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Abstract

Although a growing body of literature focuses on the relationship between the built environment 

and pedestrian crashes, limited evidence is provided about the relative importance of many built 

environment attributes by accounting for their mutual interaction effects and their non-linear 

effects on automobile-involved pedestrian crashes. This study adopts the approach of Multiple 

Additive Poisson Regression Trees (MAPRT) to fill such gaps using pedestrian collision data 

collected from Seattle, Washington. Traffic analysis zones are chosen as the analytical unit. 

The effects of various factors on pedestrian crash frequency investigated include characteristics 

the of road network, street elements, land use patterns, and traffic demand. Density and the 

degree of mixed land use have major effects on pedestrian crash frequency, accounting for 

approximately 66% of the effects in total. More importantly, some factors show clear non-linear 

relationships with pedestrian crash frequency, challenging the linearity assumption commonly 

used in existing studies which employ statistical models. With various accurately identified non-

linear relationships between the built environment and pedestrian crashes, this study suggests local 

agencies to adopt geo-spatial differentiated policies to establish a safe walking environment. These 

findings, especially the effective ranges of the built environment, provide evidence to support for 

transport and land use planning, policy recommendations, and road safety programs.
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1. Introduction

Walking is a type of popular aerobic physical activity, which has numerous health benefits 

such as weight control, lower risk of heart disease, stroke, depression, and some cancers 

(Centers for Disease Control and Prevention, 2012). However, exposure to automobile 

collisions and the risk of being injured in such accidents can discourage walking. Among 

various factors, built environment plays a key role in attracting pedestrians. Not all walking 

environments are identically safe, and various built environment features are related to 

different levels of collision risks. For example, residents in rural areas generally do less 

walking and have a higher risk of being involved in pedestrian collisions due to more 

constrained walking environment access and higher traffic operating speeds. Recent research 

using the pedestrian danger index to evaluate the quality of walking environments found that 

8/10 of the most dangerous metro areas for walking are in Florida and 19/20 of the most 

dangerous metro areas for walking are clustered in the southern United States (US) (Smart 

Growth America & National Complete Streets Coalition, 2017). Cities in the southern US 

are generally more sprawled as compared to the northeastern and the west coastal US 

cities, which may be not safe for walking. To deepen our understanding, investigating and 

promoting a safe walking environment is critical to the success of pedestrian injury and 

death reduction.

According to data reported in 2009, walking accounts for roughly 10.4% of all trips in 

the US, and mostly for errands and social and recreational purposes (Alliance for Biking 

and Walking, 2016; Bureau of Transportation Statistics, 2016). Although the number of 

traffic-related injuries and deaths has steadily declined in recent years, the number of injured 

and killed pedestrians does not follow the same trend. Data shows that 70,000 people were 

injured, and 5376 people were killed in automobile-involved pedestrian crashes in 2015. 

Pedestrian deaths accounted for roughly 15% of all traffic-related fatalities in the US. In 

addition, the number of pedestrian deaths in 2015 was noted as the biggest single-year 

increase. There were only 61,000 pedestrian injuries and 4795 deaths in 2006. A 11.48% has 

increased from 2006 to 2015 (The National Highway Traffic Safety Administration, 2015). 

Although authorities have the goodwill of promoting walking for health and environment 

benefits, pedestrian safety is worthy of greater inputs.

How can we promote a safer walking environment? A large body of literature has discussed 

the relationship between pedestrian crash outcomes and built environment factors. These 

outcome measurements include but are not limited to pedestrian crash frequency (Chen and 

Zhou, 2016; Miranda-Moreno et al., 2011; Narayanamoorthy et al., 2013; Siddiqui et al., 

2012; Ukkusuri et al., 2011; Ukkusuri et al., 2012; Wang and Kockelman, 2013), injury 

severity, (Abay, 2013; Aziz et al., 2013; Clifton et al., 2009; Islam and Hossain, 2015; 

Kim et al., 2008; Mohamed et al., 2013; Tarko and Azam, 2011; Zahabi et al., 2011), 

and exposure and risk (Chen and Zhou, 2016; Moudon et al., 2008; Moudon et al., 2011; 

Schneider et al., 2010; Schneider et al., 2013; Wang et al., 2017). In addition, a handful of 

studies have identified spatial clusters of pedestrian crashes (Dai, 2012; Dai et al., 2010; 

Pulugurtha et al., 2007).
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Several studies have comprehensively reviewed work concerning pedestrian crash frequency 

(Chen and Zhou, 2016; Pulugurtha and Sambhara, 2011; Ukkusuri et al., 2011; Wier et 

al., 2009), and therefore this study only focuses on recent advancements. The conventional 

research is built upon an agreed framework to identify various effects, including (1) roadway 

design, such as the densities of different types of streets (sidewalks, local streets, and 

arterial routes), intersections, and bus stops/stations; (2) land use, such as land use mixture, 

different types of land use including residential, industrial, schools, parks or activity centers, 

and parking; other land use measurements examined are zone size, and urban versus 

rural; (3) population characteristics, such as densities of population and employment, the 

densities of different sub-groups including senior citizens, children and teenagers, and 

other sociodemographic measurements such as median income, poverty rate, and race; 

(4) travel demand measurements, such as walking miles traveled, walking mode share, 

traffic volume, and trip forecast; (5) traffic controls, such as speed limit (Cai et al., 2016; 

Chen and Zhou, 2016; Miranda-Moreno et al., 2011; Moudon et al., 2008; Moudon et al., 

2011; Narayanamoorthy et al., 2013; Pulugurtha and Sambhara, 2011; Siddiqui et al., 2012; 

Ukkusuri et al., 2011; Ukkusuri et al., 2012; Wang and Kockelman, 2013; Wier et al., 2009), 

as shown in Table 1.

In terms of methodology, early research has mostly employed negative binomial (NB) 

models to identify various correlations between pedestrian crash frequency and explanatory 

variables, which can handle the issue of data over-dispersion (Miranda-Moreno et al., 

2011; Pulugurtha and Sambhara, 2011). For example, Miranda-Moreno et al. (2011) 

used a standard NB model, a generalized GNB model, and a latent-class NB model 

to investigate how the built environment affects both pedestrian activity and collision 

frequency. Pedestrian crashes are random events, and many factors remain unobserved. 

In this context, random effects models are therefore applied to account for the unobserved 

heterogeneity (Ukkusuri et al., 2011). More recent research includes multiple random effects 

to account for spatial autocorrelations in addition to the unobserved heterogeneity (Chen and 

Zhou, 2016; Narayanamoorthy et al., 2013; Siddiqui et al., 2012; Wang and Kockelman, 

2013). Recently, the Bayesian hierarchical intrinsic conditional autoregressive model has 

been used to analyze crash counts (Chen and Zhou, 2016). A spatial modeling approach 

provides a chance to capture spatial autocorrelations.

Cross-sectional models are usually used to analyze pedestrian crash counts aggregated 

over multiple years and time series analysis is rarely used to account for temporal 

autocorrelations inside pedestrian crash counts. The reasons may include: first, the number 

of reported pedestrian crashes in each analytical unit is small if split by multiple years, and 

the resulting data is likely to involve the issue of the excess of zeros. An alternative way 

to solve this problem is to aggregate pedestrian crashes to a larger unit, such as from block 

groups to census tracts. However, the results may not offer insightful strategies for local 

safety improvement due to the large size of the analytical unit. Additionally, implementing 

the statistical analysis at a larger scale may lead to regression towards the mean. Finally, 

changes to the built environment between two consecutive years are usually trivial, and it is 

not necessary to employ time series models as an analytical method. If underreported minor 

collisions are better documented, using time series models to examine factors impacting 

pedestrian crash counts may be rewarding.
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A methodological advancement of road safety research is the introduction of machine 

learning techniques, such as the Chi-squared Automatic Interaction Detection (CHAID) 

decision tree approach to rank the relative importance of contributing factors (Prati et al., 

2017). To date, limited research has applied similar methods to study pedestrian crash 

frequency. The advantage of employing machine learning approaches includes, at least, 

the following four aspects. First, machine learning approaches can handle big data. In 

the future, authorities may develop smartphone apps to collect collision data, and minor 

collisions could be better reported by individuals. When processing large amounts of data, 

computational efficiency is a major challenge. Second, machine learning techniques are 

more sensitive to outliers in the sample and capture the interactions among variables. 

Analytical efficiency could be greatly improved. Third, discrete variables with many 

categories are more properly handled by machine learning techniques in contrast to 

conventional regression models (Prati et al., 2017). Fourth, although elasticities can be 

computed for explanatory variables and used for treatment evaluation, the decision tree 

approach provides an alternative way to rank factors. Despite these merits, the major 

weakness of machine learning techniques is its incapacity in causal inferences.

With the goal of providing an alternative way to examine various effects associated with 

pedestrian crashes, a recently developed methodology named Multiple Additive Poisson 

Regression Trees (MAPRT) model is introduced in this study. MAPRT model can rank the 

relative importance of many contributing factors and it also can identify their non-linear 

effects on pedestrian crash frequency. The following sections include methodology, results, 

conclusions, and a discussion of policy implications. Research limitations and potential 

advancement in future research is also elaborated upon.

2. Methodology

2.1. Multiple additive Poisson regression trees model

This study adopts a machine learning approach, the Multiple Additive Poisson Regression 

Trees (MAPRT) model, to investigate built environment effects on automobile-involved 

pedestrian crash frequency. Assuming x is a set of explanatory variables (i.e., built 

environment attributes) and f x  is an approximation function of the response variable y
(i.e., pedestrian crash frequency), this method estimates a function as an additive expansion 

of a basis function ℎ x; am , as noted in Eq. (1) (Chung, 2013; Ding et al., 2016; Friedman, 

2001; Friedman et al., 2001; Saha et al., 2015).

f x =
m = 1

M
fm x =

m = 1

M
βmℎ x; am (1)

where am is the mean of split locations and the terminal node for each splitting variable in an 

individual decision tree ℎ x; am , βm represents weights given to the nodes of each tree. For 

the Poisson outcome, parameters am and βm are determined by minimizing a specified loss 

function, as shown in Eq. (2).
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L(y, f(x)) = − 2
i = 1

M
yif xi − exp f xi (2)

To estimate the parameters, am and βm, Friedman et al., 2001 proposed the gradient boosting 

approach, and the algorithm is well documented in several studies (Ding et al., 2016; 

Friedman et al., 2001). The model is built in a stage-wise fashion and is updated by 

minimizing the expected value of the loss function in Eq. (2). As the number of iterations 

increases, the minor fluctuations in training data are exaggerated, thus resulting in the poor 

prediction performance of testing data. To overcome such over-fitting problems (Friedman et 

al., 2001), learning rate ξ 0 < ξ ≤ 1 , also called shrinkage, is used to scale the contribution 

of each base tree model, as shown in Eq. (3).

fm x = fm − 1 x + ξ ⋅ βmℎ x; am , where 0 < ξ ≤ 1 (3)

Smaller shrinkage values better minimize the loss function. However, it requires a larger 

number of trees to be added to the model. Another important parameter for the MAPRT 

approach is the tree complexity, referring to the number of splits (i.e., the number of nodes) 

that is used to fit each decision tree. To capture interactions among explanatory variables, it 

is necessary to increase the tree complexity. In this study, the tree complexity is the focus.

2.2. Relative importance of factors

The MAPRT model can handle different types of explanatory variables, capture interactions 

among them, and fit complex non-linear relationships (Chung, 2013; Guelman, 2012; Saha 

et al., 2015). Since each explanatory variable has a different effect on the response variable, 

it is often helpful to quantify their relative importance to make a comparison. However, two 

fundamental objectives of predictive learning, accuracy and interpretability, do not always 

coincide. Generally, most machine learning algorithms are seen as ‘black-box’ procedures. 

Drawing on insights and techniques from both statistical and machine learning methods, 

the tree-based ensemble methods not only achieve strong predictive performance, but also 

identify and interpret relevant variables and interactions (Friedman et al., 2001). This 

MAPRT model can provide an alternative way of sorting influential factors and identify 

the non-linear effect of each factor, which is helpful for drawing policy recommendations 

and initiating safety programs.

For a single decision tree T , Breiman et al. propose the following measure as an 

approximation of the relative importance of xκ in predicting the response variable (Breiman 

et al., 1984), see Eq. (4).

Iκ
2 T =

t = 1

J − 1
τ t

2I v t = κ (4)

where the summation is over the non-terminal node t of the J-terminal node tree T , xκ

is the splitting variable associated with the node t, an dτ̂t
2 is the corresponding empirical 

improvement in squared error as a result of splitting. Instead of fitting a single “best” 
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model, the tree-based ensemble method strategically combines multiple simple tree models 

to optimize the predictive performance. For a collection of decision trees Tm 1
M, obtained 

through a gradient boosting approach, Eq. (3) can be generalized by its average over all 

additive trees, as shown in Eq. (5):

Iκ
2 = 1

M m = 1

M
Iκ

2 Tm (5)

2.3. Partial dependence plots

After most relevant variables have been identified, the next step is to understand the nature 

of the dependence of the approximation f x  on their joint values. Graphical rendering of 

f x  as a function of its arguments provides a comprehensive summary of its dependence on 

the joint value of input variables (Hastie et al., 2009). Following the studies conducted 

by Friedman et al., 2001 and Hastie et al. (2009), partial dependence plots can be 

mathematically defined as follows:

Suppose S is a subset of p explanatory variables, such that S ⊂ x1, x2, …, xp . Let C be 

a complement to S, such that S ∪ C = x1, x2, …, xp . The model approximation function, 

f x , depends upon p explanatory variables: f x = f xS, xC . The partial dependence of S
explanatory variables on the approximation function f x  can be defined as follows:

fS xs = Excf xS, xC (6)

and can be estimated by

fS xS = 1
N i = 1

N
f xS, xC (7)

where xC1, xC2, …, xCN  are the values of XC occurring over all observations in the training 

data. In other words, to calculate the partial dependence of a given variable, the entire 

training set must be utilized for every set of joint values in XS. It should be noted the 

partial dependence functions defined in Eq. (6) represent the effect of XS on f x  after 

accounting for the average effects of the other variables XC on f x  (Hastie et al., 2009). 

Partial dependence functions can be used to interpret the results of the MAPRT model, and 

can serve as a useful description regarding the chosen subset’s effect on f x .

3. Data sources

This study examines how built environment factors are correlated with pedestrian crashes at 

an area level. According to the previous literature, built environment features are quantified 

by factors of the road network and land use. In this study, the rich built environment data 

provides an opportunity to examine the effects of some under-investigated factors, such as 

the density of stop signs, the proportion of steep areas, and the zonal average posted speed 

limit.
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This study uses data collected from the city of Seattle, Washington. This data consists of two 

major components, pedestrian crash records and built environment features. The pedestrian 

crash records are obtained from the Seattle Department of Transportation (SDOT) during 

the period from January 2008 to December 2012. In total 2186 pedestrian crashes are 

reported and geocoded. The spatial distribution of these crashes is illustrated in Fig. 1. Two 

variables, walking mode share and the number of trips for all modes, are the major output 

of a regional activity-based travel demand model (Puget Sound Regional Council, 2014). 

The other data sets were obtained from three agencies, including SDOT, King County, 

and Puget Sound Regional Council. Traffic analysis zone (TAZ) is selected as the unit of 

analysis because it matches the existing travel demand output model and quantifies built 

environment factors at a relative small geospatial scale. There are 863 TAZs in Seattle. 

The process of built environment feature quantification is done in ArcGIS using overlay 

functions. Table 2 defines selected variables and includes a data summary. It is worth noting 

that MAPRT model can handle different types of independent variables as model input, and 

hence requires very little data preprocessing.

4. Results

4.1. Building the model

In the model building process, it is necessary to select parameters of learning rate and tree 

complexity. A greater value of learning rate (i.e., 0.1) is too fast for both tree complexity 

and the number of trees to minimize the error (Elith et al., 2008). According to previous 

studies (Chung, 2013; Guelman, 2012), a learning rate of 0.001 generally generates a final 

model with lower predictive deviance and a reasonable tree size (at least 1000 trees). 

Therefore, this study fixes the learning rate as 0.001. Another important model parameter is 

tree complexity. Tree complexity should reflect the true interaction among the explanatory 

variables (Friedman et al., 2001). However, this information is always unknown. To obtain 

reliable results, a series of models are tested by sequentially increasing the interaction depth 

level of trees from one to ten. A five-fold cross-validation procedure has been used to obtain 

the model performance with different levels of tree complexity and different numbers of 

trees. The dataset is equally split into five distinct subsets. Each subset (20%) is used as the 

testing data while the remaining subsets (80%) are used to train the model.

When the model uses a ten-way interaction, it gets the lowest predictive deviation with an 

ensemble of 3141 trees. The relationship between the predictive deviation and the number 

of trees is shown in Fig. 2. The training error (the black line) continues to decrease as the 

number of trees increases. However, the test error (the red line) increases when the number 

of trees reaches certain values. This finding is indicative of the over-fitting problem. To 

solve this problem, the optimal number of trees is automatically set at the point where the 

cross-validation error (the green line) ceases to decrease.

4.2. Relative contribution of explanatory variables

To explore the relationship between various explanatory variables and automobile-involved 

pedestrian crash frequency, the relative contribution of each explanatory variable is 

calculated with different levels of tree complexity. Fig. 3 shows that changes in the relative 
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contribution are larger at a low level of tree complexity and the relative contribution reaches 

the relatively stable state when the tree complexity exceeds eight. It is worth noticing that 

the vertical scale to the right is for the number of trips since its effect is much larger than 

others. A higher value of relative contribution indicates a stronger effect. In this study, 

effects are measured in a relative form, and the total effects of all explanatory variables are 

100%.

Using the MAPRT model with a tree complexity of ten, Table 3 presents the relative 

contribution and the rank of explanatory variables on automobile-involved pedestrian crash 

frequency. There are obviously differential effects among variable categories. The number 

of trips is the most important variable that contributes to pedestrian crash frequency with 

a value of 23.78%. This finding indicates that traffic volume plays an important role in 

impacting pedestrian crash frequency, which is consistent with a prior studies (Miranda-

Moreno et al., 2011). Household density and commercial land use are the second and third 

most important variables in predicting pedestrian crash frequency, with a contribution of 

14.38% and 13.16%, respectively. A few studies suggest that pedestrian crash frequency 

is closely correlated with density and commercial land use (Narayanamoorthy et al., 2013; 

Wier et al., 2009), and such a relationship is clearly confirmed with Seattle’s data. Land 

use mixture, with a contribution of 11.39%, is the fourth influential variable. A similar 

significant relationship between land use mixture and pedestrian crash frequency has been 

also identified in prior studies (Chen and Zhou, 2016; Wang and Kockelman, 2013).

Collectively, the number of trips, household density, commercial land use, and land use 

mixture account for approximately 66% of the total effects on pedestrian crash frequency, 

indicating the key role of density and diversity of the built environment. If we use 

the traditional Poisson regression, household density is insignificant because of its high 

correlation with other variables. This problem points out the superiority of the MAPRT 

model, which can capture interactions among different explanatory variables.

In terms of road network factors, the density of interactions accounts for about 8% of 

the total effects on pedestrian crash frequency. Especially, the 4-way intersection density 

contributes the most to with a value of 5.17%. Unexpectedly, sidewalk density is not a 

particularly important factor with a contribution of less than 1%. All street elements play 

important roles in relation to pedestrian crash frequency with more than 1% contribution. 

Among them, zonal speed limits have a nearly 6% contribution which is the fifth most 

influential variable, followed by the steep area proportion, bus stop density, and stop sign 

density with about 1.5%–2.5% contributions. Previous studies have shown that there are 

close connections between street elements and pedestrian crash frequency. For example, a 

higher zonal speed limit, steep area proportion, and bus stop density are generally associated 

with more pedestrian crashes (Chen and Zhou, 2016; Miranda-Moreno et al., 2011; Wang 

and Kockelman, 2013). These findings have policy implications as they can help guide street 

redesign processes.

As to land use variables, the factors of employment density, industrial land density, and 

activity center density, each have about a 3%–4% contribution in predicting pedestrian 

crash frequency. Generally, dense employment areas are mostly friendly environments for 
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pedestrians (Geyer et al., 2006). This study suggests that industrial land use plays an 

important role in relation to pedestrian crash frequency (Chen and Zhou, 2016; Ukkusuri 

et al., 2012). Activity center density, including public libraries, education centers, churches, 

and community centers, show a clear effect on the pedestrian crash frequency with a 

contribution of 4.11%. Regarding traffic demand factors, walking mode share contributes 

about 3.32% in the model.

4.3. Non-linear effects of key explanatory variables

To further investigate how built environment variables affect pedestrian crash frequencies, 

we use partial dependence plots to illustrate these associations. It is worth noting that partial 

dependence plots show the dependence between the response variable and a set of features 

after accounting for the average joint effects of all other variables in the model (Chung, 

2013; Guelman, 2012; Saha et al., 2015). Compared with traditional regression models, the 

relationship between the response variable and explanatory variables is no longer assumed to 

be linear. This method is useful for understanding the impact of changes in a single variable 

when integrating across all other explanatory variables.

The effects of key land use variables on pedestrian crash frequency are shown in Fig. 4. 

As noted, when household density is within 500 households per hectare, the likelihood 

of a pedestrian crash occurrence increases with a higher household density in an almost 

exponential way. Beyond this range, its effect remains stable. As to commercial land 

use, Narayanamoorthy et al. (2013) and Miranda-Moreno et al. (2011) have found that 

commercial land use has a positive effect on pedestrian crash frequency. This study shows 

a non-linear relationship between them. When the commercial land use value it between 

0–8%, pedestrian crash frequency increases by about 1.2 crashes. Beyond this range, 

commercial land use has a negative effect on the pedestrian crash frequency with a low 

decreasing rate. Regarding land use mixture, mixed results are identified. For example, 

land use mixture shows a positive association with pedestrian crash frequency in the study 

conducted by Chen and Zhou (2016), whereas a negative association has been found in 

Wang and Kockelman’s study (2013). A complex non-linear relationship is identified in 

this study. When the land use mixture value is below 0.6, it seems to have a small effect 

on pedestrian crash frequency. However, this effect increases substantially when land use 

mixture moves into the range of 0.6–0.7. After that, its effect is stable. The effects of two 

variables, activity center density and employment density, follow a similar trend, but in 

slightly different ways. The effect of activity center density is in an exponential way, and 

the effect of employment density shows a linear pattern. Previous studies provide mixed 

conclusions on the effect of industrial land use on pedestrian crash frequency. A significant 

negative relationship between industrial land use and pedestrian crash frequency has been 

identified in studies conducted by Chen and Zhou (2016) in Seattle and Miranda-Moreno 

et al. (2011) in Montreal, whereas this relationship is positive in a study conducted by 

Ukkusuri et al. (2012). As noted in this study, the effect of industrial land use is erratic 

when it is below 3%, and is very small. From 3% to 10%, this effect decreases in a linear 

way, followed by a long plateau. To summarize, the effects of land use factors are quite 

complex in nature, and most of them appear to be non-linearly correlated with pedestrian 

crash frequency.
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Fig. 5 shows the effects of street elements on pedestrian crash frequency. When it comes to 

zonal speed limit, the plot shows a non-linear relationship with pedestrian crash frequency. 

Specifically, it has a mostly linear effect on pedestrian crash frequency between 20~25 

miles per hour, indicating that a higher zonal speed limit is associated with more pedestrian 

crashes. Beyond this range, it has a slightly negative effect on pedestrian crash frequency, 

and remains stable at the speed of 28 mph. Although previous studies suggest that slowing 

down the driving speed limit is an effective strategy to reduce automobile-involved crashes 

(Chen, 2015; Zahabi et al., 2011), in this study such a strategy is only effective when the 

speed limit is 25 mph or below. Beyond 25 mph, a higher speed limit does not have any 

expected effect on pedestrian crashes. The plot indicates a logarithmic relationship between 

steep area proportion and pedestrian crash frequency. From 0 to 6%, the pedestrian crash 

frequency decreases as the steep area proportion increases. This fact may be that many 

people do not walk in the steep areas. For bus stop density, there is a clearly non-linear 

effect on pedestrian crash frequency. Pedestrian crashes would be affected by a sharply 

increasing rate for the 0.15 bus stops per hectare, and then by a substantially decreasing 

rate for a density between 0.15 and 0.28 per hectare. After a slight increase between 0.28 

and 0.45 per hectare, the effect of bus stop density reaches a stable state. This implies that 

areas with low bus stop density should be more carefully designed. Stop sign density has 

an expectedly negative effect on pedestrian crash frequency. Within its effective ranges (i.e., 

0 to 1.5 stop signs per hectare), a higher stop sign density is more likely associated with 

fewer pedestrian crashes. Beyond this range, increasing the stop sign density does not have 

any effect on pedestrian crashes. In summary, these findings provide helpful policy guidance 

since effective ranges are clearly identified by the model.

Traffic demand factors (i.e., the number of trips, walking mode share) and road network 

factors (i.e., densities of 4-way intersections and 3-way intersections) show important effects 

on pedestrian crash frequency, and Fig. 6 displays their relationship to pedestrian crash 

frequency. Within the range of 5–17 thousand trips, the number of trips seems to have a 

positive effect on pedestrian crash frequency in a nearly linear way. After that value, its 

effect does not change. Walking mode share shows a clearly non-linear effect on pedestrian 

crash frequency. Its effect gradually decreases from 7% to 16% walking mode share and 

followed by an increasing trend for a share between 16% and 26%. Finally, it remains 

stable after 26%. This finding implies that policymakers and urban planners should pay 

more attention to areas with a walking mode share between 16% and 26%. Regarding road 

network features, the densities of 4-way intersections and 3-way intersections have similarly 

positive effects on pedestrian crash frequency. These findings are consistent with a previous 

study (Ukkusuri et al., 2012). Pedestrian crashes are more likely to occur at complicated 

intersection areas.

5. Conclusions

Using the dataset collected from the city of Seattle, Washington, a series of MAPRT models 

are built with various levels of tree complexity. This study contributes to identify the non-

linear relationship between the built environment and automobile-involved pedestrian crash 

frequency. In addition, this model used in this study deepens our understanding through 

fitting complex relationships and accounting for interaction effects between explanatory 
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variables. As observed, the performance and results of MAPRT models are affected by 

interactions among explanatory variables. By employing this method, subtle and sudden 

changes in pedestrian crash frequency are accurately captured. Third and most important, 

different from other machine learning algorithms (i.e., support vector machine, neural 

networks) as ‘black-box’ procedures, this approach provides an alternative way of sorting 

factors and identifies their non-linear effects. These results can provide helpful policy 

recommendations and safety improvement recommendations.

As noted from above modeling outcomes, built environment attributes tested in this study 

are identified to have a substantial effect in explaining pedestrian crash frequency. The 

collective contribution of household density, commercial land use, and land use mixture 

roughly accounts for 40% of all effects. Overall, their effects become stable after passing 

certain cut off points. This suggests that urban planners should pay more attention to 

pedestrian crashes in compact developed areas especially under the principles of smart 

growth and new urbanism. Additionally, the results also highlight the important role of zonal 

speed limits and 4-way intersection density in reducing pedestrian crashes. Thus, urging 

drivers to slow down may reduce pedestrian injuries and deaths. It is worth noting that this 

is only effective when speed limit is below 25 mph. Finally, since it is typically unreasonable 

to decrease the intersection density of cities, pedestrian safety may be enhanced by 

strategically building footbridges and underpasses.

Although the MAPRT model does not provide any significance for inferences, its output 

provides many helpful results. Policy makers can propose policy recommendations based 

upon the relative importance of these factors. What is more, recommended strategies could 

be varied by geo-spatial location. For example, the cutoff point between pedestrian crash 

frequency and land use mixture is identified. Policy makers and urban planners could 

draft different safety countermeasures in areas with different levels of mixing land use. 

Downtown Seattle and other communities could enhance safety by promoting different 

levels of mixed land use.

An assumption of this model is that all the included factors suffice to explain the response 

variable. The machine learning technique requires researchers to build a complete modeling 

framework. In addition, factor sorting is built upon an agreed modeling framework. 

Therefore, early works of conventional statistical models are the cornerstone in building 

factor sorting models. In such a context, statistical models are indispensable, and their 

results serve to improve the quality of machine learning results. Both approaches are 

mutually compatible. When facing a large data set and expecting computational efficiency, 

or in the demand of learning non-linear relationships among explanatory factors, the 

MAPRT approach is a reliable approach to explore data.
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Fig. 1. 
Pedestrian crash frequency in Seattle TAZs, 2008–2012.
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Fig. 2. 
Relationship between predictive deviation and number of trees.
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Fig. 3. 
Relative contributions of explanatory variables with different levels of tree complexity.
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Fig. 4. 
Non-linear effects of key land use variables on pedestrian crash frequency.
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Fig. 5. 
Non-linear effects of street elements variables on pedestrian crash frequency.
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Fig. 6. 
Non-linear effects of key explanatory variables on pedestrian crash frequency.
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Table 3

Relative contributions of explanatory variables on pedestrian crash frequency.

Category Variable Automobile-involved pedestrian crash frequency

Rank Relative importance (%)

Road network 3-way intersection 12 2.40

4-way intersection 6 5.17

5-way intersection 19 0.59

Sidewalk density 17 0.83

Street elements Steep area proportion 11 2.48

Bus stop density 13 1.91

Stop sign density 14 1.49

Zonal speed limit 5 6.16

Land use Household density 2 14.38

Employment density 8 3.42

Land use mixture 4 11.39

Commercial land use 3 13.16

Government & office 15 1.23

Public parks 16 1.02

Industrial land use 10 2.53

School density 18 0.64

Activity center density 7 4.11

Traffic demand Walking mode share 9 3.32

Number of trips 1 23.78

Note: sample size = 863.
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