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Mass cytometry uncovers a distinct peripheral immune profile
and upregulated CD38 expression in patients with hidradenitis
suppurativa
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Hidradenitis suppurativa (HS) is a chronic inflammatory skin
disease with a worldwide prevalence of 0.3–4.0%, wherein
abscesses and dermal sinus tracts form in intertriginous skin [1].
HS remains poorly treated due to a lack of knowledge regarding
its immunopathogenesis [2]. Recent study findings have
implicated multiple immune pathways and effector molecules
underlying HS pathophysiology [2]. Increased circulating
inflammatory proteins, autoantibodies, and extracellular matrix
degradation products highlight that systemic inflammation is a
feature of the disease [2–4]. Circulating immune cells serve as a
good proxy for disease severity and risk in other inflammatory
conditions [5]; however, an unbiased characterization of the
changes in the peripheral immunome of patients with HS has
not been reported and is desperately needed. Cytometry by
time-of-flight (CyTOF) enables highly parametric immune
profiling, which led to the discovery of disease-associated
immunome signatures and cellular effectors in other inflamma-
tory diseases [5].
In this study, we characterized the immune profile of fresh

whole-blood samples from a cohort of 18 patients with HS and 11
healthy controls (HCs) (Supplementary Fig. S1A and Supplemen-
tary Table S1) using a standardized 30-marker whole-blood
immunome profiling panel (Supplementary Table S2) that can
identify 33 immune cell populations (Supplementary Table S3).
Bivariate gating and marker expression showed good separation
of major immune clusters in tSNEs (Supplementary Fig. S1B, C).
Neutrophils are thought to play a key role in HS pathogenesis

[2]. We found comparable frequencies of circulating neutrophils
between HS and HC samples (Supplementary Fig. S2A). Given that
neutrophils constitute a large fraction of total blood leukocytes
(40–60%), we excluded them and performed deep immune
profiling of CD45+ immune cell subsets. Furthermore, no
granulocyte frequencies were significantly different between HS
and HC samples (Supplementary Fig. S2A).

Twenty-five CD45+ subpopulations were identified based on
their surface marker expression (Fig. 1A). Hierarchical clustering
(Supplementary Fig. S3A) and principal component analysis
(Supplementary Fig. S3B) of CD45+ immune subsets showed
moderate separation between HS and HC cell populations based
on CD45+ subset frequency.
Patients with HS had decreased frequencies of total natural

killer (NK) cells, while early or late NK cell subsets were not
significantly different between patients with HS and HCs (Fig. 1B).
The frequencies of total CD4+ T cells and Th1 and Th2 cells were
unchanged between patients with HS and HCs, but HS patients
had an increased frequency of Th17 cells compared to HCs
(Fig. 1C). No significant changes in other memory, effector or
innate T-cell populations were observed (Supplementary
Fig. S2B–D). To further validate the increase in Th17 cells, we
stimulated PBMCs from an additional cohort of patients (Supple-
mentary Table S4) with PMA/ionomycin for 4 h and analyzed the
frequency of IL-17-producing T cells by flow cytometry. We found
that the frequency of IL-17-producing CD4+ T cells (Th17) was
significantly increased in patients with HS compared to
HCs (Fig. 1D), while the frequency of IL-17-producing CD8+ T cells
(Tc17) was not different between patients with HS and
HCs (Supplementary Fig. S2E). Total B-cell and B-cell subset
frequencies were not significantly altered between patients with
HS and HCs (Supplementary Fig. S2F).
Dendritic cells (DCs) were significantly reduced, but neither

myeloid DC nor plasmacytoid DC (pDC) subsets showed a
significant reduction (Fig. 1E). Although the total frequency of
monocytes (Monos) was unchanged, classical (CD14+CD16-;
C.Monos) and nonclassical (CD14-CD16+; NC.Monos) monocytes
were significantly decreased, whereas intermediate monocytes
(CD14+CD16+; I.Monos) were increased (Fig. 1F).
Machine-learning algorithms can be applied to CyTOF data to

perform unbiased clustering and statistical comparisons between
conditions [6]. We employed cluster identification, characteriza-
tion, and regression (CITRUS) analysis to confirm our findings from
bivariate gating and to uncover novel disease-associated immune
cell signatures in HS. Through CITRUS analysis, we found 11
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Fig. 1 A Representative tSNE plots from patients pregated on CD45+ cells. B Frequency of total NK cells and NK cell subsets as the percentage
of CD45+ cells. C Frequency of total CD4αβ T cells, Th1, Th2, and Th17 cells as the percentage of CD45+ cells. D Flow cytometry analysis of
Th17 cells in HS samples following 4 h of stimulation with PMA/Ionomycin as the percentage of TCRβ+ cells. E Frequency of total DCs and DC
subsets as the percentage of CD45+ cells. F Frequency of total Monos and Mono subsets as the percentage of CD45+ cells. G Localization of
significant CITRUS clusters on tSNE plots. H Marker expression for Mono CITRUS clusters and their abundance in HS and HC samples.
I Expression of CD38 in various immune cell subsets. J Frequency of CD38+ Monos as a percentage of their respective subset. K Frequency of
CD38+ I.Monos as a percentage of total I.Monos stratified by Hurley stage. L CD38 expression in tissue types from HS-OmicsDB. M Top 9
MSigDB gene enrichments for genes significantly correlated with CD38 from HS-OmicsDB. N Top 9 GO:MF gene enrichments for genes
significantly correlated with CD38 from HS-OmicsDB. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. O Graphical summary of CyTOF-based
immune profiling of patients with HS. Statistics for two-way comparison are the result of two-sided Student’s t tests. Statistics for three- or
four-way comparisons are the results of Bonferroni-corrected ANOVA. HC healthy control, HS hidradenitis suppurativa, NK natural killer, Th T-
helper, IL interleukin, DC dendritic cell, Monos monocytes, C.Monos classic monocytes, I.Monos intermediate monocytes, NC.Monos nonclassic
monocytes
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differentially abundant clusters (Supplementary Fig. S4A). We
mapped cells back onto tSNE plots (Fig. 1G) and analyzed the
expression of lineage markers to identify CITRUS cluster identities.
CITRUS recapitulated the dysregulation in monos identified by
bivariate gating analysis (Fig. 1H). Other significant CITRUS results
are shown in Supplementary Fig. S4B. We next assessed the
expression of markers that may indicate a dysregulated function
in Monos and found that I.Monos expressed high levels of CD38
(Fig. 1H). CD38, mainly expressed in immune cells, is a molecule
that can act as an enzyme with NAD-depleting and intracellular
signaling activity or as a receptor with adhesive functions,
contributing to autoimmune inflammation [7]. CD38 is induced
under inflammatory conditions and has been shown to be
required for optimal response to toll-like receptor stimulation,
tissue trafficking, antigen presentation, and phagocytosis [7].
C.Monos normally express high levels of CD38 [8]. I.Monos, on the
other hand, do not express high levels of CD38 unless stimulated,
highlighting that I.Monos in HS are in an activated state [8].
We further confirmed that I.Monos had upregulated CD38

expression in patients with HS compared to HCs using bivariate
gating (Fig. 1I). Memory B cells, plasmablasts, late NK cells, and
pDCs also exhibited significantly increased CD38 expression in
patients with HS, but T cells did not (Fig. 1I).
CD38 is not expressed on NC.Monos, which we leveraged to

define the background level of CD38 in Mono subsets (Supple-
mentary Fig. S5) [8]. As expected, C.Monos from HCs were almost
entirely CD38+ (Fig. 1J). We found that the frequency of CD38+

I.Monos was dramatically increased in patients with HS (Fig. 1J).
Moreover, the frequency of CD38+ I.Monos showed significant
elevation in patients with moderate (Hurley stage II) and severe
(Hurley stage III) HS (Fig. 1K).
Utilizing HS-OmicsDB (https://shiny.hfhs.org/hsomicsdb/), a

database of publicly available bulk RNA sequencing data from
HS studies, we sought to determine whether CD38 was
upregulated in HS tissues, given that CD38-expressing immune
cells might migrate to skin lesions. As expected, CD38 was
significantly upregulated in HS lesions (L) compared to HS-
perilesional (PL), HS-nonlesional (NL), and HC skin (Fig. 1L). We
next performed gene enrichment analyses on genes that had a
significant positive correlation with CD38 (FDR < 0.05, r > 0.5)
(Supplementary Table S5) using MSigDB and gene ontology:
molecular function (GO:MF). These genes were enriched for
inflammatory pathways, especially those associated with
myeloid-mediated inflammation, including allograft rejection, IFNγ
signaling, complement activity, IL6 signaling, MHCII activity and
cytokine receptor activity (Fig. 1M, N).
Overall, we present the first systematic profiling of the

peripheral immunome of patients with HS, which highlights
previously unappreciated changes in circulating immune cell
subsets in patients with HS. Compared to HCs, we observed a
decrease in the frequency of total NK cells, total DCs, C.Monos, and
NC.Monos and an increase in Th17 and I.Monos in patients with
HS. Most importantly, we found that CD38 was upregulated in
specific immune subsets, which likely migrate to the skin to
contribute to HS development (Fig. 1O).
Previous studies have shown that Th17 cells were not elevated

in the circulation of patients with HS [9]. One explanation for this
discrepancy is that our cohort included more patients with severe
HS than those of previous studies. A clinical trial showed that IL-17
blockade reduces cutaneous and serum inflammation in HS,
highlighting the importance of IL-17 as a key mediator of disease
[10]. Although we showed that patients with HS, overall, had an
increase in Th17 cells, we noticed that not all patients exhibited
increased Th17 cell frequency, which may be one reason why
some patients respond better to anti-IL-17 treatment than others.
Thus, the frequency of Th17 cells may be worth exploring as a
potential predictive marker of the anti-IL-17 response in future
translational studies.

Our immune profiling led us to discover a novel disease-
associated marker and potential drug target for HS, CD38. CD38
expression on late NK cells, memory B cells, plasmablasts, pDCs
and I.Monos was elevated.
CD38 enhances the extravasation of immune cells via interaction

with CD31 and CD38 on endothelial cells [7]. The increased
expression of CD38 on late NK cells and decreased frequency on
NK cells may indicate increased trafficking to the skin, which is
supported by increased NK cells in skin lesions (unpublished data
from M. Athar). The role of NK cells in HS is poorly studied. NK cells
induce antibody-dependent cytotoxicity (ADCC) by binding
antibody-coated cells via CD16 and releasing cytolytic molecules
[11]. CD38 enhances NK-cell ADCC by interacting with CD16 [12]. The
identification of autoantibodies in HS skin suggests an interesting
mechanism by which CD38 may enhance autoantibody-mediated
inflammation through NK cells in HS lesions.
I.Monos produce high levels of TNFα and IL-1β [8]. In HS,

I.Monos express high levels of CD38, indicating an activated status
[7]. Adalimumab (anti-TNFα) is the only FDA-approved therapy for
patients with HS, despite ~30% of patients failing to respond [13].
Targeting a single cytokine may prove insufficient to treat HS
because of multiple inflammatory pathways that are dysregulated
in the skin and serum of patients with HS. Targeting multiple
dysregulated immune cells may prove more successful. CD38 was
reported to be upregulated on peripheral immune cells from
patients with systemic lupus erythematous (SLE) [14]. Strikingly, a
recent clinical trial showed that anti-CD38 antibodies are effective
for treating SLE refractory to anti-TNF [15]. Given the high rate of
failure of anti-TNFα therapy and increased CD38 expression on
immune cells and in skin lesions of HS, anti-CD38 immunotherapy
could be transformative for the management of patients with HS.
Since our study was limited by only assaying whole-blood

samples from patients with HS, future studies are needed to
determine the cellular effectors in HS lesions with increased CD38
expression and identify the roles of CD38 in these specific immune
populations. In conclusion, our study uncovered the distinct
peripheral immune profile in HS, and the findings suggest that
CD38 may serve as a new therapeutic target for HS. Trials with
FDA-approved anti-CD38 immunotherapies may be worth pursu-
ing for HS.
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