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Abstract 

Bac kgr ound: High-throughput sequencing technologies have led to an unprecedented explosion in the amounts of sequencing data 
av aila b le , whic h ar e typicall y stor ed using F ASTA and F ASTQ files. W e can find in the literatur e sev eral tools to pr ocess and manipulate 
those type of files with the aim of transforming sequence data into biolog ical knowledg e . How ever, none of them are well fitted 

for processing efficiently very large files, likely in the order of terabytes in the following years, since they are based on sequential 
pr ocessing. Onl y some routines of the well-known seqkit tool are partly parallelized. In any case, its scalability is limited to use few 

threads on a single computing node. 

Results: Our approach, BigSeqKit , takes adv anta ge of a high-performance computing–Big Data framework to parallelize and optimize 
the commands included in seqkit with the aim of speeding up the manipulation of F ASTA/F ASTQ files. In this way, in most cases, it 
is from tens to hundreds of times faster than several state-of-the-art tools. At the same time, our toolkit is easy to use and install on 

any kind of hardw ar e platform (local server or cluster), and its routines can be used as a bioinformatics library or from the command 

line. 

Conclusions: BigSeqKit is a v er y complete and ultra-fast toolkit to process and manipulate large F ASTA and F ASTQ files. It is pub licl y 
av aila b le at https://github.com/citiususc/BigSeqKit . 

Ke yw ords: F ASTA/F ASTQ files, Performance, Parallelism, Big Data 
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Introduction 

The history of modern DNA sequencing started se v er al decades 
ago and, since then, has seen astounding growth in sequencing 
capacity and speed. From the first genomes with a few thousand 

bases, DNA sequencing has advanced to sequence the human 

genome of 3 billion bases. In recent years, next-generation se- 
quencing (NGS) technology, also known as massive parallel se- 
quencing (MPS), has made it possible to expand the amount of 
sequencing data a vailable . For example , the Illumina No vaSeq 

6000 [ 1 ] platform can generate a maximum output of 6 Tb of data 
and read about 20 billion sequences per run. Note that sequences,
commonl y named reads , ar e composed of ASCII c har acters r epr e- 
senting a nucleotide (base) from the sequence. In the DNA case,
we can only find 4 possible bases (A—adenine , C—cytosine , G—
guanine, and T—thymine). 

T he NGS ra w data are mainly stored in FASTA [ 2 ] and FASTQ [ 3 ] 
text-based file formats. In particular, nucleotide and protein se- 
quences are typically stored in the FASTA file format, whereas 
FASTQ is the most widely used format for sequencing read data.
An example of FASTA file is shown in Fig. 1 . A sequence in FASTA 

format begins with a single-line description about the sequence 
in the subsequent lines . T he description line is distinguished from 

the sequence data by a greater-than ( > ) symbol at the beginning.
On the other hand, the FASTQ format was designed to handle the 
quality metrics of the sequences obtained from the sequencers. In 

FASTQ, e v ery 4 lines describe a sequence or read. An example is 
displa yed in Fig. 2 . T he information pro vided per read is as follows: 
identifier and an optional description (first line), sequence (second 
Recei v ed: Mar c h 7, 2023. Revised: May 25, 2023. Accepted: July 10, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
ine), and the quality score of the read (fourth line). An extra field,
 epr esented by symbol “+ ,” is used as separator between the data
nd the quality information (third line). 

Manipulating these files efficiently is essential to analyze and 

nter pr et data in any genomics pipeline. Common operations
n F ASTA and F ASTQ files include searching, filtering, sampling,
eduplication, and sorting, among others. We can find se v er al
ools in the liter atur e for FASTA/Q file manipulation such as HT-
eq [ 5 ], FASTX [ 6 ], fqtools [ 7 ], seqtk [ 8 ], Biopython [ 9 ], samtools [ 10 ],
 yfadix [ 11 ], p yfastx [ 12 ], and seqkit [ 13 ]. These tools can be clas-
ified according to how the sequences are parsed [ 12 ]. In the
rst category, sequences ar e pr ocessed in order, whic h causes im-
ortant overheads when extracting and randomly sampling se- 
uences . T hat is the case of HTSeq , FASTX , fqtools , and seqtk . In
he second category, we find tools that support random access to
equences by establishing an index file. Tools belonging to this
ategory are more efficient in terms of performance and memory 
onsumption. Ho w e v er, none of them are well fitted for process-
ng v ery lar ge files of hundr eds of GB (likel y TBs in the near future)
ince they are based on sequential processing. The exception is
eqkit that allows some routines to use a few threads, but in any
ase, its scalability is very limited. 

To deal with this issue, in this article, we introduce BigSeqKit ,
 parallel toolkit to manipulate FASTA and FASTQ files at scale
ith speed and scalability at its core. BigSeqKit takes adv anta ge
f IgnisHPC [ 14 , 15 ], a computing engine that unifies the de v elop-
ent, combination, and execution of high-performance comput- 

ng (HPC) and Big Data parallel tasks using different languages
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

http://orcid.org/0000-0001-6490-7128
http://orcid.org/0000-0001-9505-6493
mailto:juancarlos.pichel@usc.es
https://github.com/citiususc/BigSeqKit
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2023, Vol. 12, No. 1 

Figure 1: Example of FASTA file showing the first part of the PAX6 gene (obtained from [ 4 ]). 

Figure 2: Example of FASTQ file format (obtained from [ 4 ]). 
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nd pr ogr amming models. As it was demonstrated, IgnisHPC out-
erforms the state-of-the-art fr ame work Spark [ 16 ] in terms of
erformance and scalability running applications that represent
he most typical algorithmic patterns in Big Data and scientific
omputing. 

BigSeqKit uses the seqkit routines as basis since that toolkit cov-
rs a wide range of utilities and is one of the most used by the
ioinformatics r esearc h comm unity. As a consequence, BigSeqKit
ill offer the same functionalities and command interface [ 17 ].
igSeqKit can be used from the command line, but it is at the same
ime a library, so its routines can also be called from a C/C ++ ,
ython, Go, or Java application. 

Another important c har acteristic of BigSeqKit is that it is fully
ontainerized, which isolates the execution environment from the
hysical system and av oids dependenc y problems. As a conse-
uence, BigSeqKit is very easy to install and can run on a local
erver or on any type of cluster since it supports some of the most
mportant resource and scheduler managers (e.g., Mesos [ 18 ], No-

ad [ 19 ], and Slurm [ 20 ]). 

ac kgr ound 

gnisHPC [ 14 , 15 ] unifies the execution of Big Data and HPC work-
oads in the same computing engine. Unlike other fr ame works
uch as Hadoop [ 21 ] and Spark [ 16 ], IgnisHPC has native support
or m ultilangua ge a pplications using both JVM (Jav a Virtual Ma-
hine) and non-JVM-based languages. In this way, applications can
e implemented using 1 or se v er al pr ogr amming langua ges fol-
owing an API inspired by Spark’s one. 

The pr e vious v ersion of IgnisHPC supported nativ el y C, C ++ ,
 ava, and Python. Ho w ever, seqkit w as implemented using the
o pr ogr amming langua ge. Since BigSeqKit par allelizes and op-

imizes the seqkit routines using IgnisHPC, it was necessary to
dd support for this language in the fr ame work. Another solu-
ion would r equir e to port the complete toolkit to a different lan-
ua ge, whic h is a difficult task prone to errors. It is worth not-
ng that, to the best of our kno wledge, no w adays IgnisHPC is
he first parallel computing framework to include native sup-
ort for this language. Considering Spark instead of IgnisHPC

s not an option because, as it was demonstrated in [ 14 ], when
sing a nonnative language code, data transfers between the
VM and external pr ocesses degr ade noticeabl y Spark’s ov er all
erformance. 

Go is a pr ogr amming langua ge with a simple syntax that was
esigned to be easy to learn and use. With the release of Go v1.18,
he language included support for Generics, which allows the cre-
tion of functions , types , and methods that can work with any
ata type . T his mak es Go an effecti v e and user-friendl y way to

mplement Big Data interfaces . T he implementation of Go in Ig-
isHPC is similar to that of C ++ , as both are compiled and stati-
ally typed languages. Ho w ever, Go replaces the concept of inher-
tance with composition, which does not change the philosophy
f use in IgnisHPC. Big Data functions are still accessible through
he IgnisHPC API, and users can create their own code by imple-

enting the same interfaces. 
One of the k e y features of IgnisHPC is its use of containers to

solate and execute code. Containers are lightweight and portable,
aking it easy to run IgnisHPC on a variety of different clusters,

ncluding both HPC and Big Data. IgnisHPC is also tolerant to fail-
res, as the containers or processes can be easil y r estarted if ther e
re issues. In particular, if some data are lost, IgnisHPC has enough
nformation about how it was derived. In this way, only those op-
rations needed to recompute the corresponding portion of data
re performed. 

We must highlight that although the IgnisHPC API [ 22 ] uses a
equential notation, operations on data are performed in parallel.
s we pointed out, the IgnisHPC API was inspired by the Spark
PI in such a way that IgnisHPC codes are easily understand-
ble by users who are familiar with Spark. Table 1 shows a list of
ome of the most important functions supported by IgnisHPC. In
articular: 

� Map functions: The common c har acteristic to r outines belong-
ing to this type is that they a ppl y the same function to each
element in the data. As a result of the transformation, the
output could be of different size with respect to the input. 

� Reduce functions: reduce and treeReduce methods a ggr egate
all the elements in the input data using a function. aggre-
gate and treeAggregate are a sort of reduction where the
type of the input and output data is different. In this case,
2 functions are necessary; the first one is applied to each



BigSeqKit | 3 

Table 1: Some of the most important IgnisHPC API functions 

Type Functions 

Map map, flatmap, mapWithIndex, filter, keyBy, 

keys, values, mapPartitions, mapValues, etc. 
Reduce reduce, treeReduce, aggregate, treeAggregate, 

reduceByKey, aggregateByKey, etc. 
Group groupBy, groupByKey 

Sort sort, sortBy, sortByKey 

I/O parallelize,collect, top, take, 

saveAsObjectFile, saveAsTextFile, 

saveAsJsonFile, etc 
SQL union, join, distinct 

Math sample, sampleByKey, take, takeSample, count, 

countByKey, countByValue, max, min, etc. 
Balancing repartition, partitionByHash, 

partitionByRandom, partitionBy 

Persistence persist, cache, unpersist, uncache 

 

 

 

Table 2: List of commands included in both BigSeqKit and seqkit . 
Those commands with an asterisk support new functionalities 
not included in seqkit 

Basic commands 
seq Transform sequences (extract ID, filter by length, 

r emov e ga ps, r e v erse complement, etc.) 
subseq Get subsequences by region/gtf/bed, including 

flanking sequences 
stats Simple statistics of FASTA/Q files: #seqs, min/max 

length, N50, Q20%, Q30%, etc. 
faidx ∗ Create FASTA or FASTQ index file and extract 

subsequences 

Forma t con version 
fa2fq Retrie v e corr esponding FASTQ r ecor ds b y a FASTA 

file 
fq2fa Convert FASTQ file to FASTA format 
translate Translate DN A/RN A to protein sequence 

Searching 
grep Search sequences by 

ID/name/sequence/sequence motifs 
locate Locate subsequences/motifs 

Set oper a tions 
sample Sample sequences by number or proportion 
rmdup Remove duplicated sequences by 

ID/name/sequence 
common Find common sequences of multiple files by 

ID/name/sequence 
duplicate Duplicate sequences N times 
head Print first N FASTA/Q records 
head-genome Print sequences of the first genome with common 

prefixes in name 
pair Match up paired-end reads from 2 FASTQ files 
range Print FASTA/Q records in a range (start:end) 

Edit 
concat Concatenate sequences with the same ID from 

multiple files 
replace Replace name/sequence using a regular 

expression 
rename Rename duplicated IDs 

Ordering 
sort Sort sequences by ID/name/sequence/length 
shuffle Shuffle sequences 
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element in a data partition, and the second one combines 
the partial results obtained for each partition. reduceByKey 
and aggregateByKey are variations where the operation is 
performed only among elements with the same k e y in such 

a way that the final result is a set of unique pairs with 

values calculated using reduce or aggregate operations, 
r espectiv el y. 

� Group functions: These methods group elements in a data 
frame according to their k e y value ( groupByKey ) or a user- 
defined function ( groupBy ). 

� Sort functions: In order to sort elements , IgnisHPC pro vides 3 
functions: sort , sortByKey , and sortBy . The first method 

uses the natural order and does not need any additional 
function. sortByKey sorts the k e ys using their natural order.
sortBy allows to use a user-defined function to specify the or- 
der of the elements. If the result of applying that function to 
2 elements is true , then the first element should precede the 
second one. All methods support ascending and descending 
order. 

� SQL functions: These functions operate on data frames. union 
concatenates 2 data frames, join merges elements of 2 data 
frames whose k e ys match, and distinct returns a new data 
frame after removing the duplicate records . T hese methods 
are necessary, for example, in many graph processing prob- 
lems. 

� Other functions: IgnisHPC implements se v er al oper ations that 
return a value to the driver code, but they do not modify or 
gener ate ne w stor ed data. Spark r efers to this type of opera- 
tions as actions . For instance, IgnisHPC supports methods such 

as count , take , takeSample , and collect . The most basic 
operation is count that returns the number of elements of a 
stored data collection. collect returns a collection with all 
the elements stored in the executors of a task. take applies 
a collect operation but obtains only the first n elements,
where n is chosen by the user. takeSample returns a ran- 
dom sample of n elements from the distributed data, with 

or without r eplacement. Finall y, another inter esting r outine 
is parallelize , which distributes the elements of a collec- 
tion among the executors to form a distributed dataset. In 

this case, new stored data are created. 

It is worth noting that the IgnisHPC API functions allow users 
to parallelize a code with a high le v el of abstraction. In this way,
it is only necessary to focus on data dependencies. 
ethods 

s we commented pr e viousl y, BigSeqKit ( RRID:SCR _ 023592 ) speeds
p the seqkit routines through parallelization and optimization 

echniques. Table 2 shows the routines supported by the current
ersion of BigSeqKit . Despite most of the commands in seqkit are
equential, we can classify each command implementation into 
 categories according to its inherent parallelism: 

� Independent: it is a embarr assingl y par allel workload. As a
consequence, the computation could be applied to all se- 
quences in parallel. An example is seq , a function that trans-
forms sequences. In this case, the tr ansformation onl y affects
each sequence individually. 

� P artiall y dependent: computations could be done in parallel,
but the method r equir es some type of consensus to obtain the
result. For instance, stats should merge the partial results 
computed for each sequence to calculate some statistics of 
the considered FASTA/Q file. 

� De pendent: de pendencies between sequences pr e v ent the
method from being executed in parallel. As a consequence,

https://scicrunch.org/resolver/RRID:SCR_023592
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BigSeqKit r equir es a complete ne w algorithm to perform
the same command in parallel. rmdup is a good example
because with the aim of removing duplicated sequences,
it is necessary to read all of them before generating a
result. 

The integr ation, par allelization, and optimization of each seqkit
ommand in IgnisHPC will be different depending on its category.
ore details are provided below. 

ndependent routines 

or these commands, the computation can be applied to all se-
uences in parallel because there are no dependencies (commu-
ication) among them. In other w or ds, routines belonging to this
ategory can be processed using an embarrassingly parallel ap-
r oac h. Considering the IgnisHPC (and Spark) API, it is only nec-
ssary to use map functions to parallelize the computations. As
e pointed out, the common c har acteristic to these API func-

ions is that they a ppl y the same operation to each element in the
ata. 

The following BigSeqKit commands belong to this category: seq ,
ubseq , stats , fq2fa , fa2fq , translate , grep , locate , dupli-
ate , and replace (see Table 2 for details). 

artially dependent routines 

s we mentioned, this category includes commands in which
omputations can be done in parallel using map functions, but
he methods r equir e some type of consensus to get the desired
utcome . T his consensus can be easily implemented using the
gnisHPC API. The following BigSeqKit commands belong to this
ategory: 

� stats : statistics can be generated in parallel but the fi-
nal r esult m ust be unique, so all partial r esults m ust be
merged using a reduction ( reduce operation in the IgnisHPC
API). 

� head : sequences should know their position inside the file
to c hec k if they ar e inside the head window . T o do that, it is
necessary to use mapWithIndex , a special map operation in-
cluded in the IgnisHPC API that allows each element to know
its global index within a data structure. 

� head-genome : similar to head , but not all sequences are valid.
In order to determine the window, invalid sequences must be
r emov ed first. 

� range : also similar to head . Sequences should know their
position inside the file to c hec k if they are within the range
window. 

� grep : although this command was included in the pr e vious
category, a command option ( --delete-matched ) limits the
number of results to just 1 per search pattern. In such cases,
it is necessary to r emov e the extra results. 

� faidx : also similar to head , sequences compute their
offsets inside the input file using mapPartitionWithIn-
dex and exchange the information between executors
to perform a parallel indexing operation with a simple
map . 

ependent routines 

ommands belonging to this category have an implementation in
eqkit that by its nature cannot be parallelized. Ho w ever, IgnisHPC
llows us to define the implementation at a high le v el, whic h in-
r eases noticeabl y the pr oductivity. Behaviors and functionalities
ill be pr eserv ed in BigSeqKit but thr ough a complete ne w par allel
mplementation. In particular: 

� sample : a sequential sampling can be performed in parallel if
we split the sequences and run a sample for each partition. It
was mathematically proven that sampling without replace-
ment follows a hypergeometric function [ 23 ]. In this way, we
can calculate the proportion of the sample that corresponds
to each partition. 

� rmdup : sequences ar e gr ouped ( groupBy API function) using
a hash with the ID, name, or sequence. In those groups con-
taining more than 1 element, a search for duplicates is carried
out to r emov e them. 

� pair and concat : sequences of the input files generate k e y–
v alue pairs wher e the k e y is the ID and the value is the se-
quence with its index file ( map ). P airs ar e unified by means of
union and grouped using groupByKey . Afterw ar d, sequences
in the same group are paired or concatenated if they belong
to different files. 

� common : the first stage of the command is the same one ex-
plained above for pair and concat . Then if a sequence can be
found in all files, we c hec k its index file, to avoid its deletion. 

� rename : sequences ar e gr ouped ( groupBy ) using their ID, and
then IDs in the same group are renamed. 

� sort : the sequential sort algorithm implemented in seqkit is
replaced by a sample MergeSort [ 24 ] algorithm that can be
efficiently executed in parallel in a distributed environment. 

� shuffle : sequences shuffling can be implemented using the
IgnisHPC API function partitionByRandom . 

nother implementation details 

n order to parallelize and integrate the seqkit routines into Ig-
isHPC, it was necessary to start considering the sequence parser.

t takes a stream of c har acters in F ASTA and F ASTQ format and
enerates a data structure with the sequence r epr esentation. In
eqkit , this stream can be r epr esented by a file or the standard in-
ut. In BigSeqKit , this stream is implemented using the IgnisHPC

ter ators, whic h gr ant the users access to the data partitions. In
his way, BigSeqKit will read the data from a file and split it in
 ultiple partitions, whic h facilitates their par allel pr ocessing. In

articular, each worker reads a portion of the input file, so the
nput/output (I/O) operation is performed in parallel. There is 1
orker per computing node. Within each worker, its portion of the
le is further divided among the available threads , impro ving the
v er all I/O performance. As a result, the seqkit command argu-
ents that affect file processing will have no effect in BigSeqKit .

or example, the --two-pass option, which reads a file multiple
imes instead of storing all the sequences in memory, does not

ake sense in BigSeqKit . We must highlight that the fact of split-
ing the input files between se v er al computing nodes in BigSeqKit

eans that the memory consumed by node is also split, which
llows our tool to work with larger datasets. In addition, BigSeqKit
lso reduces the memory footprint by only storing the IDs and
ndices of each sequence. 

Another important adv anta ge of using IgnisHPC is how mem-
ry is handled. Users can choose a type of stor a ge according to
heir particular case. For instance, if an input file is too large
o be k e pt completely in the server memory, it could be stored
ompressed in memory or in disk. Performance would be lower,
ut it could be successfull y pr ocessed. That scenario is not
onsidered by seqkit that simply would raise an “out of mem-
ry” error . In particular , BigSeqKit supports the following stor a ge
ptions: 
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Figure 3: Example of Python code using the BigSeqKit routines. 
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� In-Memory: it is the best performer since all data ar e stor ed in 

memory. It is the default option. 
� Raw memory: data are stored in a memory buffer using a seri- 

alized binary format. Extra memory consumption is minimal 
and the buffer is compressed by Zlib. 

� Disk: similar to raw memory but the buffer is stored as a 
POSIX file. Although the performance is significantly worse, 
it enables working with vast amounts of data that cannot be 
entir el y k e pt in memory. 

On the other hand, rmdup , common , and pair commands in 

seqkit use hash functions to c hec k duplicates. It is well known 

that hash functions can produce the same result for different 
values . T his event is commonly known as a hash collision. How- 
e v er, seqkit does not c hec k for collisions, so it is possible to 
gener ate incorr ect r esults. BigSeqKit uses hashes to gr oup se- 
quences but then c hec ks for collisions by comparing the real 
values. 

Finally, seqkit and other state-of-the-art tools build index files 
( faidx routine) to speed up some other tasks (e.g., searches). Al- 
though BigSeqKit is also capable of creating those index files, it 
does not r equir e them to impr ov e its performance since data 
within IgnisHPC ar e alr eady indexed. In other w or ds, the index 
is created while reading the input file. 

New functionalities 

BigSeqKit not only enables the parallelization of seqkit functions 
but also impr ov es its algorithms to provide benefits e v en for se- 
quential executions and includes additional functionalities. In 

particular, the faidx command in seqkit implements indexing 
of FASTA files using the samtools format, but FASTQ files are 
not supported. BigSeqKit adds support for this type of files and 

generates an index file using the samtools format as well. Note 
that this is the most widespread format and is also supported 

by other state-of-the-art tools . T her efor e, BigSeqKit allows index- 
ing of both FASTA and FASTQ files using the same syntax than 

seqkit . 

How to Use BigSeqKit 
BigSeqKit can be used in 2 different wa ys . T he first one is by means 
of a command-line interface (CLI). This a ppr oac h is similar to the 
“command subcommand” structure adopted by seqkit [ 13 ]. In this 
way, it is only necessary to select a subcommand or routine (see 
a complete list in Table 2 ) and pass its ar guments thr ough com- 
mand line. As we mentioned pr e viousl y, to impr ov e the usability 
and facilitate the adoption of BigSeqKit , it implements the same 
command interface as seqkit . 

Since BigSeqKit runs within the IgnisHPC fr ame work, it is neces- 
sary to send the BigSeqKit routine through the IgnisHPC submitter.
For instance, if we are running BigSeqKit on a local server, the fol- 
lowing expression uses the routine seq to print the name of the 
sequences included in a FASTA file to an output file: 

Ther efor e, the syntax should be: ignis-submit ig- 

nishpc/full bigseqkit < cmd > < arguments > . 
In addition, users can also specify through arguments the num- 

ber of instances , cores , and memory (in GB) to be used in the exe- 
cution. By default, those values are set to 1. For example, we can 

execute the pr e vious command using 2 cores: 
Unlike the other state-of-the-art tools, BigSeqKit can also 
e executed on a parallel cluster. Typical HPC clusters have
lurm [ 20 ] as the pr eferr ed r esource mana ger and Singularity [ 25 ]
s a container-based technology. In this case, users will send
he job using the ignis-slurm submitter instead of ignis- 
ubmit . 

On the other hand, BigSeqKit can also be used as a bioinformat-
cs library. It is worth noting that BigSeqKit was implemented in Go
anguage. Ho w ever, thanks to the multilanguage support provided
y IgnisHPC, it is possible to call BigSeqKit routines from C/C ++ ,
ython, Java, and Go applications without additional overhead.
n example of Python code is shown in Fig. 3 . This example is
quivalent to the previous one used in the explanation of the CLI.
ince BigSeqKit has been created as a library, it only needs to be im-
orted to be used. Functions in BigSeqKit do not use files as input;
hey use DataFrames instead, an abstract representation of paral- 
el data used by IgnisHPC (similar to RDDs in Spark). P ar ameters
r e gr ouped in a data structur e wher e eac h field r epr esents the
ong names of a parameter. We must highlight that BigSeqKit func-
ions can be link ed (lik e system pipes using “| ”), so the DataFrame
enerated by one can be used as input to another. In this way,
ntegrating BigSeqKit routines in a more complex code is really 
asy. 

The code starts initializing the IgnisHPC fr ame work (line 5 in
ig. 3 ). Next, a cluster of containers is configured and built (lines
rom 7 to 15). Multiple parameters can be used to configure the en-
ir onment suc h as ima ge , number of containers , number of cores ,
nd memory per container. In this example, we will use 1 node
instances) and 2 cores by node. After configuring the IgnisHPC ex-
cution environment, the BigSeqKit code actually starts. First, we 
ead the input file (line 17). There is a different function for read-
ng F ASTA and F ASTQ files. All the input sequences are stored as a
ingle data structure . T he next stage consists of printing the name
f the sequences included in the FASTA file (line 19). The function
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akes as parameters the sequences and the options that specify
ts behavior. Finally, the names of the sequences are written to
isk. It is important to highlight that lazy e v aluation is performed,
o functions ar e onl y executed when the result is r equir ed to be
aved on disk. 

xperimental Results 

n this section, we analyze the performance results obtained by
igSeqKit with respect to other state-of-the-art tools. In partic-
lar, we hav e consider ed samtools , pyf astx , and seqkit for their
erformance and number of commands supported. Experiments
ere conducted using up to 8 computing nodes of the FinisT er -

ae III [ 26 ] supercomputer installed at CESGA (Spain). Each node
ontains a 32-core Intel Xeon Ice Lake 8352Y @2.2 GHz proces-
or and 256 GB of memory interconnected with Infiniband HDR
00. It is a Linux cluster running Rocky Linux v8.4 (kernel v4.18.0).
e have used SingularityCE v3.9.7 (containers), IgnisHPC v2.2, py-

astx v0.8.4, samtools v1.16.1, and seqkit v2.3.1 (with Slurm as clus-
er manager and Lustre as distributed file system). 

The performance e v aluation was carried out using as input 6
ifferent F ASTA/F ASTQ files that cov er a wide v ariety of c har acter-

stics and sizes . T he main features of these files are the following:

� D 1 ( m64013e_210227_222017.hifi_reads —FASTA—
24 GB): 
Number of sequences: 1.2M, Minimum length: 85, Average
length: 19.7K, Maximum length: 48.5K. 

� D 2 ( SRR642648_1.filt —FASTQ—24.1 GB): 
Number of sequences: 98.7M, Minimum length: 100, Av er a ge
length: 100, Maximum length: 100. 

� D 3 ( Homo_sapiens.GRCh38.dna_sm.toplevel —FASTA—
59.7 GB): 
Number of sequences: 639, Minimum length: 970, Av er a ge
length: 98.8M, Maximum length: 248.9M. 

� D 4 ( ERR4667750 —FASTQ—79.1 GB): 
Number of sequences: 318.1M, Minimum length: 101, Av er a ge
length: 101, Maximum length: 101. 

� D 5 ( uniprot_trembl —FASTA—104 GB): 
Number of sequences: 229.9M, Minimum length: 7, Av er a ge
length: 351.6, Maximum length: 45.3K. 

� D 6 ( DRR002180_2 —FASTQ—395 GB): 
Number of sequences: 1.625B, Minimum length: 101, Av er a ge
length: 101, Maximum length: 101. 

As example to illustrate the benefits of our tool, we will e v alu-
te the following utilities (see Table 2 for a complete list of com-
ands): faidx builds an index for F ASTA/F ASTQ files, locate

ocates sequences following some search pattern, replace re-
laces a name/sequence using a r egular expr ession, rmdup r e-
o ves duplicated sequences , sample selects sequences by num-

er or proportion, seq transforms sequences (extract ID, filter
y length, etc.) and r emov es ga ps, and sort sorts sequences
y ID/name/sequence/length. We will also include the perfor-
ance results of the corresponding utilities, if they exist, for sam-

ools , pyfastx , and seqkit . Execution times for all the tools con-
idered include the overhead of loading sequences into mem-
ry and the subsequent writing of results to disk. Note that the
2-pass” argument of seqkit was not used in the experiments.
ac h r esult was computed as the median of 5 experiments. For
he sake of r epr oducibility, all the codes and scripts used for
erforming the benchmarks are freely available at the BigSeqKit
epository. 
First, in order to provide an ov er all idea about the scalabil-
ty and performance of BigSeqKit with respect to the other state-
f-the-art tools, we will show the speedups obtained for the D 4 

ataset using different number of cores . T he beha vior is very sim-
lar when considering the other datasets. Results in log scale are
isplayed in Fig. 4 . Speedups were calculated using as reference
he sequential execution (1 core) of the corresponding BigSeqKit
ommand. According to the r esults, se v er al conclusions can be
ade. It can be observed that the scalability of BigSeqKit is quite

ood, r eac hing speedups up to 27.7 × and 95.7 × ( seq command)
sing 1 server (32 cores) and 8 computing nodes (256 cores), re-
pectiv el y. Note that speedups of some routines are not higher
hen using 256 cores due to a small fraction of the code that

hould be executed sequentially (Amdahl’s law). 
While samtools and pyfastx routines are always processed se-

uentially, seqkit uses a multithreaded approach to (partly) par-
llelize some commands. Ho w e v er, its scalability is limited to
se a few threads on a single server (computing node). This

s the case of locate . Its best speedup onl y r eac hes 11.3 × (32
ores) while this value increases until 19.6 × with BigSeqKit . If
 nodes are used, BigSeqKit is 49.9 × faster than the sequential
xecution. 

For all the commands studied, BigSeqKit clearly outperforms
amtools , pyfastx , and seqkit . Ther e ar e onl y a fe w cases using 1 core
here the speedups of these tools are slightly greater than 1 (e.g.,

xecuting the faidx routine with samtools and pyfastx ). Ho w ever,
ther commands such as sort and sample are processed faster
ith BigSeqKit e v en using 1 core. 
Tables from 3 to 9 display, for all the datasets, the execution

imes of BigSeqKit and the other state-of-the-art tools when run-
ing faidx , locate , replace , rmdup , sample , seq , and sort util-

ties, r espectiv el y. Speedups with respect to the sequential exe-
ution of the corresponding BigSeqKit command are shown be-
ween br ac kets . Highlighted is the fastest time o v er all and the
orresponding speedup. Note that BigSeqKit stores compressed
n memory the largest dataset D 6 when using 1 computing
ode since it exceeds the memory capacity of an individual
erver (see the Raw memory storage option in the Background
ection). 

For all the experiments conducted, BigSeqKit is always the
astest tool both considering a single server (1 node) or se v er al
omputing nodes. In any case, let’s take a look in detail of the be-
avior for each command: 

� faidx (Table 3 ): BigSeqKit speedups range from 5.4 × to 27.4 ×
considering a single server (32 cores) and from 7.2 × to 144 ×
with 8 nodes. It means, for example, building the index file
for our largest dataset D 6 (395 GB) in just 5.8 minutes (sin-
gle server), while samtools and pyfastx require about 2.1 hours.
This time decreases to 1 minute when BigSeqKit uses 8 nodes.
As mentioned pr e viousl y, the faidx r outine in seqkit does not
support FASTQ files (D 2 , D 4 , and D 6 ). 

� locate (Table 4 ): the searching routines, grep and locate ,
ar e v ery expensiv e in terms of computations. Note that
considering sequential processing, locate takes more than
3 hours to process our smallest dataset D 1 independently of
the tool considered. This time increases to more than 3 days
of computation for D 6 . seqkit has a m ultithr ead v ersion of
locate , which obtains speedups from 10.5 × to 18.8 ×. These
speedups are always lower than the ones obtained by BigSe-
qKit on a single server. It is important to highlight that seqkit
raises an out-of-memory error when processing D 6 with 1, 2,
and 4 cores. On the other hand, when using 8 nodes, BigSe-
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Figure 4: Speedups (in log scale) obtained by BigSeqKit and other state-of-the-art tools with respect to the BigSeqKit sequential time when executing 
different commands using D 4 as input. Note that locate was parallelized in seqkit . 
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qKit ac hie v es noticeable speedups up to 104.1 ×. In this way, it 
is able to reduce the time necessary to execute the locate 
command with our largest dataset D 6 from 3 days to only 
0.8 hours. 

� replace (Table 5 ): this routine (or an equivalent) is not 
supported by samtools and pyfastx . In this case, BigSeqKit is 
from tens to hundreds of times faster than seqkit , r eac hing 
speedups up to 159.8 ×. 

� rmdup (Table 6 ): this routine is also not supported by samtools 
and pyfastx . In this case, BigSeqKit is tens of times faster than 

seqkit , ac hie ving a maxim um speedup of 74.7 × when remov- 
ing the duplicated sequences in D 5 . 

� sample (Table 7 ): operation not supported by samtools . BigSe- 
qKit is again faster than the other tools, increasing the 
speedups as the input data size grows. It can be observed 

that BigSeqKit is able to sample sequences in seconds. For in- 
stance , p yfastx and seqkit take about 3 hours to process D 6 ,
while BigSeqKit r equir es just 2 minutes. 

� seq (Table 8 ): operation not supported by samtools . Perfor- 
mance results are similar to the sample ones in such a way 
that BigSeqKit filters sequences by ID in a few seconds, achiev- 
ing a noticeable speedup of 169.7 ×. It should be noted that 
among the routines examined in this study, seq is the least 
computationally demanding. 

� sort (Table 9 ): this routine was not included in pyfastx . In 

general, the performance of samtools and seqkit is poor. And,
most importantly, both tools produce memory errors when 
processing the largest dataset D 6 , so it cannot be sorted. How-
e v er, BigSeqKit sorts D 6 21.8 × and 131.1 × faster than the se-
quential version using a single server and 8 computing nodes,
r espectiv el y. It means that the time decr eases fr om 5 hours to
bar el y 2 minutes. 

Finall y, we m ust highlight that one of the main reasons for the
ifferences in the speedups between datasets running the same 
ommand with BigSeqKit is the load balance between threads. It
ill depend on the c har acteristics of the dataset: number of se-
uences and their length. 

onclusions 

urrent state-of-the-art tools such as seqkit , pyfastx , and samtools
r e not r eady for pr ocessing and manipulating v ery lar ge FASTA
nd FASTQ files because all of them ar e mainl y based on sequen-
ial processing. To that end, we have presented BigSeqKit , which
arallelizes and optimizes the seqkit routines using the IgnisHPC 

omputing fr ame w ork. Since seqkit w as pr ogr ammed in Go, Ig-
isHPC was extended to support that language. As a consequence,

gnisHPC is no w adays the first par allel computing fr ame work that
upports Go. BigSeqKit can be easily installed on a local server or
n a cluster. In addition, it can be used from the command line
r as a library. Thanks to the multilanguage support of IgnisHPC,
igSeqKit routines can be called from C/C ++ , Python, Java, and Go
odes. 
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Table 3: Execution times (seconds) using different number of cores: faidx command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

samtools 86.2 [1.03 ×] – – – – – – – –
pyfastx 109.2 [0.81 ×] – – – – – – – –
seqkit 75.4 [1.17 ×] – – – – – – – –
BigSeqKit 88.4 46.0 35.3 26.3 19.4 16.3 [5.4 ×] 13.6 12.3 [7.2 ×] 12.5 

D 2 

samtools 165.6 [1.06 ×] – – – – – – – –
pyfastx 177.9 [0.99 ×] – – – – – – – –
BigSeqKit 175.9 90.8 67.4 50.3 39.1 31.4 [5.6 ×] 23.4 19.1 15.5 [11.3 ×] 

D 3 

samtools 210.0 [0.77 ×] – – – – – – – –
pyfastx 131.2 [1.23 ×] – – – – – – – –
seqkit 131.8 [1.23 ×] – – – – – – – –
BigSeqKit 161.9 83.9 61.7 24.5 17.5 15.7 [10.3 ×] 13.6 13.4 [12.1 ×] 14.7 

D 4 

samtools 538.4 [1.27 ×] – – – – – – – –
pyfastx 615.5 [1.11 ×] – – – – – – – –
BigSeqKit 684.2 346.6 175.2 90.3 45.4 29.3 [23.3 ×] 19.6 15.3 12.5 [54.7 ×] 

D 5 

samtools 771.0 [1.08 ×] – – – – – – – –
pyfastx 634.3 [1.31 ×] – – – – – – – –
seqkit 1,096.2 [0.76 ×] – – – – – – – –
BigSeqKit 829.8 361.3 179.4 89.3 49.4 30.3 [27.4 ×] 23.6 19.3 16.5 [50.3 ×] 

D 6 

samtools 7,651.6 [1.14 ×] – – – – – – – –
pyfastx 7,712.5 [1.13 ×] – – – – – – – –
BigSeqKit 8,712.3 4,423.3 2,282.2 1,191.9 640.2 350.4 [24.9 ×] 129.5 85.3 60.5 [144 ×] 

Table 4: Execution times (seconds) using different number of cores: locate command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

pyfastx 11,523.5 [1.0 ×] – – – – – – – –
seqkit 12,822.9 6,385.0 3,210.9 1,731.4 940.5 612.4 [18.8 ×] – – –
BigSeqKit 11,486.2 6,286.1 3,180.0 1,637.3 850.9 470.6 [24.4 ×] 264.6 156.9 110.3 [104.1 ×] 

D 2 

pyfastx 8,841.2 [1.2 ×] – – – – – – – –
seqkit 12,319.8 6,909.4 3,335.9 1,746.2 997.3 971.2 [10.5 ×] – – –
BigSeqKit 10,168.6 5,264.5 2,711.5 1,412.2 814.6 545.4 [18.6 ×] 384.7 293.5 234.9 [43.3 ×] 

D 3 

pyfastx 13,075.3 [1.1 ×] – – – – – – – –
seqkit 14,281.6 8,161.7 5,009.6 3,184.1 1,832.4 1,054.9 [14.1 ×] – – –
BigSeqKit 14,834.2 8,223.3 4,572.8 2,585.6 1,494.6 872.1 [17.0 ×] 532.8 365.9 262.5 [56.5 ×] 

D 4 

pyfastx 30,028.3 [1.05 ×] – – – – – – – –
seqkit 39,640.5 21,257.6 10,803.1 5,715.1 3,369.7 2,795.2 [11.3 ×] – – –
BigSeqKit 31,615.2 16,832.1 8,531.9 4,433.3 2,466.8 1,609.9 [19.6 ×] 1,074.7 794.6 633.5 [49.9 ×] 

D 5 

pyfastx 27,876.5 [1.06 ×] – – – – – – – –
seqkit 31,301.8 16,884.7 9,141.1 4,698.4 2,971.8 2,802.9 [10.5 ×] – – –
BigSeqKit 29,540.7 15,431.3 8,120.2 4,401.4 2,454.5 1,443.9 [20.5 ×] 908.1 599.5 440.9 [67 ×] 

D 6 

pyfastx 270,214 [1.02 ×] – – – – – – – –
seqkit Out of Mem. Out of Mem. Out of Mem. 40,122 23,075 18,309 [15.0 ×] – – –
BigSeqKit 275,680 141,095 72,110 37,140 19,810 11,477 [24.0 ×] 7,003 4,422 3,080 [89.5 ×] 
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Table 5: Execution times (seconds) using different number of cores: replace command. Highlighted are fastest time and number of 
times faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

seqkit 132.4 [1.02 ×] – – – – – – – –
BigSeqKit 134.5 69.5 36.1 25.0 18.7 12.7 [10.6 ×] 13.1 13.6 12.5 [10.8 ×] 

D 2 

seqkit 395.7 [1.04 ×] – – – – – – – –
BigSeqKit 410.6 213.5 110.1 74.5 56.9 29.7 [13.8 ×] 16.8 13.9 13.5 [30.4 ×] 

D 3 

seqkit 410.5 [0.99 ×] – – – – – – – –
BigSeqKit 406.7 209.5 109.4 74.0 56.1 29.5 [13.8 ×] 15.3 13.6 12.9 [31.5 ×] 

D 4 

seqkit 543.7 [1.05 ×] – – – – – – – –
BigSeqKit 570.3 293.5 109.4 74.0 55.1 29.4 [19.4 ×] 20.3 13.5 12.5 [45.6 ×] 

D 5 

seqkit 1,572.1 [1.03 ×] – – – – – – – –
BigSeqKit 1,621.7 819.9 420.1 217.2 115.1 62.9 [25.8 ×] 37.2 24.2 18.5 [87.7 ×] 

D 6 

seqkit 8,980.8 [1.07 ×] – – – – – – – –
BigSeqKit 9,620.8 5,000.3 2,605.2 1,364.2 717.7 387.5 [24.8 ×] 142.1 90.5 60.2 [159.8 ×] 

Table 6: Execution times (seconds) using different number of cores: rmdup command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

seqkit 178.9 [1.01 ×] – – – – – – – –
BigSeqKit 180.5 94.3 50.2 35.1 27.1 15.8 [11.4 ×] 14.8 14.4 13.8 [13.1 ×] 

D 2 

seqkit 320.6 [1.04 ×] – – – – – – – –
BigSeqKit 333.3 174.7 93.5 65.9 49.9 26.5 [12.6 ×] 15.9 14.1 [23.6 ×] 15.0 

D 3 

seqkit 515.5 [0.91 ×] – – – – – – – –
BigSeqKit 469.5 246.7 182.7 127.5 96.1 51.4 [9.1 ×] 27.4 20.9 20.6 [22.8 ×] 

D 4 

seqkit 729.9 [0.99 ×] – – – – – – – –
BigSeqKit 720.5 378.5 197.5 139.7 102.9 54.0 [13.3 ×] 30.5 16.4 14.1 [51.1 ×] 

D 5 

seqkit 2,173.6 [0.97 ×] – – – – – – – –
BigSeqKit 2,100.2 1,110.4 612.3 341.2 195.1 115.2 [18.2 ×] 70.5 43.2 28.1 [74.7 ×] 

D 6 

seqkit 9,937.1 [1.11 ×] – – – – – – – –
BigSeqKit 11,022.3 5,578.5 3,006.7 1,709.6 1,004.1 600.1 [18.4 ×] 275.2 241.6 228.8 [48.2 ×] 
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Regarding the experimental results, BigSeqKit clearly outper- 
forms seqkit , pyfastx , and samtools for all the tasks considered. On 

a single server, BigSeqKit is overall tens of times faster than those 
state-of-the-art tools, r eac hing speedups with respect to the BigSe- 
qKit sequential time up to 27.7 ×. Considering an 8-node cluster,
BigSeqKit is e v en faster, r eac hing speedups higher than 160 ×. It 
means that most of the tasks can be performed in just a few sec- 
onds . For instance , our toolkit effectiv el y r educes the execution 

time of the locate command on our largest dataset from 3 days 
to a mere 0.8 hours. It is important to highlight that seqkit and 

samtools were unable to process that dataset with some routines 
due to memory issues, which confirms that current state-of-the- 
art tools are not well fitted for processing very large files. 
As future w ork, w e plan to add also the remainder seqkit com-
ands not included in the current version of BigSeqKit : sliding ,
ana , fx2tab , tab2fx , convert , amplicon , fish , split , split2 ,
estart , and mutate . Note that all of them are independent rou-
ines, so their implementation using IgnisHPC will be straightfor- 
 ar d. 

vailability of Source Code and 

equirements 

roject name: BigSeqKit 

� Pr oject homepa ge: https://github.com/citiususc/BigSeqKit 

https://github.com/citiususc/BigSeqKit
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Table 7: Execution times (seconds) using different number of cores: sample command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

pyfastx 308.2 [0.67 ×] – – – – – – – –
seqkit 196.1 [1.05 ×] – – – – – – – –
BigSeqKit 205.7 108.2 57.8 36.4 27.1 17.3 [11.9 ×] 15.1 15.4 14.1 [14.6 ×] 

D 2 

pyfastx 458.7 [1.12 ×] – – – – – – – –
seqkit 492.4 [1.04 ×] – – – – – – – –
BigSeqKit 514.5 271.7 143.8 98.1 76.1 42.2 [12.2 ×] 36.1 30.1 26.4 [19.5 ×] 

D 3 

pyfastx 450.2 [0.88 ×] – – – – – – – –
seqkit 491.7 [0.80 ×] – – – – – – – –
BigSeqKit 394.3 207.8 105.2 70.5 52.7 26.1 [15.1 ×] 22.1 19.2 14.3 [27.6 ×] 

D 4 

pyfastx 1,929.1 [0.99 ×] – – – – – – – –
seqkit 1,996.7 [0.96 ×] – – – – – – – –
BigSeqKit 1,912.8 1,000.5 529.3 365.8 283.4 156.3 [12.2 ×] 90.4 56.2 36.5 [52.4 ×] 

D 5 

pyfastx 1,567.7 [0.71 ×] – – – – – – – –
seqkit 1,057 [1.06 ×] – – – – – – – –
BigSeqKit 1,121.5 572.3 299.4 164.2 91.3 52.4 [21.4 ×] 33.6 25.1 22.5 [49.8 ×] 

D 6 

pyfastx 9,507.7 [1.16 ×] – – – – – – – –
seqkit 9,550 [1.16 ×] – – – – – – – –
BigSeqKit 11,070.2 5,539.5 2,812.3 1,543.6 876.2 515.9 [21.5 ×] 202 143.2 109.5 [101.1 ×] 

Table 8: Execution times (seconds) using different number of cores: seq command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

pyfastx 151.8 [0.56 ×] – – – – – – – –
seqkit 234.4 [0.36 ×] – – – – – – – –
BigSeqKit 84.4 43.5 22.5 11.6 6.3 4.8 [17.6 ×] 4.7 3.7 3.5 [24.1 ×] 

D 2 

pyfastx 209.4 [1.15 ×] – – – – – – – –
seqkit 234.0 [1.03 ×] – – – – – – – –
BigSeqKit 240.9 128.5 65.0 34.6 19.5 10.7 [22.5 ×] 6.1 4.3 4.0 [60.2 ×] 

D 3 

pyfastx 400.5 [0.90 ×] – – – – – – – –
seqkit 541.2 [0.67 ×] – – – – – – – –
BigSeqKit 360.2 182.7 93.4 48.1 27.1 20.2 [17.8 ×] 8.6 5.1 [65.5 ×] 5.5 

D 4 

pyfastx 901.2 [1.13 ×] – – – – – – – –
seqkit 981.7 [1.03 ×] – – – – – – – –
BigSeqKit 1,014.7 508.8 257.1 129.1 66.3 36.6 [27.7 ×] 22.5 15.2 10.6 [95.7 ×] 

D 5 

pyfastx 1,051.4 [0.94 ×] – – – – – – – –
seqkit 1,165.5 [0.85 ×] – – – – – – – –
BigSeqKit 987.6 500.2 259.1 135.9 73.6 41.5 [23.8 ×] 26.1 17.9 16.2 [60.9 ×] 

D 6 

pyfastx 7,657.6 [1.23 ×] – – – – – – – –
seqkit 9,080.5 [1.04 ×] – – – – – – – –
BigSeqKit 9,420.3 4,712.1 2,400.3 1,323.4 755.5 430.3 [21.9 ×] 110.3 70.2 55.5 [169.7 ×] 
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Table 9: Execution times (seconds) using different number of cores: sort command. Highlighted are fastest time and number of times 
faster than sequential BigSeqKit 

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes) 

D 1 

samtools 1,590.3 [0.10 ×] – – – – – – – –
seqkit 169.0 [0.97 ×] – – – – – – – –
BigSeqKit 164.4 86.2 46.2 33.5 24.2 14.5 [11.3 ×] 13.8 13.5 12.9 [12.7 ×] 

D 2 

samtools 1,672.5 [0.25 ×] – – – – – – – –
seqkit 1,050.5 [0.40 ×] – – – – – – – –
BigSeqKit 422.8 221.6 117.6 81.7 62.1 34.9 [12.1 ×] 21.5 15.8 13.2 [32.0 ×] 

D 3 

samtools 1,203.5 [0.44 ×] – – – – – – – –
seqkit 497.5 [1.05 ×] – – – – – – – –
BigSeqKit 523.8 272.5 144.2 100.7 77.6 43.2 [12.1 ×] 26.5 18.6 15.8 [33.1 ×] 

D 4 

samtools 3,835.1 [0.36 ×] – – – – – – – –
seqkit 3,122.2 [0.44 ×] – – – – – – – –
BigSeqKit 1,377.3 708.5 372.5 243.7 171.5 94.6 [14.6 ×] 57.6 46.0 36.0 [38.3 ×] 

D 5 

samtools 1,899.6 [0.85 ×] – – – – – – – –
seqkit 3,350.4 [0.48 ×] – – – – – – – –
BigSeqKit 1,612.4 839.2 443.2 239.2 137.2 84.2 [19.1 ×] 53.4 40.2 39.2 [41.1 ×] 

D 6 

samtools Out of Mem. – – – – – – – –
seqkit Out of Mem. – – – – – – – –
BigSeqKit 18,309.6 9,439.6 4,899.2 2,592.8 1,444.4 839.7 [21.8 ×] 215.8 165.3 139.6 [131.1 ×] 
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� BiotoolsID: biotools:bigseqkit 
� RRID: SCR_023592 
� Operating system(s): Linux 
� Pr ogr amming langua ge: Go 
� Other r equir ements: IgnisHPC 2.2 
� License: GNU GPL-3.0 

Da ta Av ailability 

The datasets supporting the results of this article ar e av ailable as 
follo ws: D 1 w as obtained from the P acBio r epository; D 2 , D 4 , and 

D 6 from the International Genome Sample Resource (accession 

ids, SRR642648_1.filt, ERR4667750, and DRR002180_2) [ 27 ]; D 3 from 

Ensembl [ 28 ] (assembly accession id, GCA_000001405.20); and D 5 

fr om UniPr otKB—r elease 2022_03. 
All supporting data and materials are available in the Giga- 

Science GigaDB database [ 29 ]. 
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CLI: command-line interface; HPC: high-performance comput- 
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