cell
lysis buffer by mouth pipetting. The cell lysis buffer
contained 0.2 μL balanced Dynabeads™ MyOne™ Car-
boxylic Acid beads (Thermo Fisher Scientific, Cat. 65011),
0.8 U/μL RNase Inhibitor (Takara, Cat. 2313B), 0.2%
Triton X-100 (Sigma-Aldrich, Cat. X100), 2 μL 5X Super-
Script II first-strand buffer (Invitrogen), 0.4 μM reverse
transcription (RT) primer (AAGCAGTGGTATCAACGCA-
GAGTACTTTTTTTTTTTTTTTTTTTTTTTTT), 10 nM
DTT and 0.04% Tween-20. The single-cell suspension was
vortexed thoroughly for 30 s and placed on an ice-cold
magnet rack.

4.4.1 RNA modality

The supernatant containing RNA molecules was trans-
ferred to a new tube, incubated at 72◦C for 3 min to
release the linearized RNA molecules and immedi-
ately placed on ice. Then, 5 μL RT mixture was added
into the RNA lysate, containing 20U/μL SuperScript
II reverse transcriptase (Invitrogen, Cat. 18064071),
0.8U/μL RNase inhibitor, 0.2 μM RT primer, 2 mM
dNTP mixture (Thermo Fisher Scientific, Cat. R0193),
2 M betaine (Sigma-Aldrich, Cat. B0300), 12 mM MgCl2
(Sigma-Aldrich, Cat. 63020) and 2 μM TSO primer
(AAGCAGTGGTATCAACGCAGAGTACATrGrG+G, rG
represents riboguanosines and +G represents the locked
nucleic acid-modified guanosine). After briefly mixing
and centrifugation, the RT reaction was performed in a
thermocycler with the following program setting: 25◦C
for 5 min, 42◦C for 60 min, 50◦C for 30 min and 70◦C for
10 min. Then, a 15 μL PCR mixture containing 12.5 μL 2×

KAPAHiFi hot-start ready mix and 333 nM of ISPCR oligo
(AAGCAGTGGTATCAACGCAGAGT) was added into
each tube. The cDNA from the single cell was amplified
using the following thermal cycling program: 4 cycles of
98◦C for 20 s, 65◦C for 30 s and 72◦C for 3 min, followed by
16 cycles of 98◦C for 20 s, 67◦C for 15 s and 72◦C for 3 min,
with a final cycle at 72◦C for 5 min. The PCR product from
each cell was purified twice with 0.8× Ampure XP beads
(Beckman, Cat. A63882), and then proceeded for library
construction using the TruePrepTM DNA Library Prep
Kit V2 for Illumina (Vazyme, Cat. TD501/TD502/TD503).
For cells digested from HCC tissue, we performed

the single-cell transcriptome amplification follow-
ing a STRT-based method as previously described.65
PCR products with different barcodes (up to 96) were
pooled together and purified with Zymo DNA clean
& concentrator kit (Zymo, Cat. D4014). The pooled
cDNA product was further purified with 0.6× Ampure
XP beads twice. Then a second round of amplifica-
tion was carried out with the biotinylated primer
(/Biotin/CAAGCAGAAGACGGCATACGAGAT[6bpindex]
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC) and
the ISPCR oligo for four to six additional cycles. After
purification, the cDNA was sheared into approximately
300 bp fragments with a Covaris sonicator (S220). The
fragmented cDNA containing barcode sequences was
enriched using Dynabeads R© MyOne™ Streptavidin C1
beads (Invitrogen, Cat. 65002) and then used for library
preparation using KAPA hyper prep kits (KAPA, KK8505).
The adapter-ligated fragments were amplified using the
illumina read2 primer (CAAGCAGAAGACGGCATACGA)
and the illumina read1 primer (AATGATACGGCGAC-
CACCGAGATCTACACTCTTTCCCTACACGAC). The
scRNA-seq libraries were sequenced on the illumina
Novaseq 6000 system with a PE 150 bp sequencing setup.

4.4.2 Genomic DNA modality

The carboxylic acid beads containing genomic DNA were
re-suspended by adding 2.5 μL DNA lysis buffer, con-
taining 10 mM Tris-EDTA (Sigma, Cat. T9285), 1 mg/mL
QIAGEN protease, 0.3% Triton X-100 and 200 mM KCl.
The mixture was incubated at 50◦C for 1 h, followed
by protease inactivation at 70◦C for 30 min, and was
stored at −80◦C. After confirming the samples for fur-
ther amplification based on scRNA-seq data analysis,
7.5 μL tagmentation mixture (13.3 mM TAPS-NaOH
[pH = 8.3], 6.67 mM MgCl2, 10.67% PEG8K and 1 μL
0.2 ng/μL adaptor loaded Tn5 enzyme [TruePrep Tag-
ment Enzyme, Vazyme, Cat. S601-01] diluted in Tn5
storage buffer) was added to cell lysate, mixed gently,
and incubated at 55◦C for 10 min. The Tn5 tagmentation
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reaction was stopped by adding 2.5 μL 0.2% SDS (Solar-
bio, Cat. S1015) and holding at room temperature for 5
min to quench Tn5 activity. The strand displacement of
the Tn5 adaptors and amplification of the fragmented
genomic DNA was carried out by adding 37.5 μL PCR
mixture, composed of 25 μL 2×Gflex PCR Buffer (Mg2+,
dNTP plus), 0.033 U/μL Tks Gflex DNA polymerase
(TAKARA, Cat. R060B) and 1.067 μM I5 PCR primer
containing a 16-bp cell barcode (5′AATGATACGGCGAC-
CACCGAGATCTNNNNNNNNNNNNNNNNTCGTCG-
GCAGCGTC3′). The amplification of genomic DNA was
conducted by the following PCR program: 72◦C for 3 min,
98◦C for 1min, 20 cycles of 98◦C for 15 s, 60◦C for 30 s, 68◦C
for 5 min and a final cycle at 68◦C for 5 min. The genomic
DNA amplicons with different barcode sequences were
pooled together and purified with 0.8× Ampure XP beads.
A total of 400 ng to 1 μg genomic DNA amplified products
were used for further library construction and sequenced
on the Nanopore PromethION or PacBio sequel II with
HiFi mode.

4.5 ScRNA-seq data pre-processing

Raw paired-end reads were trimmed using Cutadapt
(version 3.3) with parameters ‘–trim-n -q 13,11
-n 5 -m 20 -B/-b ‘AAGCAGTGGTATCAACGCA-
GAG;max_error_rate = 0.02’ -B/-b ‘CTCTGCGTTGAT-
ACCACTGCTT;max_error_rate = 0.02’. Then the reads
were aligned to the hg38 genome reference with STAR
(version 2.7) after further quality trimming by TrimGalore
(version 0.6.5). The bam files of the same cells from
multiple lanes were merged by Samtools (version 1.1)
and duplicates were marked by Picard MarkDuplicates
(version 2.25.1). We calculated the normalized gene
expression levels as FPKM (fragments per kilobase per
million mapped reads), which was assessed by RSEM
(version 1.3.3) subcommand rsem-calculate-expression.
The detailed description and code are available online:
https://github.com/WellJoea/SmartSeq2Pipe.git

4.6 The comparison of gene expression
in single cells

The single-cell expression matrix was normalized by the
Seurat (version 3.2.3) built-in function NormalizeData and
scaled by function ScaleData with default parameters.
Then PCAwas conducted and visualized by R package fac-
toextra (version 1.0.7) using default parameters. Pearson’s
correlation coefficients were calculated using normalized
expression levels for all the cells to examine transcrip-
tome similarity between different cell lines and different
batches characterized by scGTP-seq. Similar samples were

grouped by hierarchical clustering analysis using distance
‘one minus Pearson correlation coefficients’ by function
heatmap.2 from R package gplots.

4.7 The RNA analysis of HCC samples

The analysis of HCC followed the Seurat (version 3.2.3)
standard workflow. Single-cell gene expression profiles
were filtered when gene number was less than 300, UMI
number was larger than 20 000, or mitochondrial gene
percentage was higher than 20%. K-nearest neighbours
analysis was performed based on 30 principal components
and then clustering was conducted by ‘louvain’ method
with resolution of 0.5. Cell types were identified based on
expression of marker genes. The genes enriched in each
cell type were found by ‘FindAllMarker’ function in Seu-
rat package with log fold-change cut-off = 0.25. The CNV
score for each cell was calculated by R package Infer-
CNV using ‘infercnv::run’ function with a cut-off value
of 0.1.

4.8 Pre-processing of single-cell
genome third-generation sequencing data

PacBio sub-reads were transformed to consensus reads
using CCS (version 4.2.0). Different cells pooled in the
same library were separated by de-multiplexing the cell
barcodes using Lima (version 2.0.0). The CCS reads were
mapped to the human genome (hg38) using PBMM2
(version 1.4.0).
Nanopore read sequences were called from fast5 files

using guppy (Oxford Nanopore Technologies, version
2.3.7). Reads were then trimmed by Cutadapt (version 3.3)
with parameters ‘-q 13,11 -m 100’ and aligned using Min-
imap2 (version 2.17) with the following parameters: ‘-ax
map-ont -t 20 –cs –MD -Y -L –secondary no’. Reads and
mapping quality were, respectively, checked by FastQC
(version 0.11.9) beforemapping andwith Samtools (version
1.1) after mapping.
To evaluate the plasmids sequences in the sequencing

data, each circular plasmidwas split into a linear reference,
and we defined the middle position of the longest unique
region as the cyclization site. The 16 plasmids linear ref-
erence were added to the hg38 reference genome during
mapping and annotation.

4.9 CNV analysis with TGS reads

Human hg38 reference genome was downloaded from
the UCSC database (https://genome.ucsc.edu/cgi-bin/

https://github.com/WellJoea/SmartSeq2Pipe.git
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hgTables). After excluding the N-gaps region, the hg38 ref-
erence genome was split into consecutive bins that were
500 kb in length. A total of 5824 bins (except chromosome
Y andmitochondrial chromosome) were obtained, and we
further estimated the number of reads primarily and sup-
plementarily aligned within each bin (with at least 10 bp
overlap).
After normalizing the total depth of each bin by

sequencing data volume, a locally weighted scatterplot
smoothing (LOWESS)model was used for GC-content cor-
rection. The copy number of each bin was defined by the
ratio of read counts and predicted values of the final model
and normalized by log2 transformation. Then, we calcu-
lated the copy number and corrected the bias caused by
whole genome amplification.
To infer discrete copy number segments, the circular

binary segmentation algorithm was adopted in R pack-
age DNAcopy. In brief, we transformed the copy number
matrix to a CNA object, used smooth CNA function to
smooth single-point outliers and calculated the segmen-
tation with segment function. A gain was defined as a
segment with a copy number value > 2.6, and a loss was
defined as a segment with a copy number value < 1.4.
Only those CNVs > 500 kb were kept for downstream
analysis. Code for long reads CNV analysis is available at
https://github.com/fanxylab/LongCNV.git.

4.10 ecDNA detection by ecDNAFinder

The ecDNA detection started with fetching mapping read
intervals and referred to genomic locations. Then we
performed multiple steps including: (1) detecting reads
rearrangements to get the ecDNA candidate reads; (2)
constructing the breakpoint graph for each read; (3)
concatenation of consensus fragments; (4) annotating
mapped genome coordinates, filtering, and visualization
of the circles. Here, we briefly described the implemen-
tation of the pipeline, and the full code can be accessed
from https://github.com/fanxylab/EcDNAFinder.git. We
have provided executable example data on CodeOcean,
which can be accessed through the following link:
https://codeocean.com/capsule/4396048/tree/v1. In addi-
tion, we have packaged the code into a Docker container:
https://hub.docker.com/r/fanxylab/ecdnafinder.
After mapping to the reference, only the primary and

supplemental alignments were kept, and the correspond-
ing read intervals and mapped genomic coordinates were
extracted.
Then we discarded the ‘LOWALIGN’ intervals with a

length less than 100 bp, merged the ‘OVER’ intervals
which were completely contained in the adjacent inter-
val, and removed the ‘DUPLIC1’ or ‘DUPLIC2’ intervals

which reported similar mapped genomic start and end
coordinates of the adjacent intervals. Finally, we converted
adjacent intervals into breakpoints.
Next, we merged breakpoints when they meet the fol-

lowing three conditions: (1) the two reference genome
regions on which the two breakpoints are mapped being
located in the same chromosome; (2) in the same map-
ping orientation; (3) the genomic distance between two
breakpoints being less than 500 bp. Then, we linked
each breakpoint to the most adjacent breakpoint and con-
structed a breakpoint graph. The ecDNAs were defined
from breakpoint graph including a single-interval self-
cyclization. To exclude the false positives induced by
tandem repeats and SVs in the genome, we filtered out
candidate ecDNAs whose 300 bp sequences flanking
the cyclization site overlapped with the simple tandem
repeats for over 30 bp (http://hgdownload.soe.ucsc.edu/
goldenPath/hg38/database/simpleRepeat.txt.gz). We also
removed the candidate ecDNA whose cyclization site that
appeared within 500 bp-distance near any SVs includ-
ing deletion, duplication, insertion, inversion, inversion-
duplication and translocation events detected by Sniffles.
The supporting reads number of each ecDNA should be
no less than 3.
The same cyclization site may be reported as incon-

sistent coordinates caused by sequencing errors. The
consensus intervals were merged if they were located
within 500 bp on both ends. Then we updated the con-
sensus ecDNA based on the longest interval, and the other
included intervals were rearranged according to the con-
census. Finally, the merged ecDNA list and the supporting
reads details were summarized.

4.11 ecDNA gene annotation

We kept ecDNAs with at least three supporting reads in
the merged data of each cell type. The ecDNA genes were
annotated when they overlap with the hg38 annotation gtf
file for at least 30 bp. The circles diagramwas plotted using
circus (version 0.69), providing information of ecDNA dis-
tribution, abundance, the corresponding genomeCNVand
gene expression. The cancer genes were sourced from
https://cancer.sanger.ac.uk/cosmic/census,80 and a total
of 576 Tier 1 genes were chosen without any additional
filtering criteria.

4.12 Evaluation of ecDNA detection
using plasmids

To check if ecDNA detection was consistent with the abso-
lute abundance, we calculated the read counts evaluated

https://genome.ucsc.edu/cgi-bin/hgTables
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https://github.com/fanxylab/EcDNAFinder.git
https://codeocean.com/capsule/4396048/tree/v1
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz
https://cancer.sanger.ac.uk/cosmic/census
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by the ecDNAFinder pipeline for each plasmid in sin-
gle cells, and performed linear regression between the
detected numbers and the suggested absolute copy num-
bers for the plasmids in each individual cell. The R2 values
from the linear regression analysis were evaluated to assess
the correlations.

4.13 Comparison of ecDNA from
different datasets

We compared the similarity of ecDNA identified in U2OS
cells from PacBio sequencing and Nanopore sequencing,
in COLO320DM cells and PC3 cells from our data and
published data13 using pybedtools (version 2.29.1) inter-
sect function, with the arguments ‘s = False, S = False,
wa = True, wb = True, f = 0.1, F = 0.1.″

4.14 SVs analysis in U2OS cells

Weused Sniffles (version 1.0.12)with at least three support-
ing reads to detected SVs with the scGTP-seq DNA data
of the U2OS cells. The SVs were then filtered according
to their lengths and qualities. Here, we mainly focused on
three types of SVs: deletions, insertions and translocations,
which were applicable to pair-wise transcriptome analysis.
For deletions and insertions, the maximum length cut-off
values were set to 100 and 2.5 kb, respectively. The mini-
mum cut-off values were all set to 100 bp. Finally, SVs with
the quality ‘PRECISE’ were kept.
We noticed that many cells might share the same SV

events, that is, certain types of SVs from different cells
occurred on the same chromosome and had similar start
and end positions. We constrained the similar position
as following: in the genome, if we define SV A happens
at breakpoint iA and jA and SV B happens at break-
points iB and jB, A and B could be regarded as the
same SV event when (iA-500) < iB < (iA + 500) and
(jA− 500)< jB< (jA+ 500). In thisway,wemerged similar
SVs in different cells into one individual SV with relatively
a wide range and fuzzy genome positions. The SVs were
further annotated with gene, exon and intron information
using bedtools v.2.30.0 with the parameter ‘intersect’.

4.15 Integrated analysis of
transcriptome data and the genome
structure alterations

We extracted genes located in ecDNA regions and anal-
ysed the expression changes caused by ecDNA in each
cancer cell line. Then the gene lists of different cell

types were compared and visualized using R package
ggVennDiagram.
The functional GO analysis of ecDNA genes was con-

ducted by R package ClusterProfiler with a p value cut-off
of 0.01. Qualified GO terms with top gene ratios were visu-
alized. In addition, similar GO terms were consolidated,
with one representative term being kept.
To realign the RNA-seq data to the genomic vari-

ants, we removed SVs whose associated genes were not
expressed. For each insertion event, we created a new
reference sequence that linearly connected all the inser-
tion sequences within the insertion genomic site. The
unmapped RNA-seq reads were realigned to the new ref-
erences using BWA (version 0.7.17) with the algorithm
BWA-MEM and default parameters. After realignment,
reads with at least 100 bp mapped to insertion regions
would be considered as a candidate transcript produced by
this insertion structure. Similarly, for one deletion event,
500 bp sequences flanking the genome coordinates of the
SVs were connected. If the single end reads could span
the breakpoints and cover atleast 100 bp length, we regard
them as transcripts generated from deletion events. The
translocation events might result in fusion transcripts, and
therefore,we detected gene-fusion events from scRNA-seq.
We ran Star-Fusion version 1.9.1 on trimmed Fastq files
using GRCh38_gencode_v33_CTAT_lib_Apr062020 as the
genome library and then summarize fusion transcripts
from every single cell. We then compared the locations
of translocations and fusion transcripts to check whether
they were matchable. Code for SVs analysis and in silicon
validation is available at https://github.com/fanxylab/SV.
git

4.16 Survival analysis on HCC patients

We selected various ecDNA genes and committed over-
all survival analysis for each of them using a web-based
tool GEPIA (http://gepia.cancer-pku.cn). Overall survival
is defined as the time interval between the date of diagnosis
to the date of death from any cause or last follow-up. LIHC
dataset was used for the analysis with default parameters.

4.17 Sequencing saturation analysis

We compared the genome capture efficiency between
homotypic Tn5 adaptor (I5) and heterotypic adaptor (I5I7)
in Figure 1E. The NGS reads of Tn5 transposon-based
scWGA samples were aligned to the hg38 reference
genome using BWA (version 0.7.17) with default param-
eters. The base quality score recalibration (BQSR) was
applied for mapping recalibration with GATK (version
4.2.0) BaseRecalibrator and ApplyBQSR commands. We

https://github.com/fanxylab/SV.git
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then randomly extracted reads with certain fractions
from sorted bam files using DownsampleSam tool from
picard.jar (version 2.25.1). The proportions of reads ranged
from 0.1 to 0.9 with interval of 0.05. For every fraction, we
obtained a new bam file and then assessed the read depths
by Samtools depth command line. Next, the number of
covered genome bases was calculated per fraction and
divided by the length of human genome (bp) to get the
genome coverage.

4.18 PCR validation of ecDNA and SVs

The ecDNAs and SVs found in U2OS cells were chosen
for PCR verification. Genomic DNA of U2OS cells and
hESCs were extracted using the DNeasy Blood and Tissue
Kit (QIAGEN) following instructions formammalian cells.
The RNA of U2OS cells were extracted using the RNeasy
Mini Kit (QIAGEN) following the instructions for mam-
malian cells, and cDNA was obtained by RT as described
previously.81 For each ecDNA, we designed a pair of
outward PCR primers to identify the cyclization site by
primer designing tool in NCBI website (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/, Supporting Information
Table S4). For each SVs event, we designed a pair of inward
PCR primers to identify the inserted or deleted sequence
by the NCBI primer designing tool. The PCR amplifica-
tionwas carried out using PhantaMax Super-FidelityDNA
Polymerase (Vazyme, P505). The lengths of PCR products
ranged from 400 bp to 1 kb, as determined by 1.5% agarose
gel electrophoresis. The PCR products on agarose gel were
cut and purified for Sanger sequencing to confirm the
amplification of the cyclization sites and SVs sites. All the
primers used for validation are summarized in Supporting
Information Table S8.

4.19 DNA FISH

The Oligopaint FISH libraries were chosen from the
database (Probes for Human genome, build 38. Mining
Settings: ‘Balance’) generated by the Wu Lab (https://
oligopaints.hms.harvard.edu/). Probe sets were designed
using standard procedures to target the ecDNA localized
genes defined in Supporting InformationTable S10. For the
primary oligo pool, we purchased theOligoarray pool (Syn-
bio Technologies), and prepared FISH probes as described
previously.82 The Oligopaint FISH staining procedure was
carried out following the previous description.83 Images
of nuclei were collected with a Dragonfly spinning disc
microscope (Andor), processed by Fiji (Fiji Is Just ImageJ,
software available at https://imagej.net/Fiji/Downloads),
and analysed by Imaris version 8.4.1 (Bitplane Inc., soft-
ware available at http://www.bitplane.com/).

4.20 Tissue slices preparation and
immuno-FISH

The HCC tissue was snap-frozen in optimal cutting tem-
perature compound and stored at −80◦C for several days
before cryosectioning into 20-μm thick slices. Sections
were thawed at room temperature. Then the tissue slices
were fixed with 4% PFA for 15 min and then perme-
abilised with 0.5% Triton-X in PBS for 30 min. Samples
were blocked with blocking buffer containing 5% BSA
and 0.1% Triton-X in 1× PBS for 30 min, incubated with
primary antibodies and secondary antibodies at room tem-
perature for 1 h, respectively. Antibodies were diluted in
blocking buffer. The antibody was removed by washing
the samples three times in 1× PBS at room temperature
for 5 min each time. Finally, the samples were post-
fixed in 4% PFA for 10 min and then we performed
DNA FISH as previously described. For HCC tissue slices
immuno-FISH, rabbit anti-PECAM1 (Abcam; Ab28364;
1:50) (TEC marker), rabbit anti-CD163 (Abcam; Ab182422;
1:100) (TAM marker) and mouse anti-KRT18 (Abcam;
Ab668; 1:100) (HPC marker) were used as primary anti-
bodies. Alexa Fluor 488 anti-mouse IgG (H+L) (Thermo
Fisher Scientific; A21202; 1:1000), Alexa Fluor Plus 555
anti-rabbit IgG (H+L) (Thermo Fisher Scientific; A32732;
1:1000) and Alexa Fluor Plus 647 anti-rabbit IgG (H+L)
(Thermo Fisher Scientific; A32733; 1:1000) were used as
secondary antibodies.
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