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Dear Editor,
SARS-CoV-2 rapidly evolves during the pandemic1 with many

variants of concern (VoCs) lineages (Supplementary Fig. S1a).
Omicron (B.1.1.529) and its sub-lineages led to multiple infection
waves globally.2 Omicron subvariants harbored a high number of
mutations, especially in the spike (S) glycoprotein, and clustered in
the receptor-binding domain (RBD) (Supplementary Fig. S1b, c;
Supplemental Discussion). These subvariants drastically decrease
the efficacy of current vaccinations and monoclonal antibody
therapies.2

Among our recently generated Omicron RBD-directed mAbs
(MB.02, MB.08, PC.03),3 all have strong binding activity against
Omicron BA.1, while one of these mAbs, MB.02, maintains high
activity against BA.2 (Supplementary Fig. S1d). To enable broad
activity against VoCs, we combined Clone13A,4 a previously
generated SARS-CoV-2 mAb that was potent against SARS-CoV-2
WA-1 and Delta4 but had low binding activity against Omicron
BA.1 and BA.2 (Supplementary Fig. S1e), with three Omicron
mAbs to engineer five bispecific antibodies using classic IgG1
bispecific antibody constructs5 (“Methods“) (Fig. 1a). The
resultants were named CoV2-0208, CoV2-0203, CoV2-0803,
CoV2-0213, and CoV2-0813. SDS-PAGE analysis indicated all
purified bispecific antibodies were assembled with the expected
size (Fig. 1b, S1f). Thereafter, antibody titration assays were
performed by ELISA and showed strong reactivity of these bsAbs
(along with S3096) to RBDs of SARS-CoV-2 WA-1, Delta, Omicron
BA.1 and BA.2 (Supplementary Fig. S2a, b). Meanwhile, our lead
bsAbs, CoV2-0213 and CoV2-0813, exhibited strong competition
with ACE2 for binding to a range of SARS-CoV-2 RBDs
(Supplementary Fig. S3a).
Next, we performed neutralization assays with pseudoviruses

(Supplementary Fig. S3b), a widely used assay by the field that is
well-correlated with authentic virus assays.7–10 S309 retained
neutralization activity against BA.1 and BA.1.1 but dropped 30-fold
against BA.2 (Fig. 1c). In contrast, CoV2-0213 displayed broad-
spectrum neutralization to a range of circulating Omicron
subvariants (Fig. 1c, f). Specifically, CoV2-0213 remained potent
in neutralizing seven of the Omicron sublineages, BA.1, BA.1.1,
BA.2, BA.2.12.1, BA.3, BA.4/5, and BA.2.75 with IC50 values of 0.044,
0,062, 0.078, 0.025, 0.021, 0.056, and 0.030 µg/mL, respectively
(Fig. 1c, f). CoV2-0213 was ~10× more potent than S309 in
neutralization against BA.1 and BA.1.1 and ~78× more potent than
S309 against BA.2 (Fig. 1c). Meanwhile, two other bispecific
antibodies exhibited potent Omicron-specific neutralization
(Fig. 1c). CoV2-0203 showed high potency in neutralizing three
of Omicron sublineages, although it showed relatively weak
neutralization (1.5-fold) compared with CoV2-0213 (Supplemen-
tary Fig. S4b). CoV2-0208 showed high potency against BA.1 and
BA.1.1, but its activity against BA.2 is on par with S309
(Supplementary Fig. S4b). Both CoV2-0208 and CoV2-0203 lost
neutralization against Delta. CoV2-0213 has strong neutralization

potency against Omicron BA.1, BA.1.1, and BA.2 and maintains
reasonable activity against Delta.
To evaluate antibody cross-reactivity, we tested eight human

coronaviruses RBD proteins, including six Omicron sublineages
and two β-coronaviruses. The results showed CoV2-0213 has a
broad and strong binding activity to all assayed Omicron RBDs
(Fig. 1d) but weak binding to β-coronaviruses RBDs (Supplemen-
tary Fig. S2c). Biolayer interferometry results revealed CoV2-0213
displayed high affinity to Omicron BA.1 (Kd= 3.27 nM), BA.1.1
(Kd= 3.63 nM), BA.2 (Kd= 8.94 nM),_BA.2.12.1 (Kd= 13.9 nM), BA.3
(Kd= 4.89 nM) and BA.4/5 (Kd= 42.7 nM), respectively (Fig. 1e,
Supplementary S5a, b).
We then determined the cryo-EM structures of MB.02 Fab in

complex with Omicron BA.1 spike trimer at ~3.2 Å resolution
(Supplementary Table S1). Two major S trimer conformation states
were detected, one with one RBD up (72%) and the other with two
RBDs up (28%) (Fig. 1g, Supplementary Fig. S6a, Fig. S7a),
indicating that MB.02 bound to up or down conformation of
RBD regardless of neighboring RBD conformation. In both
conformations, the S trimer was bound with three Fabs, one per
RBD, suggesting binding of MB.02 Fab is more flexible, especially
in up conformation (Supplementary Fig. S6b). MB.02 mainly
contacted a flexible loop region at the left shoulder region of the
spike, and no overlap with the ACE2-binding interface (Fig. 1h). All
six CDRs of MB.02 involve in RBD interactions (Fig. 1i). MB.02
binding interface contained two key residues (K440 and S446),
with K440 contacting CDRH1 and CDRH2 of MB.02, and S446
interacting with CDRL2 loop (Fig. 1i, lower panel), indicating MB.02
has distinct binding epitopes to interact with spike compared with
clinically authorized SARS-CoV-2 mAbs (Supplementary Fig. S8).
Furthermore, we analyzed spike mutations in BA.2.12.1, BA.3, and
BA.4/5 that were directly located at the CoV2-0213 binding
interface. Residue S446 was important for MB.02 binding (Fig. 1j),
was present in BA.3 but not in BA.2.12.1 and BA.4/5, while F486V
may disrupt Clone 13A interaction, was present in BA.4/5 only
(Fig. 1j). These differences may explain the enhanced binding
affinity of CoV2-0213 to different Omicron subvariants, although
other spike mutations may also have indirect allosteric effects on
spike conformation at CoV2-0213 binding interface. To confirm
the structural result and evaluate possible antibody evasion, we
performed a neutralization assay with K440A/S446A/V486A
Omicron BA.1 pseudovirus. The result demonstrated that triple-
alanine BA.1 mutant could result in strong resistance to CoV2-
0213, indicating the above residues are key epitopes of CoV2-
0213, consistent with our structural findings (Supplementary
Fig. S4a).
Taken together, CoV2-0213 exhibited significantly enhanced

activities to a wide range of assayed Omicron subvariants
compared to its parental mAbs,3 which prompts us to investigate
its distinct mechanism of action. One Fab arm of CoV2-0213, Clone
13A,4 mainly interacts with a right ridge of the spike and would
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not lead to any steric clash with a bound MB.02, suggesting both
arms of CoV2-0213 could target the same spike (Fig. 1j). To further
investigate how CoV2-0213 binds to spike, we determined the
cryo-EM structure of CoV2-0213 in complex with Omicron
BA.5 subvariant. Among the cryo-EM particles we collected, only
one spike conformation with one RBD up was detected (Fig. 1k,

Supplementary Fig. S7b). Thereafter, we identified a subset (~24%)
of particles with density for two Fab fragments on the same RBD
in up conformation and one Fab fragment each for the other two
RBDs in down conformation (Fig. 1k, left panel) at a resolution of
7.7 Å (unmasked and unsharpened) (Supplementary Table S1). The
density for Fab-bound up-RBD fitted well with the overlaid model
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of spike with MB.02 and Clone 13A Fab fragments,4 while the
density of Fab-bound down RBDs matched with the model of
MB.02 Fab-bound RBD (Fig. 1k, right panel). This suggests three
MB.02 and one Clone 13A bound to the same S trimer, potentially
from three CoV2-0213, with one having both Fab arms bound.
MB.02 could bind to RBD regardless of the bound and
neighboring RBD conformations. However, Clone 13A could only
bind to either an up RBD or a down RBD with a neighboring up
RBD due to spatial clash with a neighboring down RBD.4 From the
cryo-EM data, we only observed MB.02 and Clone 13A simulta-
neously bind on an up RBD, but theoretically, they could also bind
on a down RBD with a neighboring up RBD in a trimeric spike
(Supplementary Fig. S6c, d). Considering the flexible nature of the
hinge region of an IgG, it is possible that the two Fab arms of a
CoV2-0213 can target one single spike or two adjacent ones in the
same trimer (Fig. 1l). Alternative interpretation is four Fabs from
four different CoV2-0213 bound to spike trimer. Regardless of the
binding modes, the cryo-EM data revealed epitope co-
engagement mechanism and supported enhanced affinity of
Omicron spike and neutralization activity by CoV2-0213.
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