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Abstract

Sickle cell disease (SCD) poses an increased risk of infertility, pregnancy complications and maternal and perinatal 
mortality among women of reproductive age. This risk is particularly higher for women in sub-Saharan Africa, where the 
disease burden is highest and access to comprehensive health care is limited, as well as in other countries with a high 
SCD prevalence due to migration. Disease-modifying treatments for SCD could directly and indirectly harm the ovaries, 
potentially compromising the quality and quantity of existing oocytes. Therefore, it is essential to explore alternative 
interventions, such as nutritional modifications that are less harmful and cost-effective in order to improve reproductive 
outcomes and enhance the overall well-being of both mother and child in this population. Maintaining optimal levels 
of B12 may possibly provide benefits to the ovaries and pregnancy by decreasing homocysteine levels, increasing nitric 
oxide (NO) bioavailability and promoting antioxidant and anti-inflammatory activities. Individuals living with SCD are more 
susceptible to vitamin B12 (B12) deficiency. However, there is a lack of clinical data investigating the relationship between 
systemic levels of B12, its supplementation, and reproductive outcome measures in SCD women. Therefore, this review 
aims to examine the current evidence regarding the impact of SCD on female reproductive health and the role of B12 in 
the reproductive biology of women living with SCD.

Lay summary

Poor reproductive health is a concern for patients with sickle cell disease (SCD). SCD can lead to damage to the ovaries. 
Most of the therapies for sickle cell disease are toxic to the ovaries, expensive and unavailable to affected women, 
particularly those living in resource-poor areas such as sub-Saharan Africa. There is a need to seek less harmful and 
affordable interventions such as nutrition to improve reproductive outcomes for women with SCD who are of child-
bearing age. Good levels of vitamin B12 have been found to maintain ovarian health and pregnancy. Patients with SCD 
have been reported to have a high risk of vitamin B12 deficiency, but the impact of B12 on reproduction in this group 
of women is yet to be evaluated. The review explores current evidence of the impact of both SCD and B12 on female 
reproduction.
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Introduction

Sickle cell disease (SCD) refers to haemoglobinopathies 
consisting of at least one haemoglobin (Hb) S allele 
expressed as homozygous (HbS/S, most common and 
fatal), heterozygous (HbS/C, which is less severe), 
two phenotypes of sickle beta (β) thalassemia (HbS/β+ 
thalassemia and HbS/βo_thalassemia) and other rare 
forms such as HbS/D, HbS/O and HbS/E (Serjeant & 
Vichinsky 2018). SCD is the most common monogenic 
and autosomal recessive disorder caused by a missense 
variant (rs334) in the Hb subunit β-globin (HBβ) gene, 
which results in morphological abnormalities in the 
red blood cells (RBC) (Serjeant & Vichinsky 2018). The 
morphological abnormalities in the RBC results in 
haemolysis and/or vaso-occlusion, leading to delayed 
growth and sexual maturation, as well as progressive 
damage to most organs including the bones, ovaries, 
brain, kidneys, lungs and more (Meremikwu & Okomo 
2016). Thus, SCD has a negative impact on the quality 
of life of affected individuals, particularly those with 
limited access to comprehensive team care and the high 
cost of care.

SCD is a global public health burden. It is highly 
prevalent in malaria-endemic regions and commonly 
encountered in Africans, Mediterraneans and South 
Asians. Africa has the highest prevalence rates, with 
20–30% in countries such as Nigeria, Tanzania, Republic 
of Congo, Cameroon, Gabon and Ghana (Grosse et  al. 
2011). SCD prevalence is steadily increasing in Europe, USA 
and the UK due to migration (Roberts & Montalembert 
2007). There is high nutritional demand to sustain 
normal physiologic functions in SCD due to increased 
basal metabolic rate and constant erythropoiesis. 
Consequently, SCD is characterised by both macro- 
and micronutrient deficiencies (Mandese et  al. 2016). 
Among the micronutrient deficiencies, vitamin B12 (B12) 
deficiency is common in individuals with SCD, regardless 
of age, and it has both haematological and reproductive 
consequences. Therefore, low circulating levels of B12 
may not only worsen the clinical manifestations of SCD 
but also lead to unfavourable reproductive outcomes  
by impacting fertility in women living with SCD  
(Gaskins et al. 2015).

Given the beneficial role of optimal B12 levels in 
females, including improving reproductive outcome 
in both natural and assisted pregnancies (Gaskins et  al. 
2015), it is important to explore the impact of B12 in 
SCD women of child-bearing age. This is particularly 
crucial in sub-Saharan African countries, which bear the 

highest burden of SCD and often have limited access to 
comprehensive health care, as well as in other countries 
of the world with a high prevalence of SCD. Therefore, 
this review aims to examine the current knowledge on 
the impact of SCD on female reproductive health and 
explore the role of B12 on the reproductive biology of 
SCD women.

Literature search

A comprehensive literature search was performed from 
June 2022 to November 2022 using PubMed, MEDLINE 
and Google Scholar databases. Multiple search terms 
were employed, including vitamin B12, SCD, the global 
prevalence of SCD and the impact of SCD on reproductive 
health. Additionally, specific searches were conducted 
to explore the effect of vitamin B12 on the reproductive 
health of women with SCD and the consequences of 
vitamin B12 deficiency on female infertility, fertility and 
pregnancy outcomes, as well as potential mechanisms 
contributing to poor reproductive outcomes in SCD. No 
restrictions were placed on publication dates, and only 
articles written in English were included.

Influence of SCD on female 
reproductive health

SCD has a negative impact on the reproductive health of 
both men and women. In women, the disease significantly 
influences the ovaries (which are vital for maintaining 
female reproductive potential and endocrine stability), 
leading to a reduced reproductive lifespan (Ghafuri et al. 
2017). The negative impact on the ovaries affects ovarian 
follicular dynamics and ovulation , increases ovarian 
sickling, causing ischemia and reperfusion injury to the 
ovaries (Ghafuri et  al. 2017), and impair oocyte quality 
and quantity which increases the risk of infertility (Fig. 1) 
(Kopeika et al. 2019, Garba et al. 2021).

Gonadal hypofunction

Gonadal hypofunction has been reported in females 
with SCD (Gardner et al. 2016). It has been suggested that 
chronic transfusion and haemochromatosis in females 
with severe SCD may be associated with low ovarian 
reserve, a gradual decline in ovarian follicle number and 
quality, which may be a causative factor for infertility  
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and failure in assisted reproductive technology (ART) 
(Chang et  al. 2018). Additionally, ovarian sickling 
resulting from frequent intravascular sickling, vascular 
occlusion, infarction and the release of inflammatory 
mediators during ischemia, as well as recurrent ovarian 
hypoxia, could also contribute to ovarian dysgenesis and 
premature ovarian failure in women with SCD (Chase 
et  al. 2009). It is worth noting that frequent ovarian 
hypoxia can rapidly deplete ovarian reserve compared to 
cases without chronic hypoxic injury to ovarian tissues 
(Chase et al. 2009).

In addition to causing miscarriage and infertility, 
women with a reduced ovarian reserve are more susceptible 
to diseases characterised by decreased oestrogen, such 
as osteoporosis, increased cardiovascular morbidity 
and mortality, depression and diminished sexual well-
being (Chang et al. 2018). Few studies have evaluated the 
ovarian reserve, an indicator of the female reproductive 

potential, in SCD women. In a cross-sectional study of 
166 participants (83 HbSS and 83 HbAA women), it was 
observed that serum anti-Müllerian hormone (AMH) 
levels in HbSS women were two times lower than those in 
HbAA women. Additionally, there was diminished ovarian 
reserve in HbSS women compared to age-matched HbAA 
women (Garba et  al. 2021). Another study, based on 285 
banked serum samples from 93 HbSS women, of which 
86 out of 93 were exposed to hydroxyurea (a disease-
modifying therapy for SCD that reduces the frequency 
of vaso-occlusive crises, and need for blood transfusion), 
found a reduction in serum AMH concentrations. These 
concentrations were lower than the median levels observed 
in age- and sex-matched reference values (Pecker et  al. 
2020). Additionally, Kopeika et al. discovered significantly 
low levels of AMH in 50 heterozygous SCD subjects, of 
which 8 out of 50 were exposed to hydroxyurea, when 
compared to 73 age- and ethnicity-matched controls 

Figure 1 Impact of sickle cell disease (SCD) on female reproductive health. Sickle cell disease appears to reduce circulating vitamin B12 levels leading to 
decreased erythropoiesis, DNA synthesis and methylation, cell multiplication in gestational tissues, and increased oxidative stress and inflammation, as well 
as homocysteine accumulation. SCD-induced oxidative damage and inflammatory imbalance in the ovaries can cause ovarian aging, low ovarian reserve and 
decreased telomere length of oocytes, mitochondrial dysfunction, endometriosis and polycystic ovarian syndrome (PCOS). These can lead to other adverse 
reproductive outcomes such as IUGR and PTL. Additionally, SCD may negatively impact the ovaries by increasing ovarian sickling and reducing ovarian 
reserve, resulting in decreased oestrogen which increases the risk of osteoporosis and cardiovascular disease whilst decreasing sexual well-being. IUGR, 
intrauterine growth restriction; PTL, preterm labour; ROS, reactive oxygen species; RNS, reactive nitrogen species. Figure created in Lucidchart.
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without haemoglobinopathy (Kopeika et  al. 2019).  
More so, the study found that serum AMH declined more 
rapidly in women with SCD than in controls starting from 
the age of 30 (Kopeika et  al. 2019). Disease-modifying 
treatments for SCD, such as hydroxyurea and chronic 
blood transfusion, may indirectly or directly damage 
the ovaries and compromise existing oocyte quantity or 
quality (Pecker et al. 2020).

Pregnancy complications

Pregnancy in women with SCD results in an increased 
incidence of maternal and perinatal complications, such 
as pre-eclampsia, preterm labour, intrauterine growth 
restriction (IUGR), and abortions (Sousa et  al. 2022). 
Additionally, pregnancy aggravates the pre-existing 
anaemia in women with SCD, leading to an increased 
incidence of severe anaemia and frequent need for blood 
transfusion (Smith-Whitley 2019). The hematologic 
changes that occur during pregnancy could place an 
excessive burden on organs already affected by chronic 
injuries resulting from SCD (Silva-Pinto et  al. 2014). 
Anaemia in SCD pregnancy prompts defective placental 
perfusion, which reduces nutritional substrate transport 
and oxygen transfer to the foetus, leading to an increased 
incidence of IUGR in pregnancies affected by SCD (Smith-
Whitley 2019).

The cardiovascular and respiratory adaptations in 
SCD pregnancy pose significant challenges and can be 
life threatening. These adaptations result in increased 
cardiopulmonary demands, particularly in women 
with SCD-induced pulmonary hypertension (Baptista 
et  al. 2016). Pregnant SCD patients experience increased 
metabolic demand, and blood viscosity, as well as 
hyper-coagulability, which are associated with a high 
incidence of vaso-occlusive crises, acute chest syndrome, 
osteonecrosis, hepatic necrosis and thromboembolic 
events (Villers et  al. 2008). Vaso-occlusion also occurs 
in the placenta, leading to villous fibrosis, necrosis and 
infarction. This compromises uteroplacental circulation, 
resulting in chronic foetal hypoxia and adverse foetal 
outcomes (Villers et al. 2008).

Oxidative stress and inflammation as 
potential mechanisms for poor reproductive 
outcomes in SCD

The negative impact of SCD on the ovaries and 
pregnancy can be attributed to oxidative stress (OS) 

and inflammation (Conran & Belcher 2018). SCD 
is characterised by a high level of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) 
production, leading to OS. This, in turn, promotes an 
inflammatory imbalance in this population (Nader et al. 
2018). Pathological events in SCD, including frequent 
polymerisation of HbS, the release of haem and iron from 
haemolysed RBC  and the decreased nitric oxide (NO) 
bioavailability in the vascular compartment contribute 
to the formation of ROS and RNS and subsequently OS 
(Nader et al. 2018).

ROS are important modulators of ovarian germ 
cell and stromal cell physiology, playing significant 
and diverse roles in reproductive biology (Zhang 
et  al. 2016). Normal ROS levels modulate various 
signalling transduction pathways in folliculogenesis, 
oocyte maturation, ovulation, blastocyst formation, 
fertilisation, implantation, luteolysis, and feto-placental 
development (Kala & Nivsarkar 2016). However, excessive 
ROS production may possibly cause oxidative damage to 
the ovaries by promoting lipid peroxidation cascades, 
which influence folliculogenesis and ovulation and can 
lead to ovarian aging or low ovarian reserve (Maclaran 
& Nikolaou 2019). OS stimulates telomere shortening, 
mitochondrial dysfunction, inflammation and 
granulosa cell (GC) apoptosis, reducing communication 
between oocytes and GCs and affecting pre-ovulatory 
oocyte maturation. It also accelerates corpus luteum 
degeneration (Cajas et al. 2020).

Telomeres, the nucleoprotein-DNA structures that 
maintain genome integrity and chromosome stability, 
can shorten due to oxidative damage to the ovaries. This 
process promotes genomic instability, cellular senescence 
and reduced lifespan (Smith et al. 2020). It is worth noting 
that telomere length in cumulus cells has been found to 
be positively correlated with oocyte and embryo quality 
(Cheng et al. 2013). In a study by Xu et al., an association 
was observed between primary ovarian insufficiency 
(POI) and shortened telomeres, as well as diminished 
telomerase activity in granulosa cells (Xu et al. 2017).

The mitochondria, which supply energy and 
modulate cellular signalling for oocyte maturation, 
fertilisation, and embryogenesis through aerobic 
respiration, are linked to ovarian aging (Pasquariello et al. 
2019). Ovarian aging is characterised by reduced oocyte 
mitochondrial DNA content (Pasquariello et  al. 2019), 
and inhibiting adenosine triphosphate (ATP) synthase 
activity can prevent germ stem cells from developing into 
oocytes (Teixeira et al. 2015). An overview of the impact of 
SCD on the female reproductive health is shown in Fig. 1.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/RAF-23-0015

https://raf.bioscientifica.com� © 2023 the author(s)
� Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/RAF-23-0015
https://raf.bioscientifica.com


T Agbalalah et al. 4:3 e230015

Impact of vitamin B12 on reproductive 
health of women living with SCD

B12 (cobalamin) is synthesised solely by bacteria or 
archaea and is naturally present in foods of animal origin, 
seafood, milk and fortified cereals (Watanabe & Bito 
2018). It is also available as a dietary supplement and a 
prescription medication (Watanabe & Bito 2018). B12 is 
required for nervous and reproductive systems, normal 
erythropoiesis and growth, DNA synthesis, amino and 
fatty acid metabolism, and cellular energy metabolism 
(Ge et al. 2022). Additionally, B12 maintains normal folate 
metabolism, which is essential for cell multiplication in 
rapidly dividing placental and foetal tissues (Mahajan 
et al. 2019). It participates in one-carbon metabolism cycle, 
thus, functioning in numerous methylation reactions that 
occur in developing embryos and regulates foetal growth 
(Mahajan et al. 2019).

In humans, B12 functions as a coenzyme in two 
enzymatic reactions (Kräutler 2012). In the first enzymatic 
reaction, methyl-cobalamin acts as a coenzyme in 
the methionine synthase reaction, which converts 
homocysteine to methionine in the cytosol (Fig. 2). 
Methionine is an important precursor for the formation 
of S-adenosyl-methionine, which is essential for the 
methylation of phospholipids, neurotransmitters, 

amines, DNA, RNA and myelin basic protein (Fig. 2) 
(Froese et  al. 2019). A decrease in S-adenosyl-methionine 
could lead to impaired DNA methylation, which may 
alter foetal metabolic programming and increase the risk 
of non-communicable diseases later in life (Randunu & 
Bertolo 2020). Therefore, a deficiency in B12 may result 
in homocysteine accumulation and decreased circulating 
methionine, affecting reproduction, protein and DNA 
methylation (Akamine et al. 2021).

In the second enzymatic reaction, adenosyl-
cobalamin functions as a coenzyme in the conversion 
of l-methyl–malonyl-CoA to succinyl CoA in the 
mitochondria catalysed by l-methyl-malonyl-CoA 
mutase (Fig. 2) (Froese et  al. 2019). This reaction plays a 
significant role in extracting energy from proteins and 
fats. Furthermore, succinyl CoA is necessary for the 
production of haemoglobin (Dowd et  al. 1975). This 
suggest that insufficient B12 may lead to succinyl CoA 
deficiency, resulting in reduced gluconeogenesis and 
haem synthesis, which is capable of causing growth 
retardation and anaemia (Bicakci 2015).

Vitamin B12 deficiency and female 
reproductive health

B12 plays a critical role in maintaining healthy 
reproduction by improving the function of reproductive 
organs, reducing OS, pro-inflammatory cytokines, 
and circulating homocysteine levels (Chan et  al. 2018, 
Shakoor et al. 2021). Having optimal B12 levels, defined 
as serum B12 between 369 and 959 pmol/L (Dommisse 
1991), at preconception is associated with favourable 
reproductive outcomes in both natural pregnancies 
and those after ART (Cirillo et al. 2021). Deficient levels 
of B12, characterised as serum B12 < 200 pmol/L, may 
have a significant impact on women’s reproductive 
health. This deficiency may lead to anovulation, disrupt 
normal cell division, impair egg development and result 
in difficulties during implantation (Bennett 2001). 
Insufficient B12 in pregnant women may contribute 
to various complications including preeclampsia, 
spontaneous abortion, IUGR, preterm labour, neural 
tube defects and increased perinatal morbidity and 
mortality. Insufficient B12 could also lead to poor foetal 
growth, which increases the risk of long-term health 
issues in the offspring, including a high susceptibility to 
non-communicable diseases (Gernand et al. 2016).

Demand for B12 increases during pregnancy due to 
rapid cell multiplication and the need for B12 transport 

Figure 2 Formation of S-adenosyl-methionine and succinyl-CoA with 
vitamin B12 as coenzyme. Vitamin B12 facilitates the metabolism of 
homocysteine and l-methyl-malonyl-Co-A to prevent their build-up and 
deleterious effects of homocysteine.LMCoAM, l-methyl-malonyl-CoA 
mutase. Figure created in Lucidchart.
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to the foetus. As a result, there is a gradual physiological 
decline in maternal B12 levels, which could be worsened 
by factors such as haemodilution, hormonal fluctuations, 
impaired renal function, or altered concentration of 
binding proteins (transcobalamin and haptocorrin). The 
lowest concentration of B12 is typically observed during 
the third trimester, but it returns to pre-pregnancy levels 
within a few weeks postpartum (Behere et  al. 2021). B12 
deficiency may also intensify anaemia, which is the 
most common complication of pregnancy, as it leads 
to low concentrations of haemoglobin. This can lead 
to decreased foetal oxygenation and abnormal foetal 
outcomes.

B12 deficiency negatively impacts the reproductive 
health of women, but its effects on women living with 
SCD are not fully understood. Individuals with SCD are at 
risk of B12 deficiency (Ahmed et al. 2016), which may be 
attributed to the increased rate of haematopoiesis (van der 
Dijs et  al. 1998). Pregnancy in SCD women is associated 
with a higher risk of maternal and foetal mortality (Alayed 
et al. 2014), necessitating expensive intensive care facilities 
and prolonged hospital stays. Therefore, it is crucial to 
explore cost-effective interventions, such as nutrition, to 
improve reproductive outcome and enhance the quality 
of life of women living with SCD. These nutritional 
interventions are particularly relevant in sub-Saharan 
African countries where the disease burden is higher, as 
well as in Europe, the USA and the UK, where prevalence is 
increasing due to migration.

Infertility

B12 deficiency is a significant factor contributing to 
difficulties in conceiving. A study found a link between 
low levels of B12 and female infertility and subfertility 
when compared to fertile women (Isomah et  al. 2021). 
As mentioned earlier, B12 is vital for homocysteine 
metabolism, and insufficient B12 levels leads to its 
accumulation. Consequently, B12 deficiency can indirectly 
contribute to infertility by increasing homocysteine 
levels. The accumulation of homocysteine promotes OS by 
inhibiting antioxidant enzymes, which could be harmful 
to oocytes and impair ovulatory function, leading to 
anovulation (Michels et al. 2017). Increased homocysteine 
levels could also damage the endometrium, resulting 
in defective implantation and chemical pregnancy, 
which refers to early pregnancy occurring shortly after 
implantation (before the sixth week) (Pacchiarotti et  al. 
2007). Many women with unexplained infertility have 

been found to have elevated serum homocysteine levels 
(Dubey et  al. 2016). Although higher homocysteine 
levels have been reported in individuals with steady-state 
HbSS compared to age- and sex-matched HbAA controls, 
whether this is caused by B12 deficiency has not been 
determined (Uche et al. 2019).

Fertility and pregnancy outcomes

Many women experiencing infertility have shown 
increased circulating homocysteine levels, which is 
characteristic of low B12, B6 and folate levels (Dubey 
et  al. 2016). There is evidence indicating that B12 
supplementation is linked to improved pregnancy 
outcome. In a retrospective study involving 269 Caucasian 
women undergoing ART, it was observed that women 
who received 5µg B12 daily had a higher likelihood of 
achieving clinical pregnancy and live birth (Cirillo et al. 
2021). Additionally, improved fertility outcomes have 
been observed when homocysteine levels were reduced 
through interventions targeting B12, B6 and folate (D’Uva 
et al. 2007).

Oocyte maturity

Increased homocysteine have been reported to negatively 
impact oocyte maturation, fertilisation and embryo 
quality, whereas reducing homocysteine has shown 
improvements in oocyte maturity and quality (Akamine 
et  al. 2021). This is supported by a study that found an 
increased percentage of oocyte maturity and quality 
following a decrease in homocysteine concentration in 
the follicular fluid (Szymański & Kazdepka-Ziemińska 
2003). Homocysteine accumulation also has detrimental 
effects on the vascular endothelium, leading to reduced 
NO synthesis and bioavailability (Stühlinger et  al. 
2001). NO plays a vital role as a paracrine mediator and 
modulator of ovarian functions, including ovulation, 
folliculogenesis, early embryonic cleavage, oocyte 
quality, implantation, uterine quiescence, endometrial 
receptivity, pregnancy, and uterine contractions and 
relaxation (Nath et  al. 2019). Therefore, insufficient NO 
synthesis due to elevated homocysteine levels can have 
adverse reproductive outcomes. For example, studies with 
eNOS knockout mice have demonstrated significantly 
reduced ovulation rates, abnormal oocyte meiosis and 
increased oocyte mortality compared to normal mice, 
indicating that the lack of NO inhibits meiosis and oocyte 
maturation (Jablonka-Shariff & Olson 1997).
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Discussion and future perspectives

Reviewed studies have reported diminished ovarian reserve, 
ovarian sickling, gonadal hypo-function and increased 
incidence of maternal and perinatal complications that 
may lead to infertility and higher maternal mortality 
rates among women with SCD. The poor reproductive 
health outcomes in this population have been attributed 
in part to OS and imbalances in inflammation. Given the 
positive impact of B12 on female reproductive health, as 
well as its antioxidant and anti-inflammatory activities, 
B12 supplementation may help mitigate the deleterious 
effects of lipid peroxidation on the ovaries and regulate 
the production of ROS, thereby potentially improving the 
overall reproductive health of women with SCD.

The beneficial effects of B12 on the ovaries and in 
pregnancy may be attributed to its ability to decrease 
homocysteine accumulation, increase NO bioavailability, 
and reduce oxidative and inflammatory damage to 
the ovaries. While few studies have demonstrated the 
positive effects of B12 on female reproductive outcomes 
and during pregnancy, no such studies have been 
conducted specifically in SCD women. Therefore, there 
is a need for randomised controlled trials and prospective 
studies focusing specifically on this population to 
confirm the potential beneficial effects of B12. Such 
research will provide more empirical evidence to guide 
healthcare policies and highlight the urgent need to 
develop intervention strategies aimed at reducing poor 
reproductive health outcomes, pregnancy complications, 
and maternal and child mortality rates in this population. 
Additionally, multicentre studies with large sample 
populations in sub-Saharan Africa are required to evaluate 
the extent of B12 deficiency in individuals with SCD and 
develop suitable cost-effective treatment approaches.

The cellular deficiency of B12 in individuals with SCD 
is influenced by various factors. Along with conducting 
further studies, it is recommended to include routine 
assessment of B12 status in women living with SCD, 
especially in regions with a high burden of the disease 
like sub-Saharan Africa. This assessment aims to identify 
potential factors that could reduce B12 absorption and 
contribute to B12 deficiency in this population. By 
implementing routine B12 status evaluation, healthcare 
providers can better understand and address the specific 
needs of women with SCD, ultimately improving their 
overall health outcomes.

Considering the increased demand for B12 imposed 
by SCD, the current recommended dietary allowance 
(RDA) of 2.4 µg/day for adults may not be sufficient to 

maintain normal physiologic function, metabolism 
and prevention of subclinical B12 deficiency in this 
population. Particularly for reproductive-age women 
living with SCD, including those who are pregnant or 
lactating, a tailored dietary intake of B12 is necessary. To 
determine the optimal B12 dosage for individuals with 
SCD, an RCT comparing different doses of B12 could be 
conducted. Such a study would provide valuable insights 
and contribute to the development of specific RDAs for 
female patients with SCD, taking into account their 
unique nutritional requirements.
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