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1. Introduction
Regular, nonexhaustive and moderate physical exercise 
(3.0–5.9 metabolic equivalents) has beneficial effects 
for not only human health in healthy populations, but 
protects against several diseases (e.g., obesity, colon 
cancer, cholelithiasis, constipation and cardiovascular 
diseases) [1]. However, acute strenuous exercise causes 
the disorder, dysfunction, or even injury of certain tissues 
and organs, especially of the gastrointestinal tract [2]. 
The prolonged and/or high intensity exercise training/
exhaustive exercise (e.g., marathon, cycling and triathlon) 
would cause gastrointestinal syndrome (GIS), manifested 
with heartburn, nausea, vomiting, diarrhea, cramping, 
gastric pain, and even gastrointestinal bleeding, resulting 
in the reduction of the exercise performance in training 
and competitive events [3,4].

The intestinal mucosa is composed of a simple 
columnar epithelium, surface mucus layers, and underlying 
immune cell containing lamina propria [5]. The intestinal 
epithelium not only selects absorption of nutrients, water, 
and electrolytes, but also forms a dynamic physical barrier 
through tight junction proteins (e.g., claudins, occludin, 
and zona occludens) that separates mucosal tissues from 
luminal commensal bacteria, pathogens, and dietary 
antigens [6,7]. Precise regulation of epithelial barrier 
function is therefore required for maintaining mucosal 
homeostasis and depends, in part, on barrier-forming 
elements within the epithelium and a balance between 
pro- and antiinflammatory factors (tumor necrosis 
factor-α, TNF-α; interferon-γ, IFN-γ; interleukin-6, IL-6 
and IL-10) in the mucosa [8]. In addition, intestinal fatty-
acid binding protein (I-FABP) is expressed in epithelial 
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cells of the mucosal layer of the small intestine tissue. 
When intestinal mucosal damage occurs, I-FABP is 
released into the circulation and its plasma concentration 
increases. Thus, I-FABP is a biomarker of intestinal barrier 
dysfunction [8]. 

Ferroptosis is a form of regulated cell death 
characterized by the iron-dependent accumulation of lipid 
hydroperoxides to lethal levels [9]. Excessive iron regulates 
ferroptosis by producing lethal reactive oxygen species 
(ROS) via the Fenton reaction. In addition, cysteine, 
produced from dipeptide cystine, is transported into the 
cell through the cell surface cystine/glutamate antiporter 
system Xc− (composed of SLC3A2 and SLC7A11 dimers), 
and then promote the synthesis of glutathione (GSH) and 
glutathione peroxidase 4 (GPX4) to inhibit ferroptotic cell 
death [10]. Ferroptosis participates in multiple intestinal 
diseases, including intestinal ischaemia/reperfusion 
injury, inflammatory bowel disease and colorectal cancer 
[11]. Blocking the ferroptotic process alleviated dextran 
sulfate sodium-induced colitis, and ferroptosis limited the 
migration, invasion and proliferation of colorectal cancer 
cells [12,13]. However, whether ferroptosis is involved in 
GIS remains unclear.

Resveratrol (trans-3,4,5-trihydroxystilbene) the 
phenolic substance isolated initially from Veratrum 
grandiflorum in 1939 and richly present in red wine, 
rhubarb, peanuts, soy and fruits (e.g., blueberries, many 
red grape varieties and peanuts to name a few) [14]. 
Resveratrol has antiinflammatory and immunoregulatory 
functions, with the advantages of low price and few side 
effects, attracting attention of scientists and medical 
doctors for many decades [15]. Supplemental resveratrol 
is beneficial to human health and could ameliorate several 
diseases, including cancer, cardiovascular disease, ischemic 
injury and inflammatory bowel diseases [16-18]. However, 
whether resveratrol attenuate GIS induced by high 
intensity exercise training remains unclear. Therefore, the 
present study was conducted to determine the protective 
effects and mechanism of resveratrol on high intensity 
exercise training-induced colon injury in mice.

2. Materials and methods
2.1. Animals and experimental protocol
Kunming mice (8 weeks old), weighed 20–22 g, were 
housed in the Biomedical Research Center, Heilongjiang 
Bayi Agricultural University. The housing conditions were 
maintained at a constant temperature (24 ± 2 °C), relative 
humidity at 55 ± 5%, and on a 12-h light/12-h dark cycle. 
Throughout the experiment, chips were replaced every 3 
days and all mice had free access to water and food. Forty 
mice, 10 each, were randomly divided into nonexercise 
(NE) group (ethanol intragastric administration), 
high intensity exercise training (EE) group (ethanol 
intragastric administration+exercise training), resveratrol 

(RES) group (25 mg/kg/day resveratrol intragastric 
administration) and resveratrol + high intensity exercise 
training (RES+EE) group (25 mg/kg/day resveratrol 
intragastric administration+exercise training). Mice 
were administrated ethanol or resveratrol at a dose of (25 
mg/kg/day; Cayman Chemicals, MI, USA, catalog no. 
NC9382296) by oral gavage for 28 consecutive days [19]. 
At the end of the 28 days, the mice were made to swim 
to exhaustion with a load corresponding to 5% of their 
body weight in the form of steel rings attached to the tail 
root in a tank (30 × 30 × 40 cm) filled with warm water 
and to a depth of 25 cm for 4 weeks. The high intensity 
exercise training was defined as the inability to raise its 
face to the water surface within 5 s. Seven mice from each 
group were sacrificed immediately, and the other three 
mice were used for gut permeability experiment. The 
serum and colon tissues were removed and stored at –80 
°C. All animal experiments were approved by the Ethics 
Committee on the Use and Care of Animals, Heilongjiang 
Bayi Agricultural University, China.
2.2. Gut permeability assay
Mice were orally administered with a fluorescein 
isothiocyanate (FITC)-dextran (40,000 kDa; Sigma-
Aldrich, catalog no. 46944, 125 mg/mL) at a dose of 600 
mg/kg body weight. The blood samples were collected 
2 h later and then were centrifuged at 6000 × g for 
10 min at 4 °C. The serum was diluted with the equal 
volume of phosphate-buffered saline (PBS) and analyzed 
using a SpectraMax i3x Multi-Mode Microplate Reader 
(Molecular Devices, San Jose, CA) with an excitation 
wavelength at 485 nm and an emission wavelength at 535 
nm. The standard curve was applied for calculating the 
concentration of FITC-dextran through a serial dilutions 
of FITC-dextran in PBS according to the manufacturers’ 
instructions.
2.3. Serum IFN-γ, IL-6, IL-10, TNF-α and I-FABP 
concentrations analysis
Serum was used to detect IFN-γ, IL-6, IL-10, TNF-α 
and I-FABP concentrations using ELISA kits (Shanghai 
Enzymatic Biotechnology Co., Ltd, Shanghai, China, 
catalog no. ml002277, ml063159, ml037873, ml002095 and 
ml037857) according to the manufacturers’ instructions. 
There were three replicates in each group. Each sample 
was assayed in duplicate, and IFN-γ, IL-6, IL-10, TNF-α 
and I-FABP concentrations were derived from a standard 
curve composed of serial dilutions (25–80, 3.75–120, 
12.5–400, 20–640 and 0–800 pg/mL).
2.4. ZO-1, Occludin and Claudin-1 mRNA expressions 
analysis
ZO-1, Occludin and Claudin-1 mRNA expressions were 
analyzed by quantitative real-time reverse transcription-
polymerase chain reaction (qRT-PCR). Total RNA was 
extracted from the mouse colon using Trizol Reagent 
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(Invitrogen Life Technologies, Grand Island, NY, catalog 
no. 15596026), and total RNA was reverse transcribed 
using TransScript First-Strand complementary DNA 
(cDNA) Synthesis SuperMix (TransGen Biotech, Beijing, 
China, catalog no. AT301), according to the manufacturer’s 
instructions. The PCR primers were designed according 
to the NCBI database (Table). PCR was performed in a 
StepOnePlus Real-Time PCR System (Oxoid, Thermo 
Fisher Scientific, MA, USA) using a SYBR Premix Ex Taq 
(Takara Bio, Japan, catalog no. RR42LR). Each sample was 
examined in triplicate, and normalized to β-actin with the 
2-∆∆CT method [20].
2.5. Fe2+, Fe3+, GSH, H2O2 and MDA concentrations, and 
CAT activities analysis
Mouse colon was used to detect Fe2+, Fe3+, GSH, H2O2 and 
MDA concentrations, and CAT activities using ELISA 
kits (Dojindo China Co., Ltd, Shanghai, China, catalog 
no. I291; Shanghai Enzymatic Biotechnology Co., Ltd, 
Shanghai, China, catalog no. A006, A007 and A003) 
according to the manufacturers’ instructions. There were 
three replicates in each group and each sample was assayed 
in duplicate.
2.6. Western blot analysis
Mouse colon was lysed in RIPA, with 1 mM PMSF, protease 
inhibitor cocktail and phosphatase inhibitor and protein 
concentration quantified using a BCA Protein Assay kit, 
according to manufacturer’s instructions. Proteins (30–
100 µg) were separated by 12% sodium dodecyl sulfate-
polyacrylamide gels electrophoresis (SDS-PAGE) and 
electrotransferred to PVDF membranes (Millipore, USA) 
by a wet transferor (BIO-RAD, USA). Then the PVDF 
membranes were blocked at room temperature for 2 h in 
5% nonfat dry milk in 0.1% Tween-20-Tris buffered saline, 
pH 7.4 (TBST). After blocking, membranes were incubated 
with specific primary antibodies of phosphorylation Nrf2 
(Ser40, P-Nrf2, GeneTex, catalog no. GTX02873), Nrf2, 
SLC7A11, GPX4, FTH1 and GAPDH (Cell Signaling 
Technology, catalog no.12721, 98051, 59735, 4393 and 

5174) at 4 °C overnight. Thereafter, membranes were 
probed with HRP-conjugated secondary antibody for 1  h  
at room temperature and fluorescence detected with an 
enhanced chemiluminescence system (ECL). Results were 
normalized to GAPDH, and band density was analyzed 
with ImageJ (National Institutes of Mental Health, 
Bethesda, MD, USA) [20].
2.7. Statistical analysis
Effects of resveratrol on high intensity exercise training-
induced intestinal mucosal barrier dysfunction were 
determined with one-way analysis of variance, with 
an LSD test used to detect differences between groups. 
All statistical analyses were done with SPSS 23.0 (IBM 
Corporation, Armonk, NY, USA) and histograms 
generated with Graphpad Prism 7.0 (GraphPad Software, 
Inc., San Diego, CA, USA). Data were expressed as 
mean ± standard deviation (SD), with p < 0.05 and p < 0.01 
considered significant and highly significant, respectively.

3. Results
3.1. Resveratrol relieved high intensity exercise training-
induced inflammation in mouse serum
High intensity exercise training increased (p < 0.01) serum 
IFN-γ (Figure 1A), IL-6 (Figure 1B), and TNF-α (Figure 
1C) concentrations, and inhibited (p < 0.01) IL-10 release 
(Figure 1D), which was attenuated (p < 0.05) by resveratrol 
treatment in mice. In addition, resveratrol increased (p < 
0.05) IL-10 concentrations in EE group.
3.2. Resveratrol inhibited increase of gut permeability 
induced by high intensity exercise training in mouse 
colon
High intensity exercise training increased (p < 0.01) 
intestinal permeability (serum DX-4000-FITC; Figure 2A) 
and serum I-FABP concentrations (Figure 2B), which was 
relieved (p < 0.05) by resveratrol treatment in the mouse 
colon.
3.3. Resveratrol alleviated the disrupted intestinal barrier 
integrity in high intensity exercise training-treated 
mouse colon
The mRNA levels of ZO-1 (Figure 3A), Occludin (Figure 
3B) and Claudin-1 (Figure 3C) were decreased (p < 0.01) 
by high intensity exercise training, which was alleviated 
(p < 0.05) by resveratrol treatment in the mouse colon. In 
addition, resveratrol increased (p < 0.05) Occludin mRNA 
expressions in EE group.
3.4. Resveratrol suppressed the oxidative stress in high 
intensity exercise training-treated mouse colon
The concentrations of GSH (Figure 4C), H2O2 (Figure 
4D) and MDA (Figure 4F) were decreased (p < 0.01), and 
CAT activity (Figure 4E) was increased by high intensity 
exercise training, which was alleviated (p < 0.01) by 
resveratrol treatment in the mouse colon.

Table. The primer sequence of the amplification target gene.

Gene Upstream and downstream primer sequence

ZO-1
Forward: 5′-CTGGTGAAGTCTCGGAAAAATG-3′
Reverse: 5′-CATCTCTTGCTGCCAAACTATC-3′

Occludin
Forward: 5′-TGCTTCATCGCTTCCTTAGTAA-3′
Reverse: 5′-GGGTTCACTCCCATTATGTACA-3′

Claudin-1
Forward: 5′-ACGGCTCCGTTTTCTAGATGCC-3′
Reverse: 5′-CGTTTGGCTGCTGCTCTTGC-3′

β-actin
Forward: 5′-CTACCTCATGAAGATCCTGACC-3′
Reverse: 5′-CACAGCTTCTCTTTGATGTCAC-3′
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3.5. Resveratrol reversed the ferroptosis through Nrf2/
GPX4 pathway in high intensity exercise training-treated 
mouse colon
Fe2+ and Fe3+ concentration (Figures 4A and 4B) were 
increased (p < 0.01) by high intensity exercise training, 
which was relieved (p < 0.01) by resveratrol treatment in 
the mouse colon. In addition, resveratrol decreased (p < 
0.01) Fe2+ concentration in NE group.

The protein expressions (Figure 5) of P-Nrf2, SLC7A11, 
GPX4 and GAPDH were decreased (p < 0.01) by high 

intensity exercise training, which was increased (p < 0.05, 
p < 0.01) by resveratrol treatment in the mouse colon. In 
addition, resveratrol increased (p < 0.01) P-Nrf2 and GPX4 
protein levels in NE group.

4. Discussion
Exercise-induced gastrointestinal syndrome (EIGS) refers 
to disturbances of gastrointestinal integrity and function 
that are common features of strenuous exercise [2]. Many 
athletes suffer from EIGS when they participate in the 

Figure 1. Protective effects of RES on EE-induced IFN-γ, IL-6, IL10 and TNF-α 
release in mice. Data represent means ± SD of 3 independent experiments with 
similar results. NE: nonexercise group, EE: high intensity exercise training, RES: 
resveratrol group, RES+EE: resveratrol+high intensity exercise training. * p < 0.05, 
** p < 0.01

Figure 2. The effects of RES on intestinal permeability and IFABP concentrations 
in EE-treated mice. Data represent means ± SD of 3 independent experiments with 
similar results. NE: nonexercise group, EE: high intensity exercise training, RES: 
resveratrol group, RES+EE: resveratrol+high intensity exercise training. * p < 0.05, 
** p < 0.01.
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Figure 3. The effects of RES on ZO-1, Occludin and Claudin-1 mRNA expressions in EE-treated mice. Data represent 
means ± SD of 3 independent experiments with similar results. NE: nonexercise group, EE: high intensity exercise training, 
RES: resveratrol group, RES+EE: resveratrol+high intensity exercise training. * p < 0.05, ** p < 0.01.

training or competitions, especially endurance sports, 
accompanied by the decreased exercise performance [21]. 
The intestinal health plays a crucial role in maintaining 
an organism’s healthy state. Therefore, effective treatment 
strategies for EIGS are the research hotspot at present. In 
this study, mice were treated with resveratrol and/or high 
intensity exercise training. We found that high intensity 
exercise training induced colon damage, manifested as 
inflammation, oxidative stress, intestinal barrier injury and 
ferroptosis, which was attenuated by resveratrol treatment 
in mice of this study, consistent with resveratrol increased 
expression levels of tight junction proteins, H2O2 level and 
Nrf2 phosphorylation expression in H2O2-treated mice 
[22]. Taken together, resveratrol relieved high intensity 
exercise training-induced inflammation and ferroptosis 
through Nrf2/FTH1/GPX4 pathway in mice.

Inflammation is a response triggered by damage 
to living tissues. INF-γ, IL-6 and TNF-α are the 
important proinflammatory cytokines, which can trigger 
cellular activation, differentiation, and recruitment. 
INF-γ promotes cytotoxic activity, regulates major 
histocompatibility complex class I and II protein expression 
and antigen presentation, inhibits cell growth and apoptosis 
and controls the extension of the immune response [23]. 
IL-6 is recognized to be a major modulator of local or 
systemic acute inflammatory responses. TNF-α is one of 
the most important endogenous shock factor. IL-10 is an 
antiinflammatory cytokine that inhibits the production 
of proinflammatory cytokines such as INF-γ, TNF-α, 
and IL-6 to modulate innate and adaptive immunity. In 
this study, high intensity exercise training significantly 
increased serum INF-γ, IL-6 and TNF-α concentrations, 

Figure 4. The effects of RES on Fe2+, Fe3+, GSH, H2O2 and MDA concentrations, and CAT activities in EE-
treated mice. Data represent means ± SD of 3 independent experiments with similar results. NE: nonexercise 
group, EE: high intensity exercise training, RES: resveratrol group, RES+EE: resveratrol+high intensity 
exercise training. ** p < 0.01.
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Figure 5. The effects of RES on ferroptosis through Nrf2/GPX4 pathway in EE-treated mice. Data represent 
means ± SD of 3 independent experiments with similar results. NE: nonexercise group, EE: high intensity exercise 
training, RES: resveratrol group, RES+EE: resveratrol+high intensity exercise training. * p < 0.05, ** p < 0.01.

and significantly inhibited serum IL-10 concentration in 
mice, consistent with the previous research [24]. Thus, 
we deduced that high intensity exercise training caused 
inflammation in mice of this research. In addition, in 
this study, pretreating with resveratrol (15 mg/kg/day) 
significantly inhibited the increase in serum IFN-γ, IL-6 
and TNF-α concentrations, and enhanced the decreased 
serum IL-10 release in high intensity exercise training-
treated mice, consistent with resveratrol inhibiting 
inflammatory response (increased IFN-γ, IL-6, and TNF-α 
levels, and decreased IL-10 concentrations) in Toxoplasma 
gondii-infected mice [25]. The overall configuration of 
immune response in the current study was comparable to 
similar studies, as resveratrol inhibited LPS-induced the 
increase in the production of TNF-α, IL-6, IL-8 and IFN-β 
[26]. Thus, we inferred that resveratrol mitigated high 
intensity exercise training-induced inflammation in mice.

The intestinal permeability reflects the intestinal 
barrier function. The research reported that prolonged and 
strenuous physical exercise increases intestinal permeability 
[27]. In this study, resveratrol inhibited the increase in 
IFABP release and serum DX-4000-FITC concentrations 
induced by high intensity exercise training, which 
indicating that resveratrol alleviated the increased intestinal 
permeability induced by high intensity exercise training in 
the mouse colon. In addition, high-intensity exercise also 
increased the intestinal permeability through inducing the 
dysfunction of epithelial cells and disordering tight junction 
proteins [28]. Resveratrol prevented the H2O2- and diquat- 
induced decline of Occludin, Claudin-1 and ZO-1 levels in 

the porcine intestinal epithelial cells and the jejunal mucosa 
[22, 29]. In this research, resveratrol enhanced the decrease 
in Claudin-1, Occludin, and ZO-1 mRNA expressions in the 
mouse colon, consistent with pretreatment with resveratrol 
increasing the reduced mRNA and protein expression levels 
of Claudin-1, Occludin, and ZO-1 induced by oxidative 
stress in the porcine intestinal epithelial cells [22]. Thus, we 
deduced that resveratrol attenuated high intensity exercise 
training-induced intestinal barrier injury. 

Oxidative stress, defined as the imbalance between the 
antioxidant systems and oxidative system causing overdose 
of ROS, can disrupt cellular signaling and function. 
Oxidative stress is implicated in a wide range of intestinal 
disorders and closely associated with their pathological 
processes [30]. In this study, high intensity exercise training 
significantly increased H2O2 and MDA concentrations, 
and significantly suppressed GSH concentrations and 
CAT activity, which indicating that high intensity exercise 
training induced oxidative stress in mouse colon.

Ferroptosis has been associated with dysfunction 
of the intestinal epithelium and research on ferroptosis 
may provide a new understanding of intestinal disease 
pathogenesis that benefits clinical treatment [11]. 
Ferroptosis is a form of iron-dependent, nonapoptotic 
regulated cell death, characterized by the accumulation of 
lethal lipid hydroperoxides and loss of the activity of the 
lipid repair enzyme [31]. Fe2+ can convert H2O2 into OH 
free radical (·OH) through the fenton reaction, and then 
produced ROS will undergo lipid peroxidation reaction 
with the polyunsaturated fatty acids in the biofilm, leading 

C D E

BA



XU et al. / Turk J Med Sci

452

Figure 6. Resveratrol attenuated high intensity exercise training-induced and inflammation through Nrf2/FTH1/GPX4 pathway-
regulated ferroptosis in mice. Green arrow and red bar indicate stimulation and inhibition, respectively.

to ferroptosis [32]. In addition, SLC7A11, as a part of 
system Xc–, transfers extracellular cysteine to cells and 
converts it into cysteine for the synthesis of glutathione 
[33]. The selective inhibition of system Xc– reduced GSH 
and GPX4 synthesis in cells and the accumulation of oxygen 
free radicals, which eventually led to cell death, thereby 
inhibiting ferroptosis [34]. Moreover, ferritin heavy chain 1 
(FTH1), a marker of ferroptosis, regulated ferroptosis [35]. 
In this study, high intensity exercise training significantly 
increased Fe2+, Fe3+, H2O2 and MDA concentrations, and 
significantly suppressed GSH concentrations, CAT activity, 
and SLC7A11, GPX4 and FTH1 protein expressions, which 
indicating that high intensity exercise training induced 
ferroptosis in mouse colon. In addition, DAMPs are 
released from, or exposed on, injured or stressed cells with 
ferroptosis, and then induced inflammation through TLR4, 
AGER and STING1 pathways [36]. Thus, we deduced 
that high intensity exercise training caused inflammation 
through ferroptosis.

Resveratrol is a natural compound that can activate 
the Nrf2 transcription factor to prevent inflammation 
and oxidative stress [37]. Nrf2 is a transcription factor 
which was identified as a master regulator of defensive 
responses to oxidative stress. Under stimulatory signal, 

Nrf2 activation enhanced iron storage capacity and GPX4 
activity by elevating FTH1 expression [38]. In this study, 
resveratrol significantly decreased Fe2+, Fe3+, H2O2 and 
MDA concentrations, and significantly promoted GSH 
concentrations, CAT activity, and SLC7A11, GPX4 and 
FTH1 protein expressions in EE group, which suggesting 
that resveratrol reversed high intensity exercise training-
induced ferroptosis through Nrf2/FTH1/GPX4 pathway. 

In conclusion, high intensity exercise training induced 
inflammation and intestinal mucosal barrier dysfunction 
through ferroptosis, whereas resveratrol attenuated high 
intensity exercise training-induced inflammation through 
Nrf2/FTH1/GPX4 pathway-mediated ferroptosis in mice 
(Figure 6), which providing new preventive strategies for 
athletes against EIGS.
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