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Abstract

Objective: Although Artificial intelligence (AI) models may offer innovative and powerful ways 

to use the wealth of data generated by diagnostic tools, there are important challenges related 

to their development and validation. Most notably is the lack of a perfect reference standard for 

glaucomatous optic neuropathy (GON). As AI models are trained to predict presence of glaucoma 

or its progression, they generally rely on a reference standard that is used to train the model and 

assess its validity. If an improper reference standard is used, the model may be trained to detect 

or predict something that has little or no clinical value. This article summarizes the issues and 

discussions related to the definition of GON in AI applications as presented by the Glaucoma 

Workgroup from the Collaborative Community for Ophthalmic Imaging (CCOI) United States 

Food and Drug Administration (FDA) Virtual Workshop, on September 3 and 4, 2020 and on 

January 28, 2022.

Study Design: Review and Conference Proceedings

Subjects: No human or animal subjects or data therefrom were used in the production of this 

article.

Methods: A summary of the Workshop was produced with input and/or approval from all 

participants.

Main Outcome Measures: Consensus position of the CCOI Workgroup on the challenges in 

defining GON and possible solutions.

Results: The Workshop reviewed existing challenges that arise from the use of subjective 

definitions of GON and highlighted the need for a more objective approach to characterize GON 

that could facilitate replication and comparability of AI studies, and allow for better clinical 

validation of proposed AI tools. Different tests and combination of parameters for defining a 

reference standard for GON have been proposed. Different reference standards may need to be 

considered depending on the scenario in which the AI models are going to be applied, such 

as community-based or opportunistic screening versus detection or monitoring of glaucoma in 

tertiary care.

Conclusions: The development and validation of new AI-based diagnostic tests should be 

based on rigorous methodology with clear determination of how the reference standards for 

glaucomatous damage are constructed and the settings where the tests are going to be applied.

PRÉCIS

A summary of the discussions presented by the Glaucoma Workgroup of the Collaborative 

Community for Ophthalmic Imaging regarding the definition of glaucomatous optic neuropathy in 

the context of development and validation of artificial intelligence tools.

Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal 

ganglion cells (RGCs) that may lead to irreversible loss of visual function. Despite the 

availability of effective treatments, glaucoma remains one of the leading causes of blindness 
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in the world.1 The number of patients with glaucoma is predicted to increase substantially 

as the result of an ageing population, with estimates of over 110 million people affected by 

2040.2

The loss of RGCs in glaucoma tends to follow an insidious course, with the majority of 

patients being asymptomatic and unaware they have the disease until late stages. In fact, it 

is estimated that approximately 1 in 3 patients may have advanced visual field loss in at 

least one eye at the time of presentation.3,4 In developing countries, population-based studies 

show that over 90% of patients with glaucoma are unaware they have the disease. Besides 

its asymptomatic nature in early stages, presentation with advanced disease may also occur 

because of factors such as economic cost, access to services, or health perceptions.

Currently, there are no effective screening strategies to identify all patients with glaucoma 

and a diagnosis of glaucoma or suspicious glaucoma typically occurs opportunistically 

during routine visits to ophthalmologists or community optometrists. Even for patients 

already diagnosed with glaucoma, monitoring progression over time can be challenging 

due to the insidious nature of the disease and the large variability often seen in tests to 

detect change. Thus, there is a pressing need for more effective strategies for detecting and 

monitoring glaucoma.

Artificial intelligence (AI) and, in particular, deep learning, has risen to the forefront of 

innovative approaches for screening, diagnosis and detection of glaucoma progression. Deep 

learning models have been applied to a variety of tests such as fundus photography, optical 

coherence tomography, and standard automated perimetry. However, there are challenges 

related to the development and validation of such models. Most notable is the lack of a 

perfect reference standard, or “gold standard,” in glaucoma. As these models are generally 

trained to predict presence of glaucoma or its progression, these models usually rely on 

a reference standard that is used to train the model and assess its validity. If an improper 

reference standard is used, the model may be trained to detect or predict something that has 

little or no clinical utility. In fact, the selection of the proper reference standard for validating 

new AI-based tests ultimately depends on the purpose of the application, i.e., whether 

for population-based or opportunistic screening, clinic-based diagnostics or detection of 

progression.

The Key Role of the Reference Standard for Training and Validating AI 

Models

Deep learning neural networks are computer algorithms made of several layers of 

interconnected artificial “neurons,” whose development was inspired by biological brain 

cells, but which do not really reflect their biological complexity. In a deep learning model, 

each artificial neuron receives input from other neurons and then performs computations 

in order to produce an output. Data are fed to the neural network and processed by the 

many (usually thousands or millions) of interconnected artificial neurons with the goal 

of producing a certain desired outcome. However, before such deep learning networks 

can be used for specific tasks, they need to be trained so that the specific computations 

performed at each artificial neuron and their pattern of interconnections can be determined. 
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This training process involves feeding the network with data, observing the results, making 

modifications to the model, and repeating the process iteratively, until a certain desired 

outcome is achieved. After the network has been trained, it can then be used to obtain 

predictions on previously unseen data.

There are essentially 3 ways to train a deep learning model: supervised learning, 

unsupervised learning, and semi-supervised learning. Supervised learning involves training 

the network using a completely labeled dataset. For example, if an algorithm is aimed at 

identifying glaucoma on fundus photographs, it can be trained by feeding the network with 

labeled photos of glaucoma and normal eyes. The network then “learns” the optimal features 

that will lead to the best discrimination of glaucoma from a normal photo. This learning 

process is done by comparing the algorithm’s predictions to the actual labels and readjusting 

the weights of the artificial neurons, in a process known as backpropagation.5 Unsupervised 

learning, on the other hand, involves training the algorithm with unlabeled data with the goal 

of discovering hidden patterns in the data, without providing any information to the network 

regarding what the final outcome should be. This approach has been used, for example, to 

classify patterns of visual field loss in glaucoma, as well as to detect progressive change over 

time.6-10 Finally, semi-supervised learning uses a combination of the two approaches.11

Supervised learning has been the most widely used method for developing deep learning 

models for detection of glaucoma.12-22 As these models are trained to predict a certain label 

(e.g., glaucoma versus normal or progression versus stability), the process of labeling the 

data (i.e., the reference standard used), is essential. Ultimately, the deep learning model can 

only be as good as the labeled data. If a poor, biased or imprecise reference standard is used 

to label the data, this will result in a deep learning model that will essentially replicate those 

imperfections. Even if unsupervised training is used, the deep learning model ultimately has 

to be tested against some valid reference standard to assess its clinical validity. Therefore, 

the reference standard is key to the process of training and validation of deep learning 

models for diagnosis, screening and detection of glaucoma progression.

Reference Standards for AI Applications in Glaucoma: A Summary of the 

Collaborative Community on Ophthalmic Imaging (CCOI) Discussions

This article summarizes the issues and discussions related to the definition of GON in AI 

applications as presented by the Glaucoma Workgroup from the Collaborative Community 

for Ophthalmic Imaging (CCOI) United States Food and Drug Administration (FDA) Virtual 

Workshop, on September 3 and 4, 2020 and on January 28, 2022. As this work does not 

involve any patient or animal data nor collection or analyses of research data, institutional 

review board and patient informed consents were not required. The presentation of this 

article further adheres to the tenets of the Declaration of Helsinki.

When establishing reference standards for training and evaluating deep learning models, 

it is essential to consider the goal at hand. David Garway-Heath, MD, Moorfields Eye 
Hospital, noted in the CCOI meeting that the goal of screening for a disease is very 

much different from that of diagnostics in a clinical setting, which in turn is different from 

detecting progression in known disease. Different clinical settings have different pre-test 
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probabilities for disease and different tolerance for false-positive and false-negative rates 

from a cost-effectiveness perspective. For example, a test used to screen the population at 

large cannot have subpar specificity: that would result in massive referrals of false-positive 

patients who do not actually have glaucoma, thereby overwhelming specialists and draining 

public resources. On the other hand, a test used to monitor for progression for an already-

established clinical population may be designed to tolerate more false-positives in order to 

ensure that the false-negative rate is minimized (i.e., not missing any patients who progress).

An important misconception concerns what constitutes early glaucoma diagnosis from a 

screening standpoint, which is often meant to imply diagnosis at a very early disease stage, 

before any significant visual field loss is detectable by perimetry or sometimes even before 

the appearance of clear signs of optic nerve damage. However, focusing on such early stages 

for screening may lead to significant problems related to uncertainty in diagnosis, besides 

being largely unnecessary. From a public health standpoint, an early diagnosis means 

diagnosis at a stage earlier than when the patient would have presented symptomatically. 

As symptomatic presentation of glaucoma generally occurs at a late stage, almost any stage 

of glaucoma can in fact be considered early detection from the point of view of screening. 

Given the relatively low prevalence of glaucoma and the difficulties related to discriminating 

early glaucoma from normal variation, attempting to focus screening programs on detection 

of very early disease will likely lead to failure. Moving the focus to well-established cases 

of glaucoma, but who would still be asymptomatic, will lead to much improved diagnostic 

accuracy and effectiveness. This has key implications on determining suitable reference 

standards to be used for development and validation of deep learning models for glaucoma 

screening.

An example of the challenges and importance of the reference standard in AI applications, 

comes from deep learning models applied to fundus photographs. Fundus photography 

represents a relatively low-cost option for screening for certain eye diseases, such as 

diabetic retinopathy.23 There are several inexpensive, portable nonmydriatic fundus cameras 

that can be used in low-resource settings, making this method attractive for community-

based or opportunistic screening.24 Once a deep learning model is successfully trained to 

recognize the presence of disease on fundus photographs, it can then be deployed to provide 

gradings on previously unseen photos in real-time. Ting and colleagues17 proposed that a 

deep learning algorithm could be developed to screen for glaucoma in existing teleretinal 

imaging. Using a large database of 494,661 teleretinal photographs, they developed an 

algorithm capable of detecting images that were considered “referable” for glaucoma. The 

reference standard was based on subjective grading of the photographs by ophthalmologists 

or professional graders. In the test dataset, their algorithm detected “referable” glaucoma on 

photographs with an area under the receiver operating characteristic (ROC) curve of 0.942, 

sensitivity of 96.4%, and specificity of 87.2%. It is important to note that a specificity of 

87.2% would translate into 13% of those without disease being labeled as false positives. 

When applied in the context of screening, this would likely result in a large number of 

healthy individuals being unnecessarily referred for evaluation. Therefore, to minimize 

the number of false positives, targeting well-established cases of glaucoma rather than all 

suspicious “referable” ones may be warranted in the context of population-based screening.
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In contrast to diabetic retinopathy, the approach of training deep learning models to replicate 

human gradings of fundus photographs with the goal of screening for glaucoma may have 

significant limitations. Subjective gradings tend to have limited reproducibility25-27 and poor 

interrater reliability.26-28 Also, ophthalmologists tend to over diagnose glaucoma in eyes 

with physiologically enlarged discs and miss damage in eyes with small discs.13 Overall, 

subjective gradings tend to have low specificity. If such subjective gradings are used as 

the reference standard to train a deep learning model, the trained model can only perform 

as well as those gradings and will carry all their imperfections. If used in the context of 

screening for the disease targeting high specificity, graders trained to detect well-established, 

unequivocal nerve damage, not dubious, potentially “referable” or suspect cases will be 

critical.

The limitations of subjective reference standards for training and validating deep learning 

models for glaucoma diagnosis has led to the quest for a consensus toward an objective 

reference standard that could be used for this purpose. Joel S Schuman, MD, New York 
University-Langone, pointed out during the CCOI meeting that since the vast majority 

of glaucoma research in the present day utilizes optical coherence tomography (OCT) and 

standard automated perimetry, these would be potential tools to be used for establishing 

such a reference standard. Harry A Quigley, MD, Johns Hopkins University, described 

at the CCOI meeting a recent attempt to define glaucomatous optic neuropathy (GON), 

based on a recent consensus process carried out with 110 glaucoma experts throughout the 

world.29 The specialists were asked to agree upon several features that should be considered 

in defining GON including, among other factors: that the clinical examination of the retina 

and optic nerve would be necessary to rule out conditions simulating GON, that IOP 

should not be a criterion for diagnosis, that an OCT defect must be in the corresponding 

opposite hemifield from the visual field defect, and that OCT retinal nerve fiber layer 

(RNFL) assessment should be included either alone or with segmented macular thickness.17 

To find a set of OCT and perimetry criteria to define GON, they recruited participating 

clinicians across 13 international centers who entered 2 reliable OCT and 2 perimetric tests 

from eyes seen in their clinics, along with the clinician’s classification of definite GON, 

probably GON, or not GON, taking into consideration the history, clinical exam, perimetry 

and OCT. Classifications for a total of 2580 eyes from 1531 patients were collected. The 

investigators then derived objective criteria derived from OCT and Standard Automated 

Perimetry (SAP) measures to predict the glaucoma status of each subject. OCTs were graded 

using software classifications of normal, borderline, or abnormal in the superior or inferior 

quadrants; perimetry was graded as abnormal if a glaucoma hemifield test (GHT) ‘outside 

normal limits’ with 3 points in the pattern deviation plot at a P < 5% or worse in the 

abnormal hemifield was present. Using this data, combinations of OCT and VF measures 

were used to create 4 criteria by which to determine the presence of GON, and sensitivity 

and specificity of each criterion was tested: sensitivity ranged from 65 to 77%, and the 

specificity ranged from 98 to 99%.18 The best performing criterion achieved a sensitivity of 

77% and specificity of 98% by defining GON on the basis of abnormal OCT in the superior 

or inferior RNFL quadrants with matching opposite, abnormal GHT in at least 1 of the 2 

most recent pairs of tests (Table 1).30
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Felipe A Medeiros, Duke University, presented at the CCOI meeting the results of 

another proposed objective definition for GON.31 The criteria proposed that a diagnosis 

of GON should involve corresponding structural and functional damage, based on RNFL 

assessment by spectral-domain OCT (SDOCT) and visual field assessment by SAP. The 

set of criteria are summarized in Table 2 and uses both global and localized parameters 

with the requirement that there be topographic correspondence between structural and 

functional damage which will enhance specificity. The investigators assessed the proposed 

objective reference standard against a subjective classification by glaucoma experts and 

found a 95.2% overall agreement, with a weighted kappa of 0.87, indicating excellent 

agreement. They then developed a deep learning model that used fundus photographs to 

discriminate glaucoma from normal eyes, which had been classified based on the objective 

reference standard on a dataset comprised of 9830 fundus photos from 2927 eyes of 2025 

individuals. The deep learning model achieved an overall area under the ROC curve of 0.92 

to discriminate between objectively defined GON and normal. Interestingly, when the same 

deep learning model was tested against subjectively (by glaucoma experts) defined GON and 

normal, the same performance was achieved. These results illustrate the potential to develop 

deep learning models based on objective criteria for GON.

It should be noted that the proposed approaches above for defining an objective reference 

standard for GON both require clinical examination to exclude other potential confounding 

conditions that could lead to OCT abnormality and visual field damage, such as, for 

example, diabetic retinopathy. Therefore, an AI algorithm trained against such reference 

standards may not be used solely to diagnose glaucoma, but rather as a tool to assist in 

referral or as an ancillary test to help in making a final diagnosis. Of course, AI algorithms 

could also be trained to evaluate for the presence of other conditions such as diabetic 

retinopathy, besides glaucoma, in more comprehensive approaches targeted at screening.

In another approach to specifying an objective definition of a definition for GON, Jayme 
R Vianna, MD, Dalhousie University, and colleagues presented at the CCOI the methods 

of a Crowd-Sourced Glaucoma Study, in which they created an online database of 1270 

subjects with or without diagnosis of glaucoma provided by clinicians around the around. 

This database included an optic disc photograph, a Humphrey 24-2 or Octopus G1 perimetry 

result, and OCT imaging of the optic nerve for 1 eye from each subject. Glaucoma 

specialists worldwide were then invited to assess eyes for likelihood of glaucoma on a 

scale from 0 to 100 using only the presented exam findings, with the goal that each eye 

receive evaluations from 20 clinicians. While data collection is ongoing the primary analysis 

of this study will be to assess which objective characteristics from perimetry and OCT—or 

a combination thereof—best discriminate between patients with high and low glaucoma 

likelihood. This and other approaches that utilize crowd-sourcing of glaucoma experts’ 

opinions offer the advantage that they may help mitigate biases in glaucoma assessment 

that may be unique to a specific institution or study group, since this reference standard 

would reflect the combined opinions of experts worldwide. In doing so they also bring the 

collective expertise of glaucoma specialists to groups that may lack that expertise. However, 

because they are still based on subjective assessments, albeit those of experts, they are still 
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subject to potential human errors and biases. In addition, crowd-sourcing may sometimes be 

expensive, time-consuming and difficult to achieve under a variety of scenarios.

The aforementioned approaches utilize the most widely used structural and functional 

metrics for glaucoma assessment in clinical practice: mean deviation (MD), pattern standard 

deviation (PSD), and GHT of the 24-2 or 30-2 SAP; and the OCT peripapillary scan that 

acquires global and sectoral RNFL thicknesses. While these are the most commonly used, 

Donald C Hood, PhD, Columbia University, pointed out at the CCOI meeting that there 

is some evidence that using 24-2 visual field and OCT disc/RNFL scan alone may miss 

some eyes with glaucoma in early disease stages. Hood and De Moraes argue that these 

tests may miss damage to the macular retinal ganglion cells, which can occur even in early 

stages of glaucoma. To address this, they proposed a new automated method32 that uses 

topographical agreement between structure (OCT RNFL and retinal ganglion cell complex 

[RGC+] probability map) and function (10-2 and 24-2 visual field) for detecting abnormal 

glaucomatous changes. Hood and colleagues have also recently published on an approach 

where deep learning models were trained based on OCT probability maps.33 Such models 

were successful in replicating expert gradings of OCTs, suggesting that they could be 

eventually used to assist in the diagnosis of glaucomatous damage while decreasing the 

reliance on expert gradings.

The decision on which specific tests and parameters to use for defining a reference standard 

in AI studies may depend largely on the purpose of the application. For example, if an AI 

algorithm is being developed for population-based or opportunistic screening for glaucoma, 

the reference standard that will serve as the basis for its development and validation 

should exhibit high specificity. Such a reference standard should be capable of detecting 

well-established glaucoma cases at a level of disease severity that would avoid the large 

diagnostic uncertainty that is seen in very early glaucoma. It seems unlikely that inclusion of 

macular OCT and 10-2 tests would be necessary to compose such reference standard in this 

context, as most unequivocal glaucoma cases can be promptly diagnosed by a combination 

of conventional 24-2 visual field test and OCT RNFL assessment. In contrast, if an AI 

algorithm is being developed to assist clinicians in detecting the earliest signs of disease 

in glaucoma suspect patients being evaluated at tertiary hospitals, it may make sense for 

the reference standard to also make use of other tests to increase the sensitivity for early 

damage, such as macular OCT, for example.

Other approaches have been proposed to overcome the subjective reference standards used 

to train deep learning models in glaucoma. In an approach named machine-to-machine 

(M2M) proposed by Medeiros et al.14 a deep learning algorithm was trained on color 

fundus photographs that were labeled with an objective quantitative reference standard, 

the corresponding global RNFL thickness measurement from SDOCT. By training the 

M2M deep learning algorithm to predict the RNFL thickness value when assessing a color 

fundus photograph, the degree of glaucomatous damage could be quantified rather than 

just “qualified”. A strong correlation was demonstrated between the predicted RNFL value 

from the photo-based deep learning algorithm and the actual RNFL thickness value from 

the corresponding SDOCT (r=0.832, p<0.001), with a mean absolute error of approximately 

7 microns. In a subsequent work16, the authors showed that the Bruch’s membrane opening-
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minimum rim width (BMO-MRW) parameter could also be used as a reference standard for 

labeling optic disc photographs. The deep learning predictions were also highly correlated 

with the actual BMO-MRW values (Pearson’s r=0.88, p<0.001). Compared to training using 

subjective human labeling as reference standard or objective binary definitions of GON, 

the M2M approach may offer a distinct advantage, since the output is quantitative rather 

than qualitative, of allowing cut-offs to be established in order to optimize its application 

to achieve desired specificity levels.34 In more recent longitudinal studies, the authors have 

also shown that the M2M model was able to successfully detect progressive glaucoma over 

time35 as well as predict development of visual field loss among glaucoma suspects.36

It should be noted that there may be scenarios where a subjective reference standard may 

be a feasible option for development and validation of AI models for aiding detection of 

disease progression. For example, suppose that one wishes to develop a deep learning model 

that can replicate in a clinical setting the performance of glaucoma experts in detecting 

disease progression. It is then reasonable to set up a study where experts will produce the 

reference standard by grading tests for progression, i.e., a series of OCTs or visual fields, or 

both, perhaps accompanied by other clinical information, and a deep learning model will be 

trained to attempt to replicate such standard. Such an AI model could then potentially assist 

in bringing general practitioners to a level comparable to those of experts when assessing 

for progression in a clinical setting. When creating such reference standard, however, it is 

important to make sure that it represents a valid clinically relevant outcome that is also 

reproducible.

Reaching a consensus on an objective definition of GON has been an elusive task to 

the clinical and scientific community for years. However, as Balwantray Chauhan MD, 
Dalhousie University, discussed at the CCOI meeting, perhaps this is a result of genuine 

differences among clinicians and researchers as to what exactly glaucoma is. And yet, as the 

CCOI participants emphasized, there is a dire need for such a definition, both to improve the 

quality and consistency of clinical practice and to facilitate research using AI in glaucoma. 

More importantly, most clinicians agree on obvious cases of GON. So, as Chauhan notes, 

perhaps the goal should be to arrive at a consensus on a working definition of GON first. 

Albeit not a perfect all-encompassing definition that includes all stages of glaucoma from 

its very earliest changes, it would still serve as an objective and standardized definition by 

which the burgeoning new AI algorithms could be compared and evaluated.

In conclusion, AI approaches offer enormous potential to develop tools for glaucoma 

diagnosis and assessment of progression. However, it is critically important that the 

development and validation of new AI-based diagnostic tests be based on rigorous 

methodology with clear determination of how the reference standards were constructed 

and the settings where the tests are ultimately going to be applied. The suitable reference 

standards may differ significantly depending on the proposed application. Similarly, the 

requirements for diagnostic accuracy may vary considerably, depending on whether the test 

is being considered for community-based or opportunistic screening versus detection or 

monitoring of disease in tertiary care. The use of objective approaches to define reference 

standards for GON and its progression may help improve the comparability of AI studies 

and allow better clinical validation of proposed tests.
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Table 1.

Summary of proposed objective criteria for definition of glaucomatous optic neuropathy (GON) by Iyer et al. 

An eye with definite GON would have corresponding damage on optical coherence tomography (OCT) and 

standard automated perimetry (SAP) according to either one of the criteria below, after exclusion of non-

glaucomatous conditions that could cause such abnormalities.

OCT SAP

Inferior abnormal OCT quadrant as provided by the 
instrument’s statistical package

Superior abnormal GHT region with at least 3 points with P<5% on the pattern 
deviation plot

Superior abnormal OCT quadrant as provided by the 
instrument’s statistical package

Inferior abnormal GHT region with at least 3 points with P<5% on the pattern 
deviation plot
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Table 2.

Summary of proposed objective criteria for definition of glaucomatous optic neuropathy (GON) proposed by 

Mariottoni et al. To be considered glaucomatous optic neuropathy, it was necessary to meet the criteria for 

global or localized loss, after exclusion of non-glaucomatous causes for structural and functional abnormality. 

To be considered normal, it was required that both spectral-domain optical coherence tomography (SDOCT) 

and standard automated perimetry (SAP) results were normal. SDOCT-SAP pairs that do not meet the criteria 

for GON or normal are considered suspects.

Glaucomatous Optic Neuropathy (GON)

SDOCT SAP

Global loss Global RNFL thickness outside normal limits GHT outside normal limits or PSD P < 5%

Localized loss

RNFL thickness outside normal limits in at least one superior sector 
(temporal superior and/or nasal superior) Inferior MD P < 5%

RNFL thickness outside normal limits in at least one inferior sector 
(temporal inferior and/or nasal inferior) Superior MD P < 5%

Normal

Normal RNFL thickness within normal limits for all sectors and global PSD probability not significant (P > 5%) and GHT 
within normal limits

SDOCT = spectral-domain optical coherence tomography; SAP = standard automated perimetry; RNFL = retinal nerve fiber layer; GHT = 
glaucoma hemifield test; PSD = pattern standard deviation; MD = mean deviation
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