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Role of oxidative stress in male infertility
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Abstract

Infertility affects millions of couples worldwide. Oxidative stress (OS) causes peroxidation of lipids and damage to
spermatozoa, thus, reducing the quality of seminal parameters. In addition, the differences in the levels of antioxidants
and reactive oxygen species (ROS) caused by intrinsic and extrinsic variables linked to lifestyle, diet, genetics, and OS also
contribute to male infertility. High levels of ROS result in sperm damage of sperm parameters due to lipid peroxidation
and oxidation of proteins. Other significant causes of ROS include changes in sex hormone levels, sperm DNA damage,
including mutations, and immature spermatozoa. Treating the root causes of OS, by changing one’s lifestyle, as well as
antioxidant therapy, may be helpful strategies to fight OS-related infertility. However, the determination of male infertility
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induced by OS is currently a challenge in the field of reproductive health research. This review intends to describe the role
of oxidative stress on male infertility and the current understanding of its management.

Lay summary

The inability to conceive affects many couples globally. Oxidative stress refers to imbalances between different oxygen
species which can lead to male fertility problems by damaging sperm and semen. Oxidative stress may be caused by
several factors, including diets high in fats, sugars and processed foods, lifestyle (including smoking, alcohol consumption
and having a sedentary lifestyle), and genetics. Treatment that focuses on the root cause may help combat male infertility.
However, there is currently no consensus on the best way to treat male fertility problems, particularly those associated
with oxidative stress. This paper describes the role of oxidative stress on male infertility and discusses the current

techniques employed in treating male fertility issues.
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Introduction

Infertility is defined as the failure to achieve pregnancy
conceive following after 12 months of regular, unprotected
sexual intercourse without contraceptives (Larsen 2005).
About 40-50% of male infertility is caused by ‘male factor’
infertility, with 2% of these exhibiting suboptimal sperm
parameters (Kumar & Singh 2015). Infertility has been
associated with emotional, sociocultural, and physical
difficulties (Larsen 2005). Infertility is also associated
with a high prevalence of sexually transmitted infections,
underdeveloped or undeveloped testes, and hypothalamic
and pituitary abnormalities (Agarwal et al. 2021).

Furthermore, about 186 million people and 48
million couples globally are infertile (Boivin et al. 2007,
Mascarenhas et al. 2012). In addition, the prevalence of
infertility is highest in South Asia, sub-Saharan Africa,
North Africa/Middle East, Central/Eastern Europe, and
Central Asia (Mascarenhas et al. 2012). Although not
accurately representing the global statistics, males are
found to be solely responsible for 20-30% of infertility
cases and contribute to 50% of overall cases (Vander
Borght & Wyns 2018). Indeed, as many as 2% of all men
will exhibit suboptimal sperm parameters (Kumar & Singh
2015). Roughly 50% of cases associated with infertility
are influenced by poor seminal parameters referred to as
male factor infertility; this however, varies from region to
region (Agarwal et al. 2015).

Infertility is classified as primary and secondary
(Larsen 2000). Primary infertility refers to a couple who
have not achieved pregnancy after 1 year of regular sexual
intercourse within their childbearing age (Larsen 2000).

> antioxidant

> male infertility

Secondary infertility is identified after 6-12 months of
unsuccessful attempts to get pregnant. The inability to
conceive or bring a pregnancy to term after giving birth
is referred to as secondary infertility (Larsen 2000). Also,
prior pregnancy must have occurred naturally, without
using fertility drugs or procedures like in vitro fertilization,
for it to be classified as secondary infertility (Katib et al.
2014). A study on the longitudinal trend between 1993
and 2017 demonstrated that the primary and secondary
infertility prevalence rate globally was lower among men
than women and also decreased in high-income countries
(Borumandnia et al. 2022).

The World Health Organization reports that half
of the incidence of infertility is caused by male factor
infertility (World Health Organization 2018), which
is characterized by poor sperm quantity, poor sperm
motility, and morphological defects in at least one sample
of two semen analyses and collected in an interval of 1 to
4 weeks apart (Patel et al. 2017). Roughly a quarter of men
experiencing infertility present cases of teratozoospermia,
asthenozoospermia, oligozoospermia, or a combination of
all these anomalies, termed oligoasthenoteratozoospermia
(Gatimel et al. 2017, Alahmar 2019). Idiopathic male
infertility is diagnosed when there are unexplained sperm
abnormalities, with no female factor infertility, in contrast
to unexplained male infertility, where there are normal
sperm parameters (Table 1) (Agarwal et al. 2019). Oxidative
stress has been identified as one of the mechanisms for
idiopathic male infertility. Previous studies have reported
that spermatozoa with morphological defects are prone
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Table1 WHO 2010 (5th edition) and WHO 2021 (6th edition)
report on male semen parameters.

Semen parameter WHO 2010 WHO 2022
Semen volume (mL) 1.5(1.4-1.7) 1.4 (1.3-1.5)
Total sperm count (106 per 39 (33-46) 39 (35-40)

ejaculate)

Overall motility (%) 40 (38-42) 4
3

2 (
Progressive motility (%) 32(31-34) 0(29-31)
Non-progressive motility (%) 1 1(1-1)
Immotile sperm (%) 22 20 (19-20)
Vitality (%) 58 (55-63) 54 (50-560
Normal forms (%) 4 (3-4) 4 (3.9-4)

WHO, World Health Organization.

to producing excessive reactive oxygen species (ROS) and
have reduced antioxidant capacity (Agarwal et al. 2019).
Furthermore, oxidative stress is commonly detected in
the male population with idiopathic infertility having
an imbalanced level of ROS and antioxidant capacity
compared to fertile male counterparts (Ayad et al. 2022).

Despite the association between oxidative stress and
idiopathic infertility, there is still a lack in its definite
treatment (Ayad et al. 2022). For instance, there are no
conclusions about which patients should be screened
for oxidative stress or what tests should be performed to
measure the amount of ROS in the semen sample. Also,
controversy exists regarding the type, dose, and duration
of antioxidant treatment for patients with excessive ROS
levels (Wagner et al. 2018). This review intends to describe
the role of oxidative stress on male infertility, and the
current understanding of its management.

Seminal ROS and male infertility

Human spermatozoa are highly vulnerable to oxidative
stress due to the extraordinarily high content of
polyunsaturated fatty acids (PUFA) in the plasma
membrane and the absence of cytoplasmic antioxidant
enzymes (Henkel 2011). Excessive ROS and its metabolites
damage lipids, proteins, and DNA, causing apoptosis,
altering enzyme activity, and affect sperm parameters
which are a prerequisite for fertilization (Alahmar 2019).

An imbalance between ROS production and the body’s
antioxidant defense mechanisms results in oxidative
stress, resulting in a disturbance in cellular functions.
ROS are defined as oxygen-containing species (Li et al.
2016), which includes (O,*), hydrogen peroxide (H,0,),
hydroxyl radical (OH®), singlet oxygen (1O,), peroxyl
radical (LOO®), alkoxyl radical (LO*), lipid hydroperoxide
(LOOH), peroxynitrite (ONOO-), hypochlorous acid
(HOCI), and ozone (O;) (Li et al. 2016).

The human semen sample contains a variety of cells,
including immature and mature spermatozoa, round-
shaped cells of different phases of spermatogenesis,
epithelial cells, and leukocytes (Long & Kenworthy 2022).
The leukocytes (particularly macrophages and neutrophils
areusually activatedin response to stimuli duringinfection
and inflammation) and immature, morphologically
abnormal spermatozoa are the primary sources of ROS
(Agarwal et al. 2014). However, the rate of production of
ROS is up to 1000 times more in the leukocytes (extrinsic
source) compared to the spermatozoa (intrinsic source)
(Alahmar 2019). The mitochondrial oxidoreductase
and the oxidase in the sperm plasma membrane, both
dependent on sperm-specific NADPH, have been proposed
to be responsible for ROS production (Gavella & Lipovac
1992, Aitken 1999). In addition, unhealthy lifestyle-
related factors such as cigarette smoking, excessive
alcohol consumption, unhealthy diet, psychological
stress, sedentary lifestyle, and environmental factors
(e.g. radiation, metals, and environmental toxicants)
are shown to increase the level of ROS in spermatozoa,
thereby contributing to the risk of male infertility
(Agarwal et al. 2014, Durairajanayagam 2019).0On the other
hand, low levels of ROS generated by spermatozoa play a
crucial role in the optimal functioning of spermatozoa.
ROS are also involved in physiological processes, such as
tyrosine phosphorylation, capacitation, hyperactivation,
acrosome reaction, and sperm-oocyte fusion (Castellini
et al. 2021). For example, during capacitation, there
is an increased ROS level, intracellular calcium, and
tyrosine kinase, which result in increased cyclic AMP and,
subsequently, hyperactivation (de Lamirande et al. 1997).

The etiology of male infertility is heavily influenced
by oxidative stress (Agarwal et al. 2019). High seminal
ROS levels exist in 30% to 80% of infertile men (Agarwal
et al. 2014). Therefore, the seminal oxidative stress must
be considered to measure male reproductive potential
correctly. Formerly referred to as idiopathic male
infertility, male oxidative stress infertility (MOSI) is a new
term for infertile males with abnormal semen features and
oxidative stress (Agarwal et al. 2014, 2019).

Measurement techniques for oxidative stress in
human semen

ROS can be measured using direct and indirect assays. The
indirect assays (such as myeloperoxidase, 8-hydroxy-2-
deoxyguanosine, thiobarbituric acid reactive substances
test, and total antioxidant capacity (TAC)) measure the
extent of ROS-induced adverse effect, while the direct
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assays quantify the level of ROS directly (Katerji et al.
2019). Chemiluminescence, dihydroethidium probe,
nitroblue tetrazolium test (NBT), electron spin resonance,
and cytochrome ¢ reduction analysis are some of the
methods used in the direct measurement of ROS in semen
samples (Agarwal et al. 2004). Tables 2 and 3 summarize
the indirect and direct testing methods for oxidative stress
and ROS in human semen.

In addition, intracellular ROS levels are recognized
as a crucial method for detecting changes in redox status
and oxidative stress because of its susceptibility to ROS-
induced oxidation by peroxynitrite, hydrogen peroxide,
hydroxyl radicals, peroxide ions, and H2DCF-DA (Schieber
& Chandel 2014). Therefore, cytochrome c centers are
being used to grow cells with the fluorescent probe
H2DCF-DA (2.5 M) to study intracellular ROS generation
in spermatozoa, leukocytes, and blood cells other cellular
components (McCarthy et al. 2010).

The thiobarbituric acid reactive substance assay
(spectrophotometry or fluorometry probe) is frequently
used to measure malondialdehyde and 4-hydroxyalkenals
as an indication of lipid peroxidation (Seljeskog et al.
2006). Sensitive high-pressured liquid chemigraphy
is recommended for low malondialdehyde levels,
while mass spectrometry signifies another method to
investigate lipid peroxidation product as isoprostanes
(Ito et al. 2019). Sperm MDA levels positively correlate
with ROS production in the semen of infertile men.
Chemiluminescence quantifies seminal ROS levels and
involves using a luminometer and a chemiluminescent
probe, such as luminol (5-amino-2,3-dihydro-1,4-
phthalazinedione) (Dutta et al. 2019). This assay directly
measures intracellular and extracellular ROS (Agarwal
etal. 2015). Light signal is emitted after free radicals in the
semen samples react with luminol, which is converted
to an electrical signal by the luminometer. The ROS level
in the sample is represented as relative light units (RLU)
per second per 10¢ spermatozoa per milliliter (RLU/s/106
sperm/mL) (Dutta et al. 2019, Dias 2021). The usual
range of ROS levels in washed sperm suspensions is 0.10-
1.03 x 10° counted photons per minute per 20 x 106 sperm
(Agarwal & Majzoub 2017). The chemiluminescence
assay is reported to be a reproducible and reliable assay
for measuring seminal ROS and used for diagnosing male
infertility (Dutta et al. 2019). More so, it is extremely
sensitive and reacts with various ROS at neutral pH and
should be measured within 4 h of sample collection
(Kobayashi et al. 2001). A significant limitation of this
assay is that luminol can act as a source of O, in the
presence of other univalent oxidants(Khan et al. 2014).

TAC measures the total amount of antioxidants in
seminal plasma to inhibit ABTS 2,29-azinobis-(3-ethyl
benzothiazoline-6-sulphonic acid) oxidation to ABTS*
after incubation with metmyoglobin and hydrogen
peroxide (Miller et al. 1993). The TAC may be examined
by using improved chemiluminescence or colorimetric
methods. ROS-TAC scores were suggested as a new
approach to assessing the impact of redox status on
infertility (Sharma et al. 1999). In particular, the ROS-
TAC score might be used to identify oxidative damage in
semen samples from asthenozoospermic men (Sharma
etal. 1999). A continued focus on a particular global index
that can easily distinguish between fertile and infertile
males rather than using ROS or TAC alone is sought
(Robert et al. 2021).

Flowcytometryisatechnologythatanalyzessinglecells
in solution in real time using multiple parameters. Lasers
are used as light sources in flow cytometers, producing
both scattered and fluorescent light signals that are read
by detectors such as photodiodes or photomultiplier tubes
(McKinnon 2018). Flow cytometry measures intracellular
ROS by quantifying a cell’s fluorescence amount (Agarwal
& Majzoub 2017).

The NBT is colorimetric marker of superoxide and
is based on the use of NBT, a yellow, water-soluble,
nitro substituted aromatic tetrazolium salt (2,20-bis(4-
nitrophenyl)-5,50-diphenyl-3,30-(3,30-dimethoxy-
4,40-diphenyl) ditetrazolium chloride), with the ability
to interact with intracellular superoxide to produce
formazan (purple), which can then be measured
spectrophotometrically or microscopically (Armstrong
et al. 2002, Esfandiari et al. 2003). The NBT test measures
intracellular ROS levels and gives insight into the potential
source of oxidative stress with the aid of a light microscope
(Agarwal & Majzoub 2017).

Measurement of oxidation-reduction potential

Oxidation-reduction potential (ORP, redox potential) is
a practical and straightforward direct assay for measuring
oxidative stress. It measures the balance between oxidants
and antioxidants (Agarwal ef al. 2016). The ORP measures
the levels of antioxidants and oxidants in several biological
fluids (Okouchi et al. 2002). In addition, ORP could
supplement semen analysis due to its strong association
with impaired sperm function (Agarwal et al. 2019).

The Male Infertility Oxidative System (MiOXSYYS) is
a novel, user-friendly, and less expensive system that is
used to evaluate the ORP in human semen. It expresses
the ORP as the static ORP (sORP; mV). The reading is then
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normalized to the sperm concentration and expressed as
mV/10¢ sperm/mL (Agarwal et al. 2018a). The MiOXSYS
analyzer consists of an ultrahigh impedance electrometer
and a sensor with working electrodes and references
(Agarwal & Bui 2017). The test is done by adding a small
volume (30 pL) of the liquefied neat semen on a pre-
inserted sensor. The electrochemical circuit is completed
when the sample fills the sensor's reference terminal, and
the test begins. The principle of this methodology is based
on comparing the electrical conductance of an internal
reference standard to the Nernst equation:

E(ORP) =EO — RT/nF

E is the redox potential or ORP.

EOisthe standard potential of aredox system measured
concerning hydrogen electrons, which is arbitrarily
assigned an EO of O volts.

R = gas is constant.

T = absolute temperature measured in degrees Kelvin.

n = number of moles of electrons transferred in the
balanced equation for the reaction occurring in the cell.

F = Faraday’s constant.

A cutoft value of 1.34 mV/10¢ sperm/mL for sORP is
set to demonstrate the quality of seminal parameters
(Agarwal et al. 2016, 2017). A higher sORP indicates an
imbalance between oxidants and antioxidants in favor
of the oxidants, thus indicating oxidative stress (Agarwal
etal. 2017).

A good correlation has been found between the
ORP and male semen parameters such as sperm motility
and morphology, indicating ORP as a marker of seminal
oxidative stress (Agarwal et al. 2019). Semen from the male
partners of fertile couples tends to have lower sORP than
those from infertile male partners (Agarwal et al. 2016).
These findings suggest that ORP measurement may be the
most effective method for predicting and managing sperm
infertility (Aitken 2022, Castleton et al. 2022, Joao et al.
2022). Additionally, research confirmed an association
between DNA fragmentation and seminal ORP (Panner
Selvametal. 2022). Furthermore, it was alsonoted that ORP
is a more precise method compared to chemiluminescent
ROS assessment for determining the redox status in male
infertility (Vassiliou et al. 2021).

The available assays for the measurement of seminal
ORP are a reliable marker for assessing the overall redox
state is seminal ORP. These assays are trustworthy and
user-friendly with great potential of being used in
clinical andrology settings (Panner Selvam et al. 2022).
In addition, they usually provide one single marker
of oxidative stress, that is, oxidant level, antioxidant
level, or posthoc damage (Agarwal et al. 2018b).
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spin resonance (ESR) uses a static

Description

Table2 Continued.
Electron spin
resonance
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Furthermore, conventional semen analysis is criticized
for its poor reproducibility, subjectivity, and fertility
prediction. Consequently, ORP is recommended as a
clinical biomarker for MOSI in men with abnormal
semen analysis and male infertility based on the
limitation of conventional semen analysis, pathological
consequences, and ubiquity of oxidative stress among
the subfertility male population (Nago et al. 2021,
Henkel et al. 2022, Kavoussi et al. 2022, Niu et al. 2023).

Management of MOSI

Despite the progress made to measure oxidative stress in
semen analysis, well-defined procedures for treatment
associated with male infertility oxidative stress as a result
of undefined aetiologies of male infertility are still lacking
(Ayad et al. 2022). Therefore, this section will review the
literatureregarding treatment options, including empirical
treatment for men with elevated ROS, specific treatments,
and procedures for reducing iatrogenic oxidative stress.

Empirical medical treatment for men with elevated
ROS: evidence for antioxidants

Empirical medical treatment (EMT) is widely used in
men with idiopathic infertility. Based on the mode of
action, EMT is categorized into two groups: hormonal
therapy and antioxidant supplementation (Jung & Seo
2014). The agents of the hormonal treatment target
the hypothalamic-pituitary-gonadal axis to correct
subclinical endocrinopathy and includes aromatase
inhibitors, gonadotropins, androgens, and selective
estrogen receptor modulators (Dabaja & Schlegel
2014, Jung & Seo 2014). Although hormonal therapy
in male counterparts with detectable aberrations like
hypogonadotropic hypogonadism is well articulated, 10%
of infertility cases in men are culminated by an imbalance
in the endocrine system (Ko et al. 2012). Therefore, studies
recommend using EMT to combat idiopathic infertility;
however, there is a lack of evidence to validate successful
birth outcomes in in-vitro (Thaker et al. 2020, Ayad et al.
2022). On the other hand, it is suggested for males with no
genetic aberration, bacterial infections, and imbalanced
endocrine system, identification of the primary source of
MOSI rather than EMT should be employed to treat male
infertility (Thaker et al. 2020).

Antioxidant therapy

An imbalance between ROS production and antioxidant
level is implicated as the primary cause of idiopathic male

infertility. Scavenging enzymes in the cellular cytoplasm
and antioxidants in the seminal fluid play a crucial role
in the antioxidant defense mechanism to counteract the
adverse effects of ROS (Agarwal et al. 2014). However, the
relatively low concentration of the cytoplasmic scavenging
enzymes and the high amount of PUFA within the plasma
membrane of human spermatozoa make them vulnerable
to ROS from lipid peroxidation (Sanocka & Kurpisz 2004).
Antioxidant defense mechanisms against ROS may be
enzymatic or non-enzymatic (Sies 1997).

Several studies have been undertaken to determine
the effectiveness of various antioxidants such as vitamins
C and E, zinc, selenium, L-carnitine, folic acid, or
coenzyme Q10 on seminal fluid oxidative stress as well
as sperm parameters (Alahmar & Sengupta 2021). A few
of these reported improved semen parameters such as
DNA fragmentation, sperm motility, morphology, and
concentration (Alahmar & Sengupta 2021, Gupta et al.
2021). Furthermore, significant improvements in sperm
redox status as well as a good correlation with pregnancy
outcomes were demonstrated (Gharagozloo & Aitken
2011). In addition, oral administration of antioxidants for
3 months significantly improved sperm health and count
in idiopathic infertile male counterparts (Agarwal et al.
2019). This improvement might increase the likelihood
of conceiving naturally (Ko et al. 2012). Other studies also
support antioxidants’ efficacy in increasing live birth rates
and semen parameters (Showell et al. 2020). Although
antioxidant therapy in male infertility is still debated,
once a patient has been diagnosed with infertility
caused by oxidative stress, treatment should focus on
amelioration and classification of the leading cause before
resorting to antioxidant therapy (Lanzafame et al. 2009).
The combination of MOSI diagnosis with ORP monitoring
may be a reliable strategy in antioxidant therapy (Agarwal
et al. 2019). Compared with hormonal EMT and assisted
reproductive technology (ART), antioxidants are generally
safe, affordable, and widely accessible (Agarwal et al. 2019).
Table 4 summarizes a wide range of antioxidants used in a
clinical trial to combat male infertility.

Non-enzymatic antioxidants such as (vitamin C and
vitamin E complex, GSH, coenzyme Q10, carnitine, and
minerals such as zinc, copper, selenium, and chromium)
have been reported to be crucial in maintaining sperm
physiology (Collins & Rossi 2015, Ahmad et al. 2017).
GSH is a tripeptide thiol that is derived from cysteine,
glutamine, and glycine and has many biological functions
such as maintaining the redox state and detoxifying
endogenous and exogenous compounds (Aquilano
et al. 2014). Vitamin C is considered the most important
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water-soluble antioxidant in the extracellular fluid as
it inhibits the formation of ROS (Aquilano et al. 2014)
and protects sperm from DNA damage by inhibiting
the harmful effects of ROS before activating LPO. This
is accomplished by lowering oxidized tocopherol and
reversing the hydroxyl effect, which protects human
germ cells from oxidative damage (Aquilano et al. 2014).
A study demonstrated that spermatozoa with excessive
ROS had lower levels of vitamin C (Rahimlou et al. 2019).
Tocopherols and tocotrienols are the components of
vitamin E (Rahimlou et al. 2019). Vitamin E can be found
in wheat germ, avocados, palm oil, and veggie oils.
Tocopherol and ROS interact during LPO to produce lipid
radicals that stop the degradation of cell membranes
(Bartolini et al. 2022). Vitamin C and E taken together have
been shown to protect sperm from peroxide damage and
DNA damage (Rahimlou et al. 2019). Zing, the is the second
most prevalent in the human body, is involved in protein
synthesis during DNA transcription, which is crucial for
reproduction (Fallah et al. 2018). Zinc plays a role in several
biological reproduction processes, including germ cell
development and the synthesis of luteinizing, follicular,
and testicular hormones (Fallah et al. 2018). Zinc in
combination with other antioxidant enzymes helps men
with sperm deficiencies increase their fertility and sperm
health (Fallah et al. 2018). Another essential micronutrient
that can end up in sperm and testosterone production is
selenium (Fallah et al. 2018). About 25 selenoproteins have
been found in animals and humans, significantly affecting
sperm integrity (Rahimlou et al. 2019).

Enzymatic antioxidants (SOD, GPx, and CAT) are
another category of antioxidants known to scavenge
ROS from the gonads and seminal fluids (Ahmad et al.
2017). Glutathione peroxidase is a selenium-containing
antioxidant enzyme found in the cell's mitochondria
and cytoplasm (Lubos et al. 2011) and exists in two forms,
selenium-dependent and selenium-independent enzymes
(Lubos et al. 2011). Superoxide dismutase in the prostate
gland and seminal vesicles is a first-line defense against
oxidative stress in reproductive cells and a regulator of ROS
production (Lubos et al. 2011). Additionally, SOD works
well with CAT and GPx due to its scavenging property
(Lubos et al. 2011). Catalase is an antioxidant enzymatic
found in (Ohta et al. 1996, Rubio-Riquelme et al. 2020).

The B-type vitamins folate, vitamin B6, and
vitamin B12 enhance the enzymatic activity of the
methylenetetrahydrofolate reductase (Serapinas et al.
2017). Compounds of the cystathionine b-synthase family
are responsible for eliminating homocysteine from the
plasma (Jhee & Kruger 2005). It is suggested that any male

with hyperhomocysteinemia and oxidative stress should
take a B vitamin supplement (5 mg folate, 100 mg vitamin
B6, and 100 mg vitamin B12) since it is affordable and has
no significant adverse effects (Kaye et al. 2020).

Several studies have been published to date examining
the effects of various antioxidant therapies on sperm
parameters and pregnancy outcomes (Sies 1997, Smits
et al. 2018, Agarwal et al. 2023). Conclusions regarding
the clinical viability of oral antioxidant therapy on
sperm functionality and pregnancy outcomes should
be readily available, given the abundance of research
references (Arafa et al. 2020, Scaruffi et al. 2021). However,
this is not the case due to heterogeneous data such as
differences in dosage of the antioxidants, absence of
appropriate viewpoint placebo-controlled
design, and small scale-sample size (Martin-Hidalgo
et al. 2019). A preliminary report revealed a significant
improvement in sperm quantity, motility, and sperm
morphology following antioxidant therapy (Wang et al.
2019). Antioxidants such as astaxanthin, carnitine, or
a blend of antioxidants, for example, acetylcysteine,
B-carotene, vitamin E, and unsaturated fatty acids have all
been shown to decrease ROS levels (Tremellen 2008, Kefer
et al. 2009, Zhaku et al. 2021). In a placebo-controlled
study, a combination of 225 mg of selenium, 400 mg of
vitamin E, or 300 mg of vitamin E significantly reduced
malondialdehyde levels in spermatozoa (Ammar-Keskes
etal. 2003). A randomized clinical trial revealed a positive
effect toward improvement in the health of the sperm
DNA following 2 months of treatment with 1 g of vitamins
C and E (Ammar-Keskes et al. 2003). Another study also
reported on the reduction of sperm DNA aberration after
treatment with a variety of vitamins E and C (400 mg
each), B-carotene (18 mg), zinc selenium, or a mixture
of 30 mg B-carotene, 180 mg of vitamin E and fatty acids
(Punjabi et al. 2022). Furthermore, several studies have
revealed antioxidant therapy to improve sperm quantity
and quality (Biiytikleblebici et al. 2014, Moichela et al.
2021, Takalani et al. 2021, Setumo et al. 2022).

However, the most reported parameter which
seems to have been improved through antioxidant
supplementation and reported frequently is sperm
motility (Agarwal & Said 2004). For instance, significant
positive effects on the motility of sperm were observed
following antioxidant therapy using carnitine, selenium,
vitamin E, glutathione, and a combination of selenium
and vitamin E supplements (Pehlivan 2017). On the other
hand, randomized clinical trials assessing vitamin C and
E therapy with placebo revealed antioxidants to have no
capacity for sperm improvement (Bartolini et al. 2022).

research
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Table 4 Clinical trials conducted using different antioxidants to combat male infertility.

Type of
antioxidant or Evaluated semen parameter/
ingredient fertility condition Dosage Outcome Reference

Vitamin C-E Human sperm DNA One gram of vitamin E  The intervention group had less DNA Greco et al.
fragmentation, sperm and 1 g of vitamin C. damage after 2 months. However, (2005), Moslem
motility, morphology, 200 pg vitamin E major semen parameters like motility & Tavanbakhsh

and concentration were found to have (2011), Lobascio
no significant relationship with vitamin etal. (2015)
E or C intake. According to Greco and
colleagues, a 2-month course of
treatment with 1 g of vitamin E and C
reduced the amount of DNA damage
and improved ICSI success in patients
with sperm DNA damage.
690 infertile men with idiopathic
asthenoteratospermia who received
daily supplement of selenium (200 pg)
in combination with vitamin E (400 [U)
for at least 100 days. They reported
52.6% (362 cases) total improvement in
sperm motility, morphology, or both,
and 10.8% (75 cases) spontaneous
pregnancy in comparison with no
treatment.

Vitamin E Motility and viability in 2,4,and 6 h.thatthe By maintaining normal antioxidant Ghafarizadeh
asthenoteratozoospermic  test group was processes, in vitro vitamin E et al. (2021)
men incubated with VE supplementation may shield

(2 mM) spermatozoa from the negative effects
of oxidative stress during sperm
preparation.

Vitamin C Sperm parameters of 600 pm ascorbic acid  Vitamin C improves sperm motility, Fanaei et al.
teratozoospermic semen progressive motility, and acrosome (2014)
samples reaction

Zinc Asthenoteratospermia 220 mg per capsule/ Zinc supplementation increased the Hadwan et al.

per day for 3 months  volume of sperm, progressive sperm (2012)
motility percentage, and total normal
sperm count.

Folic acid Subfertility parameter 5 mg/day Treatment significantly increased sperm  Ebisch et al.

concentration in sub fertile males. (2006)
Other semen and endocrine
parameters were not affected by
intervention treatment.

CoQ10 Semen parameters in 150 mg CoQ10/day Because CoQ10 increases total Thakur et al.

infertile men antioxidant capacity, it was found to be  (2015)
associated with important sperm
parameters like concentration, motility,
and morphology. Thakur suggested
that infertile men’s sperm parameters
could be improved by taking 150 mg of
CoQ10 daily.

Selenium and Idiopathic oligo- 100 ug selenium orally The parameters of the sperm and the Safarinejad &
NAC asthenoteratospermia daily, 600 mg NAC concentrations of selenium and NACin  Safarinejad
orally daily the seminal plasma showed a strong (2009)

positive correlation. The sum of the
selenium and NAC levels was found to
have a strong correlation with the
mean sperm concentration (r = 0.67,
P =0.01), sperm motility (r=0.64,
P=0.01), and percentage of normal
morphology (r=0.66, P=0.01).

CoQ10,Coenzyme Q10; NAC, N-acetyl-cysteine.
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Matorras et al. (2020) reported that treatment with
vitamin E brought about a considerable decrease in the
damaging effect of ROS on sperm and an improvement
in unconstrained pregnancy rates during the preceding
6 months (21% pregnancy rate in the vitamin E group
vs 0% placebo). On the other hand, Rolf et al. (1999)
detailed no improvement in spontaneous gestation
resulting from 2 months of treatment with a blend of
vitamin C and E. However, a new randomized clinical trial
contrasting the antioxidant formulation Menevit and
placebo treatment detailed a significant rise in clinical
pregnancy in circumstances where the antioxidant
treatment was administered for 3 months before IVF-ICSI
therapy (Tremellen et al. 2020). Menevit, a nutraceutical
hypothesized to improve sperm health through three
correlative systems, contains antioxidant agents like
vitamins C and E, selenium, and lycopene to shield sperm
from previously generated ROS (Tremellen et al. 2020).
Lastly, it contains zinc, selenium, and folate, which play
a significant role in enlarging the protamine bundling of
sperm DNA (Arafa et al. 2020) and protecting the sperm
against the damaging effect of ROS. While it is yet to be
demonstrated that combinational treatment like Menevit
has a positive impact on DNA structure, it is suggested that
the use of different antioxidants with a variety of modes
of action together with an agent to limit the production
of leukocytes ROS is probably going to bring about a
beneficial impact (Beltran et al. 2018).

Procedures for reducing iatrogenic oxidative stress

In andrology, centrifugation of sperm samples before use
can exacerbate oxidative stress (Marzano et al. 2020); this
can be mitigated by reducing centrifugation time, using
non-centrifuge partitioning procedures such as ‘swim-up’
or glass wool filtration, and reducing the time interval
in which human sperm are cultured in a media separate
from seminal plasma (Marti et al. 2006). Furthermore,
cultivating spermatozoa in low oxygen tension settings
has been shown to improve sperm health by decreasing
seminal leukocytes during ROS formation (Agarwal et al.
2022). Furthermore, avoiding cryopreserved sperm for
fertilization is advised because ROS are produced during
sperm banking, lowering the quality of the sperm cells
(Tafuri et al. 2015, Agarwal et al. 2022). Also, throughout
the sperm preparation process, the media used may be
supplemented with various antioxidants to protect the
cells from oxidative damage. For example, supplementing
sperm medium with vitamin C, vitamin E, catalase, ferric
acid, EDTA, albumin, and glutathione has been shown

to protect against oxidative damage (Fanaei et al. 2014).
However, aside from amino acids and albumin, currently
employed sperm preparation media do not contain
any type of antioxidant supplement (Bui ef al. 2018).
Unfortunately, better sperm media still lack features of
the complicated sequential media produced for embryos,
which needs extensive research (Bui et al. 2018).

Oxidative pathology direct treatment

Varicocele surgery has been shown to effectively reduce
oxidative stress and enhance sperm DNA integrity
(Kavoussi et al. 2022). Even though the most recent meta-
analysis examining the effect of varicocelectomy on
spontaneous conception found a significant benefit, the
Cochrane Database claims no benefit. Randomized trials
evaluating oxidative stress (sperm lipid peroxidation and
oxidative DNA damage) and pregnancy rates must be
carried out before varicocelectomy may be considered in
males with oxidative stress.

Conclusions

The physiological level of ROS has been reported to
be essential in the fertilizing capacity of spermatozoa,
including capacitation and acrosome reaction. However,
a high level of ROS results in oxidative stress, resulting in
sperm membrane lipid peroxidation, damage of seminal
parameters (sperm motility, viability, morphology), and
poor pregnancy and artificial reproduction outcomes.
Nevertheless, non-diagnostic and therapeutic methods
have been developed to combat infertility and oxidative
stress. However, profound evidence to recommend
a suitable oxidative stress test is still lacking. Further
research is required to overcome the current limitations.
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