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Abstract

Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes from
metagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyze genomes sourced
directly from environmental samples. There are, however, technical challenges associated with this process, most notably the com-
plexity of computational workflows required to process metagenomic data, which include dozens of bioinformatics software tools,
each with their own set of customizable parameters that affect the final output of the workflow. At the core of these workflows are the
processes of assembly—combining the short-input reads into longer, contiguous fragments (contigs)—and binning, clustering these
contigs into individual genome bins. The limitations of assembly and binning algorithms also pose different challenges depending on
the selected strategy to execute them. Both of these processes can be done for each sample separately or by pooling together multiple
samples to leverage information from a combination of samples. Here we present Metaphor, a fully automated workflow for genome-
resolved metagenomics (GRM). Metaphor differs from existing GRM workflows by offering flexible approaches for the assembly and
binning of the input data and by combining multiple binning algorithms with a bin refinement step to achieve high-quality genome
bins. Moreover, Metaphor generates reports to evaluate the performance of the workflow. We showcase the functionality of Metaphor

on different synthetic datasets and the impact of available assembly and binning strategies on the final results.
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Introduction

Genome-resolved metagenomics (GRM) is a set of techniques for
the recovery of genomes from high-throughput sequencing data.
Applications of GRM have led to unprecedented insight into mi-
crobial diversity, ecology, and evolution, due to the recovery of
(mostly uncultivated) metagenome-assembled genomes (MAGS)
[1-4]. MAGs are essentially “bins” of contigs that are clustered to-
gether based on differential coverage and sequence composition;
a bin is considered a MAG when it displays a high degree of com-
pleteness and a low degree of redundancy/contamination, which
is usually calculated through the presence of marker genes in
the bin. Advances in GRM have consistently improved the qual-
ity of recovered MAGs, and large-scale studies reconstructing and
analyzing thousands of MAGs have become prominent in mi-
crobiology research. Even with the inherent biases that accom-
pany the generation of MAGs, it is evident that the benefits out-
weigh the risks, and researchers are increasingly in need of au-
tomated data processing methods for assembling and binning
metagenomes [5]. Data pipelines that perform such experiments
are inherently complex, have high computing cost, use heteroge-

neous data sources, have dozens of customizable parameters, and
depend on several specialized bioinformatics software [6, 7].

An additional domain-specific challenge for GRM studies is
the strategy used for assembling and binning each sequenced
sample. Data (raw reads generated by the sequencer) originating
from multiple samples may be assembled separately or pooled to-
gether, depending whether they come from the same population,
specimen, or environment. This results in either a set of contigs
for each sample or a “coassembly” of the pooled samples. Sim-
ilarly, in the metagenome binning step, where contigs are clus-
tered into genome bins, one may do this individually for each set
of assembled contigs or by pooling together contigs from multiple
samples and then mapping each individual sample to this cat-
alog of contigs (“cobinning”) [8]. The latter approach allows bin-
ning algorithms to account for differential coverage of contigs
across samples, enriching the information available for cluster-
ing. The chosen strategy for assembly and binning may have im-
portant consequences for the final results (i.e., the quality of the
assembly and of the recovered bins) [8]. It is hypothesized that
pooled assembly and binning may lead to improved results when
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analyzing communities with high genetic diversity and to poorer
results when there is a high level of intraspecies/strain-level di-
versity [9],

Here we present Metaphor, an automated and flexible work-
flow for the assembly and binning of metagenomes, which re-
covers prokaryotic genomes from metagenomes efficiently and
with high sensitivity, and it provides taxonomic and functional
abundance data for quantitative metagenome analyses. Our soft-
ware advances existing metagenomic pipelines by combining 2
core features: the usage of multiple binning software, along with
a binning refinement step, and the possibility of defining groups
for assembly and binning of samples. This effectively allows scal-
ing Metaphor to process multiple datasets in a single execution,
performing assembly and binning in separate batches for each
dataset, and avoiding the need for repeated executions with dif-
ferent input datasets. The workflow includes native functional-
ity for downstream integration with omics statistical toolkits [10,
11], so that abundance data can be easily imported into these
tools, and with the Anvi'o [12] platform, which allows importing
the collections of bins generated by Metaphor along with con-
tig coverage data. Metaphor generates detailed performance met-
rics at the end of each module of the workflow to provide users
with a high-level summary of their analysis, and it has been
designed to be user-friendly, portable, and flexible, as users can
choose between different strategies for assembly and binning. We
demonstrate its functionality using different synthetic datasets
and discuss how these different strategies can impact data anal-
yses in terms of quality of the resulting assembly and genome
bins.

Design and Implementation

Metaphor stands out from existing GRM pipelines by offering flex-
ible options for assembly and binning combined with multiple
binning software and a binning refinement step. See Table 1 for
a comparison of Metaphor’s features with other state-of-the-art
GRM workflows. The workflow is implemented with Snakemake
[13], a widely used scientific workflow management system. In
each module, computing steps (called “rules” by Snakemake) con-
sist of both third-party bicinformatics software [14-28] and cus-
tom scripts that connect different parts of the workflow, listed in
Table 2.

The workflow consists of 6 modules: quality control (QC), as-
sembly, annotation, mapping, binning, and postprocessing. In
the QC module, raw sequencing reads are filtered and trimmed.
Metagenomic assembly is then performed. Coding sequences are
predicted from the assembled contigs and used for functional
and taxonomic annotation. The quality-filtered reads are mapped
against the contigs, generating coverage statistics employed by
the binning algorithms. After binningis complete, bins are refined
and dereplicated. Lastly, the postprocessing module renders run-
time and memory usage metrics and generates an HTML report. A
simplified version of the flow of data between the different mod-
ules of the workflow is show in Fig. 1.

The choice of bioinformatics tools was informed by the results
of the Second Critical Assessment for Metagenome Interpreta-
tion (CAMI II) [8, 36], striving for the maximum trade-off between
performance, efficiency, and software sustainability. Although the
latter is a subjective factor, selecting and streamlining dependen-
cies with regard to code quality, maintenance, and community
support is a critical factor when maintaining complex bioinfor-
matics pipelines [6, 37]. Each third-party software (along with its

version) is defined in an individual requirements file that is used
by Snakemake to create a virtual environment and run that par-
ticular step. To facilitate citing these tools, Metaphor packages a
bibs/ directory containing all citations in the Bibtext format.

The workflow takes 2 files as input: a tab-delimited file con-
taining sample names and file paths to the raw reads and a con-
figuration file in the YAML format, which will set the workflow pa-
rameters (see Fig. 1). These files can be automatically generated by
Metaphor and edited by the user or created from scratch. The out-
put of Metaphor consists of a directory for each module, further
subdivided into the rules within each module. This is described in
detail in the documentation [38].

Assessment on CAMI II synthetic datasets

To demonstrate the functionality of Metaphor, we analyzed
datasets from CAMI II [8], described in Table 3. All datasets con-
sist of short and long reads generated by simulation of collections
of reference genomes [39]. Only short reads were used for each
dataset, as Metaphor does not yet support long reads. Specifically,
we used the Marine metagenome dataset (identified as “marmg”),
the Strain Madness dataset (identified as “strmg”), and the Hu-
man Microbiome dataset, which consists of 5 sets of samples,
each corresponding to a different sampling location in the human
body, which were treated as distinct datasets [3]. The following
strategies were employed for each dataset: single assembly, sin-
gle binning (SASB), where each sample is individually assembled
and binned; single assembly, cobinning (SACB), where each sam-
ple is assembled individually and then binned with other sam-
ples from the same dataset; and coassembly, cobinning (CACB),
where all samples from the dataset are assembled and binned to-
gether. Table 4 illustrates how this works in practice, in terms of
generated output files. Metaphor allows defining multiple groups
for coassembly or cobinning to analyze multiple independent
datasets with a single execution.

In order to assess the effect of different assembly strategies, we
used MetaQUAST [18] to compare the assemblies generated by the
workflow with the collections of reference genomes. For the differ-
ent binning strategies, we compared metrics obtained from DAS
Tool, the software used for dereplicating and evaluating genome
bins, after a second round of dereplication with dRep [40]. This
is because data generated with the SASB strategy will likely re-
sult in redundant bins, as for that strategy, there is no dereplica-
tion between samples, and since samples within a dataset have
similar composition, it is likely that a genome bin can be gener-
ated repeatedly by different samples. dRep performs dereplica-
tion based on the average nucleotide identity between genomes,
a metric that has been consistently used as a proxy to differenti-
ate taxonomy at the species and strain levels [41]. dRep was run
with default clustering parameters and without any length, com-
pleteness, or contamination cutoffs. We used Spartan [42], the
High Performance Computing system at the University of Mel-
bourne, to run the pipeline. Jobs were dispatched to nodes with
the SLURM scheduler, using up to 64 processors and 300 GB RAM
per node.

Results and Discussion

After running Metaphor on the CAMI II Marine, Strain Madness,
and Human Microbiome datasets, we illustrate the different out-
puts generated by the workflow and compare the effects of differ-
ent assembly and binning strategies on workflow performance.
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Table 1: Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [29]. Data adapted to include

Metaphor
Metaphor
Features v1.7.7 ATLAS [30] MetaWRAP [31] nf-core/mag [32] MAGNETO [29]
Preprocessing
Reads trimming v 4 v 4 v
Contamination v v v v 4
Assembly
Coassembly possible v v v v
Coassembly by groups 4
Compute sets to v
coassemble
Assembly evaluation v
Binning
Cobinning possible v v v v
Multiple binning software v v v
Bin refinement v v v
Bin reassembly v v
Postprocessing
MAGs quality check v v v v v
Dereplication step v v v v v
Genome annotation v 4 v v v/
Gene catalog v v v
HTML report 4 v v v
Reproducibility
Workflow management v v v v/
Packages management v v v v
Table 2: Modules, steps, and software used in Metaphor
Module Step Software
Quality control (QC) Trim adapters and filter low-quality reads fastp [14]
Generate QC reports FastQC [15]
Combine QC reports MultiQC [16]
Assembly Assemble filtered and merged reads into contigs MegaHit [17]
Perform assembly evaluation MetaQUAST [18]
Assemble report and plots Metaphor script*
Mapping Map reads MiniMap? [19]
Sort and index mapped reads Samtools [20]
Annotation Predict coding sequences from contigs Prodigal[21]
Annotate coding sequences Diamond, NCBI COG [22, 23]
Annotate MAGs Prokka [24]
Annotate report and plots Metaphor script*
Binning Cluster contigs into bins VAMB [25]
Cluster contigs into bins MetaBAT?2 [26]
Cluster contigs into bins CONCOCT [27]
Dereplicate and score bins DAS Tool [28]
Binning report and plots Metaphor script*
Postprocessing Concatenate benchmarks Metaphor script*

Plot benchmarks

Metaphor script*

* External libraries used in Metaphor scripts: [33-35].

Reconstruction of metagenome-assembled
genomes

Metaphor produces genome bins generated with 3 tools—Vamb,
MetaBAT?2, and CONCOCT [25-27]—that are refined with the
DAS Tool [28]. The DAS Tool performs bin refinement through a
“dereplication, aggregation, and scoring” process, in which candi-
date bins are initially scored based on the presence/absence of
single-copy marker genes (SCGs, which are a proxy for bin com-
pleteness). Redundant candidate bin sets are then aggregated,
and an iterative scoring process is performed, so only the best-
quality, nonredundant bins remain; the bin score (S,) increases

with the number of SCGs and decreases with duplicate SCGs per
bin. Please refer to [28] for an overview of the DAS algorithm
and the formula to determine the bin score. The input for each
binning tool differs slightly, but they all rely on the catalog of
contigs obtained from the assembly and the coverage files ob-
tained from the read mapping module (see Fig. 1). A report is
generated for each of the binning groups (only 1 is generated if
cobinning is performed), which highlights 3 key metrics: com-
pleteness, redundancy, and bin score. The first 2 metrics are cal-
culated by the presence/absence of single-copy genes, and the
latter is a function of the former two. Plots generated by an
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Figure 1: Simplified workflow diagram. Workflow modules are represented by rectangular blue shapes and data files are represented by oval yellow
shapes, except for entrypoint files shown in a dashed yellow rectangle. Arrows indicate input and output of data between modules.

Table 3: Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset,
along with the amount of reference genomes used to generate the dataset

Dataset Identifier
Marine marmg
Strain Madness strmg
Human Airways h_airways

Human Genital
Human Gut
Human Oral
Human Skin

h_urogenital
h_gastrointestinal
h_oral
h_skin

example report are shown in Fig. 2. It is possible to compare
the performance of the different binning software and obtain the
proportion of bins above a specified particular quality threshold
based on the bin score. The source table for the report is provided,
so that users can generate custom reports and inspect specific in-
dividual bins. Bins that pass the quality threshold are stored in
individual FASTA files, so they can easily be used for downstream
analyses with tools such as CheckM or GTDB-Tk [43, 44]. We chose
not to include these software in the workflow as they rely on fairly
large reference databases and/or contain several different steps
that are dependent on third-party software, which would affect
Metaphor's portability. Bin collections generated with Metaphor

No. reference

No. of samples Size (GB) genomes

10 50 622

100 200 408

10 44 1,394

9 39 1,394

10 44 1,057

10 43 1,057

10 44 1,394

can be imported into the Anvi'o along with coverage data (BAM
files), so users can use the interactive interface of Anvi’'o to exam-
ine the bins.

To facilitate quantitative metagenomics applications, Metaphor’s
annotation module generates contig-level functional and taxo-
nomic profiles based on the NCBI COG database [23]. These are
obtained by predicting coding sequences with Prodigal and then
aligning the resulting amino acid files with Diamond [21, 22] in the
“iterative” mode. This setting performs repeated rounds of align-
ment, with an increasing degree of sensitivity when no hits are



Metaphor - a streamlined workflow for metagenomics | 5

Table 4: Output files for each strategy. If only 1 dataset/group is being analyzed, assembly and binning results are named as “Coassembly”
and “Cobinning,” respectively. If multiple datasets/groups are used, the results are named according to the group/dataset’s name

Strategy Description Reads files Assemblies Bins
SASB Single assembly, single Sample_0.fastq Sample_0_contigs.fasta Sample_0_bins/
binning
Sample_1.fastq Sample_1_contigs.fasta Sample_1_bins/
Sample_2.fastq Sample_2_contigs.fasta Sample_2_bins/
SACB Single assembly, cobinning Sample_0.fastq Sample_0_contigs.fasta Cobinning_bins/
Sample_1.fastq Sample_1_contigs.fasta
Sample_2.fastq Sample_2_contigs.fasta
CACB Coassembly, cobinning Sample_0.fastq Coassembly_contigs.fasta Cobinning_bins/
Sample_1.fastq
Sample_2.fastq
A B C
Size of bins: marmg cach N50: marmg cach
Binning software it 10
50 EEE concoct (261) _
3 metabat2 (55) & ¥ -
I vamb (42) o i » ol
w - -3, <
i b b 4, %
40 4 ﬁm' S . - .
0t - 3 -
wl® Y i.% ‘.
Quality threshold(0.25) ) % i *
e -
530
\.6 concoct (261) metabat2 (55) vamb (42) concact (261) r.oeubar.? (55) wanib (42)
2 inning saftware inning software
2
E D E
=2 Bin quality marmg _cach Wumber of bins: marmg_cach
100 Binning software Quality threshold
20 4 ®  concoct (261) 250 = il (133)
. bat2 (55) B Pass (225)
@ ®  vamb (42)
Quality threshold po
®  FPas (225)
) = Fail (133)
o g 1
&
100
»
0 : T
—04 —0.2 0.0 0.2 0.4 0.6 0.8 1.0 | - 5
Bin score o m i 0 s 100 concoct (261) at2 (55 vamb (42}

Completeness | Binning software

Figure 2: Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the CACB (coassembly, cobinning) setting.
(A) A stacked histogram of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line. (B) The size (in base pairs) and
(C) N50 of bins. The y-axis is in log-scale. (D) Scatterplot of completeness and redundancy for each bin. Colors indicate the tool used to generate the
bin, and the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of
A). (E) The number of bins that passed or failed the quality threshold for each binning tool.

detected in the previous round. Abundances for each feature are
calculated based on the coverage of all coding sequences that
align to that feature. Figure 3 illustrates the profile visualizations
offered by Metaphor: a heatmap of COG categories for the func-
tional profile and a stacked barplot for the most abundant taxa
(for the latter, 1 plot is generated for each taxonomic rank). The
annotation module outputs count tables with both absolute and
relative abundance values of taxa and functional categories and
may be directly imported by downstream statistical toolkits such
as MixOmics or PhyloSeq [10, 11].

Quality control and performance metrics

Additional outputs produced by Metaphor include the quality
control reports from the fastp and FastQC tools, with a summary
of FastQC outputs being produced by MultiQC [14-16]. A simple
report is produced by the assembly module with sequence statis-
tics of the assembled contigs (e.g., N50, number of contigs, total
and mean length of contigs), and performance metrics. At the

end of the workflow execution, the postprocessing module gen-
erates figures obtained from the “benchmark” files provided by
Snakemake. These files contain process information such as run-
time and memory consumption. Metaphor plots these metrics in
2 ways: total per rule and per-sample mean (Fig. 4) as some rules
run only once across all samples, while other rules run per sam-
ple. These plots help identify computational bottlenecks and as-
sess whether computing resources are adequate.

Assembly and binning strategies

The effects of distinct assembly and binning strategies on the fi-
nal output of metagenomic workflows are highly dependent on
the data source and research context [8]. As such, the choice of
individual or group assembly and binning can only be assessed
a posteriori. We compared 3 different strategies: SASB, SACB, and
CACB; see Tables 3 and 4 and “Assessment on CAMI II synthetic
datasets” section for details. For assembly, we used the 5 different
groups in the Human Microbiome dataset along with the Strain
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Madness and Marine datasets. We only used the latter 2 datasets
for the binning assessment.

We used 6 metrics to evaluate assembly performance: percent-
age of recovered genome fraction, size of the largest contig, du-
plication ratio, length of misassembled contigs, number of mis-
assemblies, and number of mismatches per 100,000 base pairs.
High values for the first 2 metrics and low values for the last 4
indicate better performance. We observed a general trade-off be-
tween assembly completeness (represented by the first 2 metrics)
and the number of errors in the assembly (represented by the
last 4 metrics), shown in Fig. 5 (Supplementary Fig. S1). In most
datasets, assemblies were more complete and contiguous, albeit
with more errors when the coassembly strategy was used. The ex-
ception was the Strain Madness (“strmg”) dataset, for which the
individual assembly was more complete and contiguous, albeit
with more errors. This may be attributed to the high degree of
strain/intraspecies diversity in that dataset [8]. A high degree of
similarity between the related genomes likely confounds assem-
bly algorithms, and pooling samples together may aggravate this
effect [5].

To evaluate differences between binning strategies, we com-
pared the number and quality of bins after refinement with the

DAS Tool. Bins generated with each approach were further derepli-
cated with dRep [40]. This is because the SASB strategy generates a
set of bins for each sample, and datasets with similar composition
will likely generate redundant bins, as there is no dereplication
of bins between samples. Results varied significantly between the
Marine and Strain Madness datasets. In both datasets, the mean
bin score was the highest for the CACB strategy (Supplementary
Fig. S2). However, in the Strain Madness dataset, CACB produced a
significantly lower number of bins (33 compared with 259 and 215
generated with SASB and SACB, respectively), which did not occur
in the Marine dataset. The performance of each binning tool is
also variable between strategies and conditional on the charac-
teristics of the original dataset, with no clear “winner,” and each
tool favoring particular performance metrics, in agreement with
results from the CAMI II challenge [8]. Tools like DAS Tool attempt
to conciliate the output of multiple binning algorithms to generate
a consensus output that theoretically outperforms each individ-
ual algorithm.

Since the binning performance is assessed as a proxy of the
combination of quantity and quality of generated bins, rather
than only one metric or the other, we calculated the cumula-
tive bin score (the sum of scores of all bins) and the number
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Figure 5: Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the
MetaQUAST tool. Data points above the 98th percentile were classified as outliers and removed from the figure to improve visualization. See
Supplementary Fig. S1 for the full data. The title at the top of each panel indicates the plotted metric. Panels A and C show percentages along the

x-axis, while the remainder show absolute values.

of bins above an increasing score threshold, shown in Fig. 6.
The higher the threshold, the more significant the differences
between the cumulative scores, as only bins with the highest
quality compose the score. For the Marine dataset, we observed
a higher score and a larger number of bins in the CACB strat-
egy and the exact opposite in the Strain Madness dataset. In
both datasets, there was a clear difference between SASB before
dereplication and the other strategies, confirming that several
highly similar samples produce redundant bins. That difference
was also present in the SACB strategy, albeit not so pronounced
(see Supplementary Figs. S2, S3 and S4 for the comparison of
dereplicated and non-dereplicated data). This suggests that for
both of these strategies, further dereplication is recommended
[5]. Although the Strain Madness dataset shows fewer bins gen-
erated with CACB, a summary of the bins recovered with that
dataset is displayed in Supplementary Table S1. The cumulative
bin score for that strategy remained similar to SACB and SASB
above the 0.8 score threshold, since there are fewer bins with a
score lower than that. In that same dataset, SASB showed the
best performance, although differences were small above the 0.8
threshold. In the Marine dataset, there were more pronounced
differences between strategies. CACB produced the larger quan-
tity and higher cumulative score of bins, followed by SASB
and SACB.

In summary, our results indicate that, for most metagenomic
analysis scenarios, coassembly followed by cobinning is recom-
mended, assuming that samples are sourced from a similar envi-
ronment or population. The exception to this is when when there
is a high level of intraspecies/strain-level diversity across samples,
like in the Strain Madness dataset. In that scenario, single assem-
bly followed by single binning is preferred, followed by dereplica-
tion of bins between samples. There is, however, a trade-off be-
tween the different approaches, as computational requirements
are higher for the pooled strategies. Coassembly resulted in higher
genome recovery fractions and larger contigs, although usually
at the expense of a higher number of misassemblies and higher
duplication ratio. When combining coassembly with cobinning,
there is a remarkable improvement in the quantity and quality
of bins generated for a diverse dataset (represented by the Marine
dataset), whereas the difference was negligible in the Strain Mad-
ness dataset. Therefore, when deciding the assembly and binning
strategy, it is important to consider the expected strain-level di-
versity and abundances of each individual genome, as the interac-
tion between these factors is likely to limit the resolution of recov-
ered bins. This is shown in the CAMI II challenge [8] (see Fig. 1G);
genomes with low strain diversity (i.e., are less than 95% similar to
any other genome) have a higher correlation between sequencing
coverage and recovered fraction than common genomes (>95%
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Figure 6: Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Lines show the cumulative
bin score (A, B) and number of bins (C, D) along the y-axis, for bins above a certain score threshold (x-axis). Left column shows Marine dataset, and

right column shows Strain Madness dataset.

similar to other genomes in the sample), although many times,
sequencing coverage was not all correlated with genome recov-
ery fraction, especially for smaller bins that represent plasmids
or circular elements.

Availability and Future Directions

Metaphor is available through Bioconda [45], a popular reposi-
tory of bioinformatics software. It can be installed with a single
command from the conda package manager [46] or from source
using pip, the Python package manager. The installation of all
third-party software used by Metaphor is handled automatically
by Snakemake and conda. It can be easily deployed in differ-
ent computing environments, such as high-performance comput-
ing clusters and cloud instances, due to Snakemake’s support
of execution profiles. Metaphor is developed with documented
best practices in workflow development [6, 47], striving for repro-
ducibility and transparency of its results. Data used for testing
Metaphor’s installation (see documentation for details) are avail-
able from GitHub at https://github.com/vinisalazar/mg-example-
data. These data are a subset of the CAMI I challenge data [36] that

are reduced in size in order to run test commands in a reasonable
time.

The workflow may be extended to support downstream tools
such for genome analysis such as GTDB-Tk, CheckM, and dRep.
This may help with further improvement of strain-level resolution
in bins; there are a number of strategies for that, such as identi-
fication of misassembled contigs or using the assembly graph for
variant detection [48, 49]. New functionality may also be added
for the identification of eukaryotic and viral contigs; Metaphor
would benefit from new third-party software to facilitate the gen-
eration of non-prokaryotic bins in the near future. The output
of Metaphor’s “annotation” module is suitable for ad hoc identi-
fication of eukaryotic and viral contigs; after selecting the anno-
tated prokaryotic contigs, it is possible to filter them out, leaving
unannotated (putative) eukaryotic and viral contigs. These can
then be used as input for a eukaryotic or viral discovery pipeline
[50-52], but this process could be further improved by facilitating
the use of custom reference databases in the annotation mod-
ule. This can also be done directly with the output of the as-
sembly module, but in that case, there will not be any screen-
ing for prokaryotic contigs. One drawback of this approach is that
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each eukaryotic/viral discovery pipeline has specific input data
formatting requirements. This integration with non-prokaryotic
pipelines, along with support for long reads, are priority features
to be added to future major versions of Metaphor.

Availability of Source Code and
Requirements

Project name: Metaphor

Project homepage: https://github.com/vinisalazar/metaphor
Documentation: https://metaphor-workflow.readthedocs.io/
Operating system(s): Linux, Mac OS (Intel)

Programming language: Snakemake (Python 3)

Other requirements: Conda, Snakemake v7 or higher, Python 3.7
or higher.

License: MIT

RRID number: SCR_023701

Additional Files

Supplementary Fig. S1. Differences between assembly strategies
across datasets. Same data as Fig. 5, but including outliers.
Supplementary Fig. S2. Boxplot of bin scores across different
strategies. Each data point is a genome bin, and the y-axis depicts
bin scores from 0 to 1. Columns separate datasets, and colors rep-
resent different strategies. Numbers underneath each bar show
the number of data points for that bar. Bin sets were dereplicated
with dRep.

Supplementary Fig. S3. Boxplot of bin scores across different
strategies for non-dereplicated data. Same as Fig. S2, but with
non-dereplicated data. Each data point is a genome bin, and the y-
axis depicts bin scores from O to 1. Columns separate datasets, and
colors represent different strategies. Numbers underneath each
bar show the number of data points for that bar.

Supplementary Fig. S4. Cumulative bin score and number of bins
between binning strategies for the Marine and Strain Madness
datasets. Solid lines show the same data as Fig. 6, and dashed lines
show data based on bins prior to dereplication with dRep.
Supplementary Table S1. Summary of genome bins recovered
from the Strain Madness dataset, CACB strategy. “Bin ID” indi-
cates the binning algorithm that generated the bin, “Bin score
Sp” is the relative bin score, SCG refers to single-copy gene in
“SCG completeness,” and “SCG redundancy,” “FastANI reference,”
and “GTDB classification” refer to the reference genome and cor-
responding taxonomy assignment. Taxonomy determined with
GTDB-Tk v2.3.0, reference data 1214 [44].
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ment for Metagenome Interpretation; GRM: genome-resolved
metagenomics; MAG: metagenome-assembled genome; NCBI:
The National Center for Biotechnology Information; QC: quality
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single binning; SCG: single-copy marker gene.
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