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Artificial intelligence (AI) methods are increasingly inves-
tigated in medical imaging applications, including for 

image processing, diagnosis, and prognosis (1–3). However, 
the large learning capacity of modern deep neural networks 
makes them susceptible to overfitting on training samples. 
Overfitting can result in overoptimistic expectations for how 
a model will perform on future data (4). This results in a 
gap between what we expect from a model and what it can 
actually deliver and has become a common source of disap-
pointment in the clinical translation of AI algorithms (5–7).

This review describes approaches to avoid overopti-
mism in AI performance estimation by using cross-valida-
tion (CV). Despite widespread use of CV in AI algorithm 
development, implementing an appropriate CV approach 
for a particular dataset can be challenging, as there are ad-
vantages and disadvantages to each of the different CV 
approaches (8,9). We aim to inform readers, particularly 
trainees, about common pitfalls that should be avoided 
during algorithm evaluation and to offer a practical guide 
on how to implement CV for medical imaging studies.

Overfitting
The need for CV arises from the fact that AI algorithms are 
susceptible to overfitting. Overfitting occurs when an algo-
rithm learns to make predictions based on the presence of 
image features that are specific to the training dataset and 
do not generalize to new data (Fig 1). Consequently, the ac-
curacy of a model’s predictions on its training dataset is not 
a reliable indicator of the model’s future performance (4).

To avoid being misled by an overfitted model, model 
performance must be measured on data that are indepen-
dent of the training data. These data are referred to as a 
holdout test set or external validation (Fig 2). Ideally, a large 

external holdout test set would always be used to estimate 
a model’s expected performance, often called its generaliza-
tion performance. However, during the early stages of devel-
opment, large external test sets are often not available. In 
these situations, CV is often used for generalization perfor-
mance estimation.

Cross-Validation
CV is a set of sampling methods for repeatedly partition-
ing a dataset into independent cohorts for training and 
testing. Separation of the training and test sets ensures 
that performance measurements are not biased by direct 
overfitting of the model to the data. In CV, the dataset is 
partitioned multiple times, the model is trained and eval-
uated with each set of partitions, and the prediction error 
is averaged over the rounds (Fig 3). There are three main 
reasons for using CV during algorithm development: (a) 
to estimate an algorithm’s generalization performance, (b) 
to select the best algorithm from several candidate algo-
rithms, and (c) to tune model hyperparameters (ie, param-
eters that dictate how a model is configured and trained) 
(10). We refer to these tasks as performance estimation, algo-
rithm selection, and hyperparameter tuning, respectively. We 
cover the different CV approaches needed to handle each 
of these tasks below (11). CV has been used in numerous 
studies focusing on a variety of medical imaging AI ap-
plications, such as for classification of brain MRI studies 
(12), lesion detection in PET imaging (13), and predicting 
clinical outcome on the basis of radiographs (14).

Pitfalls
Certain errors and pitfalls that occur during model 
evaluation can lead to biased or misleading results, but 
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which occurs when your model is applied to data with a differ-
ent underlying distribution of images or labels relative to your 
training dataset (7,16,17). For example, a model might work 
well at one institution but not at a different institution with 
different scanner technologies.

A more subtle cause of nonrepresentative test sets that can 
occur with small sample sizes or imbalanced datasets is the 
presence of hidden subclasses. Unlike known subclasses (eg, 
age groups), hidden subclasses are “unknown” groups within 
a dataset that share unique characteristics (18). The shared 
characteristics of a subclass can sometimes make the predic-
tion task more challenging. For example, a subset of patients 
undergoing PET imaging could have been recently vacci-
nated, causing elevated tracer uptake in lymph nodes (19). 
These patients could hypothetically constitute a hidden sub-
class to PET analysis algorithms. When subclasses are known, 
the dataset can be partitioned so that each split preserves the 
overall class distribution–this is called stratified CV (9). How-
ever, when subclasses are unknown, random partitioning of 
the dataset may not preserve the overall class distribution, 
thus resulting in potential bias (Fig 4). The impact of hidden 
subclasses decreases with increasing dataset size (15).

Tuning to the Test Set
Another pervasive pitfall in AI research is unintentionally tuning 
the model to the holdout test set (20,21). Even if the model is 
never trained on samples from the test set, information from the 
test set can indirectly influence how the model is trained. This 
often occurs when developers repeatedly modify and retrain their 
model on the basis of its performance in the holdout test set. By 
chance alone, certain permutations of a model will perform better 
on the test set than others, as shown in Figure 5. When developers 
select the model that performed best in the test set, they have ef-
fectively optimized the model to the data in the test set. This leads 

they can be prevented or mitigated by using an appropri-
ate CV approach. Here, we explain how pitfalls can cause 
biased performance estimation and then discuss approaches 
to avoid them.

Nonrepresentative Test Sets
If the patients in your test set are insufficiently representative of 
the patients in the deployment domain, resulting performance 
estimates can be biased (15). Use of nonrepresentative test sets 
is a common pitfall, often caused by biased data collection. A 
related pitfall is dataset shift, also known as a distribution shift, 

Abbreviations
AI = artificial intelligence, CV = cross-validation, LOOCV = leave-
one-out CV

Summary
The authors provide a guide, with corresponding example codes, 
for selecting and implementing an appropriate cross-validation ap-
proach when developing artificial intelligence algorithms in medical 
imaging.

Essentials
 ■ Cross-validation (CV) is a set of data sampling methods used by 

algorithm developers to avoid overoptimism in overfitted models. 
 ■ CV is used to estimate the generalization performance of an 

algorithm but can also be used for hyperparameter tuning and 
algorithm selection.

 ■ Common CV approaches include the holdout, k-fold, leave-one-
out, nested, random sampling, and bootstrap CV methods.

 ■ The most appropriate CV approach for a given project will depend 
on the intended task, dataset size, and model size.
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Figure 1: Graph demonstrates underfit-
ting (left) and overfitting (right) of a model, 
which can result in poor predictive perfor-
mance on future unseen data.
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Figure 2: Figure represents the spectrum of data independence. External testing requires patient populations and annotators that are different than those contained in the 
training dataset. The degree to which the training data are different from the testing data forms a spectrum, with internal evaluation (left) providing no information about the 
expected generalization performance of the algorithm. Prior to widespread clinical adoption, algorithms require external testing (right).

Figure 3: Different methods of cross-validation (CV) that can be used to address different training and evaluation needs. All methods aim to evaluate the model’s perfor-
mance on independent test datasets. Some CV methods allow for hyperparameter tuning or algorithm selection (one-time split with validation, k-fold with holdout, nested CV, 
select-shuffle-test, and random sampling CV). Some CV methods are better suited for small datasets (k-fold with folded test set, leave-one-out, nested, and random sampling). 
Final model training for nested CV is described in Figure 6. (Adapted, with permission, from reference 8.) 
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methods and groups them into the categories 
of holdout testing (a designated set of pa-
tients withheld for testing), comprehensive 

testing (each patient is used for testing once), 
and random sample testing (random selection 
of testing patients each round). As most AI 
models are currently developed using librar-
ies in the Python programming language, we 
have provided instructional Python code in 
Appendix S1, and our online repository pro-
vides ready-to-use examples (https://github.
com/zhuemann/Cross-Validation-Guide).

General Principles
There are a few principles that apply to all CV approaches. 
First, when partitioning datasets, cases in the training, valida-
tion, and testing sets should be independent. For example, for 
datasets containing multiple examinations from the same pa-
tient, partitions should not be done at the examination level 
but rather at the patient level (or higher, if appropriate). Sec-
ond, for all CV approaches, the final model–the one to be de-

to overoptimism about how the model will generalize to unseen 
data. Ideally, the holdout test set should be used only once.

Approaches to CV
This section discusses the advantages and disadvantages of com-
mon CV approaches, including how susceptible each one is to 
the aforementioned pitfalls and the scenarios under which each 
approach should be used. The Table compares the different CV 

Figure 4: Graphs illustrate susceptibility of one-time splits for small datasets to sampling biases. Some hidden subclasses of data may be 
easier and/or harder for the model to learn, and those subclasses can be randomly under- or oversampled in the test set with a one-time split 
of the dataset. This can result in a biased estimate of the model’s generalization performance.

Figure 5: Graphs illustrate why models suffer perfor-
mance gaps. Due to randomness (eg, weight initialization), 
training a model N times with the same training dataset 
will produce N unique models. When applied to the inter-
nal test set (ie, a holdout set split from the developmental 
dataset), the different models’ performances will produce 
a distribution (top). Outliers on the high end of the distribu-
tion will, by chance alone, perform well in the internal test 
set. When the models are applied to an external set, the 
distribution of model performances can shift (dataset shift), 
and the models that performed best on the internal set of-
ten underperform.

http://radiology-ai.rsna.org
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to allow for hyperparameter tuning or algorithm selection (Fig 
3). The algorithm or set of hyperparameters that performs best 
on the validation set is selected as the final model, and its per-
formance is measured on the test set.

The advantage of a one-time split approach is its simplicity. 
It also produces just a single model, unlike other forms of CV. 
A weakness of this approach is that the test set is vulnerable 
to being insufficiently representative of the overall popula-
tion, especially with small datasets (Fig 4). Furthermore, this 
approach can be susceptible to the pitfall of tuning the test 
set, as developers often “peek” at their test set performance 
during development.

Given these weaknesses, one-time splits are recommended 
when the dataset is very large, such that the test set can safely be 
assumed to represent the target population.

ployed–should be trained using all the data combined. Though 
the performance of this final model cannot be directly mea-
sured because no additional test data are available (ie, the test 
data have been “burned”), it can be safely assumed that model 
performance will be at least as good as what was measured us-
ing CV (10).

One-Time Splits
A one-time split, often called the holdout method, is a simple 
data-partitioning approach to model evaluation (it is often not 
considered as CV). In this approach, the dataset is randomly 
split into two sets. The model is trained using the training set 
and evaluated using the test set. Data splits are patientwise, 
even for two-dimensional and longitudinal images. Sometimes 
a third set, called the validation set, is also split from the dataset 

Recommendations for Using Different Cross-Validation Methods

Method
Performance 
Evaluation

Hyperparameter 
Tuning

Algorithm 
Selection

Computational Cost 
and Time Complexity Recommended Use

Holdout testing
 One-time train-test split Yes No* No† Low: O(n) Large datasets; hyperparameter 

tuning and algorithm selection 
are not needed

 One-time train-validation-
test split

Yes Yes Yes Low: O(na) Large datasets; when hyperpa-
rameter tuning or algorithm 
selection is needed

 K-fold, holdout test set Yes Yes Yes Medium: O(nak) Large datasets; when hyperpa-
rameter tuning or algorithm 
selection is needed

Comprehensive testing
 K-fold, folded test set Yes No No Medium: O(nk) Small or large datasets; when 

hyperparameter tuning and 
algorithm selection are not 
needed

 Nested Yes Yes Yes High: O(nakj) Small datasets; when algorithm 
selection is needed; small or 
lightweight models

 Leave-one-out Yes No No High: O(n2) Small datasets; when hyperpa-
rameter tuning and algorithm 
selection are not needed; small 

or lightweight models
 Select-shuffle-test Yes Yes Yes Medium: O(nak) Small or large datasets; when 

algorithm selection is needed
 Leave-one-center-out Yes No No Medium: O(nc) Multicenter datasets
Random sample testing
 Random sampling Yes Yes Yes Medium: O(nas) Small or large datasets; with or 

without hyperparameter tun-
ing and algorithm selection

 Bootstrap Yes No No Medium: O(ns) Small or large datasets, when 
hyperparameter tuning and 
algorithm selection are not 
needed

Note.—a = number of algorithms or hyperparameter sets, c = centers, j = folds (inner), k = folds (outer), n = number of samples, O = order 
of, s = sessions or iterations.
* Model hyperparameters must be preselected and remain fixed.
† Only a single algorithm should be assessed.
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K-Fold
In k-fold CV, the dataset is partitioned patientwise into k dis-
joint sets called folds (Fig 3). First, a single fold is selected to 
be withheld for testing while the remaining k−1 folds are used 
for training. Next, a different fold is selected to act as the test 
set, and the process is repeated. These CV sessions–each session 
consisting of a model being trained and tested–are repeated k 
times until k different models have been trained, with each of 
the k folds acting as the test set once. The optimal value for k 
is dependent on a number of variables, but generally k = 5 or 
k = 10 is used (22).

Holdout test set with folded validation set.—For this k-fold 
CV variant, a test set is split from the overall dataset and with-
held from CV (see Fig 3). Then, k-fold CV is performed on 
the remaining data, and the withheld folds are used for valida-
tion (hyperparameter tuning or algorithm selection). A finite 
number of candidate models are preselected for comparison, 
which can be different algorithms or sets of hyperparameters; 
for each session of CV, all candidate models are trained, and 
their performances are measured on the validation fold. The 
algorithm or hyperparameter set with the best average perfor-
mance across all folds is selected to be the final model. This 
final model is trained using all the training data, and its perfor-
mance is measured on the holdout test set. A weakness of this 
approach is that the holdout test set may not be representative 
of the population.

Folding the test set.—In this k-fold CV variant, each sample in 
the dataset is used for testing once. The final performance esti-
mate is obtained by averaging the k models’ performances on the 
k different test sets. This method has the advantage that models 
cannot be tuned to the test set because the test set changes with 
each session. It also has the benefit of being able to construct CIs 
for statistical testing (23). However, the absence of any valida-
tion sets precludes hyperparameter tuning and algorithm selec-
tion, meaning that this method is useful only for performance 
evaluation of models with fixed or preselected hyperparameters. 
For even more precise error estimation, k-fold CV can be re-
peated using different partitions for each repetition and then 
averaged (ie, repeated k-fold CV) (22).

Readers should be aware that for any CV approach that 
folds the test set, the final performance estimate is not the mea-
surement of a single model’s performance. Rather, the expected 
performance of the “pipeline” used to develop the model is be-
ing measured. For k-fold CV, for instance, each session pro-
duces a different model because the training data change with 
each session. Consequently, the final prediction error is an av-
erage over k different models. Yet each of those k models was 
developed using the same pipeline, and it is this pipeline that 
is being evaluated.

Nested
Nested CV allows for both performance estimation and al-
gorithm selection or hyperparameter tuning and is useful for 
small datasets (24). Nested CV is often used as part of an 

automated pipeline when model developers are considering 
many different algorithms or hyperparameter sets and want 
to estimate the generalization performance of the best model. 
Various approaches to nested CV have been proposed (11). In 
nested k-fold CV, there are two loops: an outer loop with k 
folds and an inner loop with j folds. The inner loop is used to 
select or tune an algorithm, and the outer loop is used to es-
timate the performance of the algorithm selected by the inner 
loop. Nested CV is arguably the most complex CV approach. 
We have illustrated a common nested CV approach, nested k-
fold CV, in Figure 6 and provide Python code in Appendix S1.

It is important to note that the k inner loops may each select 
a different algorithm (shown as Algselect in the figure). The final 
performance estimate would then be an average over the differ-
ent algorithms. This is not a problem, as the goal of CV is to 
evaluate the pipeline used to create the algorithm, and in the 
case of nested CV, the pipeline includes an inner loop that per-
forms algorithm selection. Consequently, if a final algorithm is 
to be trained or deployed, it must also undergo an algorithm 
selection step using the same process used in the inner loop (see 
Figure 6 for details).

Leave-One-Out
In each session of leave-one-out CV (LOOCV), data from a 
single patient are withheld for testing while the rest are used 
for training (Fig 3). LOOCV is equivalent to k-fold CV, where 
k is set to the number of patients available (N). N total mod-
els are trained, and the performance is the average across the 
N performance measurements. The advantage of LOOCV is 
that, for small datasets, more data can be used for training. 
Its disadvantages include computational demands, which can 
impose limitations on model size, and an unclear benefit over 
k-fold CV (25,26).

Select-Shuffle-Test
We introduce a new CV method to address a drawback of 
nested CV. In nested CV, the final or deployed algorithm is 
selected at the end only after the performance of the pipeline 
has been estimated using the inner and outer loops. However, 
these independent steps could be reversed: First, the final algo-
rithm is selected and then, that algorithm is tested using CV. 
Notably, no inner loops are needed with this approach because 
the final algorithm will have already been selected or tuned 
up front. Only the outer loop is needed. The result is what we 
call select-shuffle-test. In select-shuffle-test, k-fold CV is used to 
select the best algorithm, the data gets randomly shuffled, and 
then k-fold CV is used again to estimate the performance of 
the selected algorithm (Fig 3).

Random Sampling
Random sampling CV is known by many names: repeated 
holdout, Monte Carlo CV, random permutations CV, and 
shuffle-and-split. In random sampling CV, the samples in 
the dataset are randomly assigned to training, testing, and, 
if needed, validation sets according to prespecified propor-
tions. With each iteration, the samples are randomly shuf-

http://radiology-ai.rsna.org
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Figure 6: Diagram illustrates nested cross-validation (CV). An example 3 × 3 nested CV procedure is shown for which there are multiple 
candidate algorithms (Alg A, Alg B, …, Alg Z). For performance estimation (top), each outer session consists of an inner loop that selects the best 
algorithm (Algselect). The inner loop shown here is for outer session 1, in which Alg Z is selected as Algselect. Alg Z is then used in outer session 1 
for training and testing. The final performance estimate is the average of the test results for each outer session (note that Algselect can be different 
algorithms for each outer session). Final algorithm training (bottom) also includes an inner loop for algorithm selection using all the data, after 
which the final algorithm, Algselect-final, is trained using all the data.
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fled so that each set is unique from the previous iteration, 
even if there is some overlap in the sets from one iteration 
to the next. This is repeated multiple times, and the perfor-
mance is averaged over the test sets for all iterations. The ad-
vantages of this approach are that it is relatively simple and 
that it provides CIs. A disadvantage is that some samples 
may be randomly underrepresented in the test sets over the 
different iterations.

Bootstrapping
Bootstrap CV is like random sampling CV, except that the 
training dataset is sampled “with replacement” from the overall 
dataset. This means that when a sample is randomly selected 
to be assigned to the training set, it remains in the selection 
pool. Samples can therefore appear in the training set more 
than once (Fig 3). Often, the size of the training set is the same 
size as the overall dataset, but due to random sampling with 
repeats, only 63.2% of the samples on average will be selected 
into the training set (27). The remaining 36.8% (sometimes 
more, sometimes less) serve as the test set for that session (10). 
Bootstrapping CV does not appear to have meaningful advan-
tages over random sampling CV (28).

Multicenter Evaluation
It is important to consider multicenter evaluation. A primary 
objective of external validation, which is needed prior to algo-
rithm deployment (8,29), is to measure the sensitivity of the 
algorithm to dataset shift (Fig 5).

The simplest approach is to withhold data from one or more 
institutions from training and use them for testing. To quantify 
the severity of dataset shift, the model’s external accuracy is com-
pared with the model’s internal (CV) accuracy. A weakness of 
this approach is that the data withheld for external testing may 
not be representative of other external populations.

An alternative approach is leave-one-institution-out CV 
(Fig 3), where data from one institution are withheld for ex-
ternal testing while data from the remaining institutions are 
combined and used for training and hyperparameter tuning 
(30). This process is repeated until each institution has served 
as the external test institution. In a study using AI to predict 
COVID-19 prognosis on the basis of radiographs, leave-one-
institution-out CV was compared with k-fold CV and was 
found to predict poorer generalizability of the models than 
did k-fold CV (14).

CV for Imbalanced Datasets
Many real-life medical imaging datasets are heavily imbal-
anced, meaning cases from some classes (eg, disease negative) 
far outnumber other classes (eg, rare diseases). For CV with 
imbalanced datasets, special considerations may be needed 
beyond stratified sampling. As prediction models built from 
imbalanced datasets can underperform for minority classes 
(31,32), strategies to cope with imbalanced data have been de-
veloped. These include data sampling and algorithmic methods 
(eg, weighted loss functions) (33). For data-level approaches, 
undersampling (removing majority examples) or oversampling 

(replicating minority examples [34]) is often used. For example, 
Xie et al (35) found that oversampling improved the prediction 
performance of models in an imbalanced PET radiomics data-
set. However, if oversampling is incorrectly combined with CV, 
it can lead to overoptimism (33). These biases can be avoided 
by ensuring that oversampling and undersampling are not used 
to generate the CV validation or test sets.

Recommendations and Discussion
This review and the examples in Appendix S1 are intended to 
serve as an introduction and guide to readers on implementing 
CV in medical imaging studies. While we have omitted much 
of the theory of CV, we recommend to readers additional lit-
erature covering these topics (10,36,37).

There is no single CV technique that is recommended for all 
situations. We recommend that developers first consider their 
dataset size, their needs for algorithm selection or tuning, and 
the computational demands of training their model, and then 
consult the Table to select an appropriate approach. Generally, 
one of these three CV techniques is often appropriate for medi-
cal imaging AI studies: one-time splits when datasets are very 
large, random-sampling CV when tuning or selection is needed, 
or k-fold (or repeated k-fold) CV. For further recommendations 
on selecting the number of folds, iterations, train-test split frac-
tions, or other CV hyperparameters, we recommend additional 
literature (10,23,38).

Estimating CIs for performance metrics is an important 
but challenging part of CV. When the performance metric 
is linear in the data distribution, such as mean-squared error, 
it is common practice to report the variance of the model’s 
performance across different rounds of CV, and 95% CIs can 
be inferred using a normal approximation (10). However, this 
method does not take into account that because of overlap in 
the training and, sometimes, testing sets, each round of CV 
is not independent (39). This approach is even less appropri-
ate for nonlinear performance metrics, such as area under the 
receiver operating characteristic curve (23). These challenges 
related to CI estimation, including statistical testing for al-
gorithm comparison, are best addressed in other literature 
(10,40,41).

A principle deserving of brief discussion is that of bias and 
variance in the context of CV. Here, bias and variance refer to 
how well the prediction error estimated with CV matches the 
true prediction error of the model (ie, if the model were applied 
to new data drawn from the same population as the training 
data). Use of certain CV approaches can result in lower bias or 
lower variance in error estimation compared with other CV ap-
proaches (42). Knowledge of these bias-variance trade-offs could 
guide readers to the most suitable approach. However, it should 
be recognized that the behavior of CV under various scenarios 
is complex, and results can depend on the dataset and type of 
model (22,43,44).

Last, this article focused on CV in the context of AI de-
velopment, but CV also has applications beyond model per-
formance estimation. For example, CV is used in variable se-
lection for multivariable models (45), which is important for 
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radiomics studies. Additional related principles not covered in 
this article but described elsewhere include hyperparameter 
tuning (46), model selection (47), and ensembling (48).

Conclusion
In summary, CV is a powerful tool for developing and evalu-
ating AI models. Appropriate use of CV can help developers 
avoid pitfalls that can impede the clinical translation of AI al-
gorithms in medical imaging.
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