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Abstract 

Recent advances in bioinformatics and high-throughput sequencing have enabled the lar ge-scale reco very of genomes from 

metagenomes. This has the potential to bring important insights as resear c hers can bypass culti v ation and anal yze genomes sourced 

dir ectl y fr om envir onmental samples. Ther e ar e , how ever, tec hnical c hallenges associated with this process, most notably the com- 
plexity of computational workflows r equir ed to process metagenomic data, which include dozens of bioinformatics softw ar e tools, 
each with their own set of customiza b le parameters that affect the final output of the workflow. At the core of these workflows are the 
processes of assembly—combining the short-input reads into longer, contiguous fragments (contigs)—and binning, clustering these 
contigs into individual genome bins. The limitations of assembly and binning algorithms also pose different challenges depending on 

the selected str ate gy to execute them. Both of these processes can be done for each sample separately or by pooling together multiple 
samples to lev era ge information fr om a combination of samples. Her e we pr esent Metaphor, a full y automated workflow for genome- 
r esolv ed meta genomics (GRM). Metaphor differs fr om existing GRM workflows by offering flexib le appr oaches for the assemb l y and 

binning of the input data and by combining multiple binning algorithms with a bin refinement step to achieve high-quality genome 
bins. Mor eov er, Metaphor generates r e ports to ev aluate the performance of the workflo w. We sho wcase the functionality of Metaphor 
on different synthetic datasets and the impact of available assembly and binning str ate gies on the final results. 

Ke yw ords: bioinformatics, pipeline, MAGs, Snakemake, high-throughput sequencing, microbial genomics 
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Introduction 

Genome-r esolv ed meta genomics (GRM) is a set of techniques for 
the r ecov ery of genomes fr om high-thr oughput sequencing data.
Applications of GRM have led to unprecedented insight into mi- 
cr obial div ersity , ecology , and evolution, due to the recovery of 
(mostl y uncultiv ated) meta genome-assembled genomes (MAGs) 
[ 1–4 ]. MAGs are essentially “bins” of contigs that are clustered to- 
gether based on differential coverage and sequence composition; 
a bin is considered a MAG when it displays a high degree of com- 
pleteness and a low degree of r edundancy/contamination, whic h 

is usually calculated through the presence of marker genes in 

the bin. Advances in GRM have consistently improved the qual- 
ity of r ecov er ed MAGs, and lar ge-scale studies r econstructing and 

analyzing thousands of MAGs have become prominent in mi- 
cr obiology r esearc h. Ev en with the inher ent biases that accom- 
pan y the gener ation of MAGs, it is e vident that the benefits out- 
weigh the risks, and r esearc hers ar e incr easingl y in need of au- 
tomated data processing methods for assembling and binning 
metagenomes [ 5 ]. Data pipelines that perform such experiments 
ar e inher entl y complex, hav e high computing cost, use heter oge- 
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eous data sources , ha v e dozens of customizable par ameters, and
epend on se v er al specialized bioinformatics software [ 6 , 7 ]. 

An additional domain-specific challenge for GRM studies is 
he strategy used for assembling and binning each sequenced 

ample . Data (ra w reads generated by the sequencer) originating
r om m ultiple samples may be assembled separ atel y or pooled to-
ether, de pending whether the y come from the same population,
pecimen, or en vironment. T his results in either a set of contigs
or each sample or a “coassembly” of the pooled samples. Sim-
larl y, in the meta genome binning step, wher e contigs ar e clus-
ered into genome bins, one may do this individually for each set
f assembled contigs or by pooling together contigs from multiple
amples and then mapping each individual sample to this cat-
log of contigs (“cobinning”) [ 8 ]. The latter a ppr oac h allows bin-
ing algorithms to account for differential coverage of contigs 
cr oss samples, enric hing the information av ailable for cluster-
ng. The c hosen str ategy for assembl y and binning ma y ha ve im-
ortant consequences for the final results (i.e., the quality of the
ssembly and of the recovered bins) [ 8 ]. It is hypothesized that
ooled assembly and binning may lead to impr ov ed r esults when
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nal yzing comm unities with high genetic diversity and to poorer
esults when there is a high level of intraspecies/strain-level di-
ersity [ 9 ], 

Her e we pr esent Meta phor, an automated and flexible work-
ow for the assembly and binning of meta genomes, whic h r e-
ov ers pr okaryotic genomes fr om meta genomes efficientl y and
ith high sensitivity, and it provides taxonomic and functional
bundance data for quantitative metagenome analyses. Our soft-
ar e adv ances existing meta genomic pipelines by combining 2

or e featur es: the usa ge of m ultiple binning softwar e, along with
 binning refinement step, and the possibility of defining groups
or assembly and binning of samples . T his effectiv el y allows scal-
ng Metaphor to process multiple datasets in a single execution,
erforming assembly and binning in separate batches for each
ataset, and avoiding the need for repeated executions with dif-
erent input datasets . T he w orkflo w includes native functional-
ty for downstream integration with omics statistical toolkits [ 10 ,
1 ], so that abundance data can be easily imported into these
ools, and with the Anvi’o [ 12 ] platform, which allows importing
he collections of bins generated by Metaphor along with con-
ig cov er a ge data. Meta phor gener ates detailed performance met-
ics at the end of each module of the w orkflo w to provide users
ith a high-le v el summary of their analysis, and it has been
esigned to be user-friendly, portable, and flexible, as users can
 hoose between differ ent str ategies for assembl y and binning. We
emonstrate its functionality using different synthetic datasets
nd discuss how these differ ent str ategies can impact data anal-
ses in terms of quality of the resulting assembly and genome
ins. 

esign and Implementation 

etaphor stands out from existing GRM pipelines by offering flex-
ble options for assembly and binning combined with multiple
inning software and a binning refinement step. See Table 1 for
 comparison of Metaphor’s features with other state-of-the-art
RM w orkflo ws . T he w orkflo w is implemented with Snak emak e
 13 ], a widely used scientific w orkflo w management system. In
ach module, computing steps (called “rules” by Snak emak e) con-
ist of both third-party bioinformatics software [ 14–28 ] and cus-
om scripts that connect different parts of the w orkflo w, listed in
able 2 . 

The w orkflo w consists of 6 modules: quality control (QC), as-
embl y, annotation, ma pping, binning, and postpr ocessing. In
he QC module , ra w sequencing r eads ar e filter ed and trimmed.
eta genomic assembl y is then performed. Coding sequences ar e

r edicted fr om the assembled contigs and used for functional
nd taxonomic annotation. The quality-filter ed r eads ar e ma pped
 gainst the contigs, gener ating cov er a ge statistics emplo y ed b y
he binning algorithms. After binning is complete, bins are refined
nd der eplicated. Lastl y, the postpr ocessing module r enders run-
ime and memory usage metrics and generates an HTML report. A
implified version of the flow of data between the different mod-
les of the w orkflo w is show in Fig. 1 . 

The choice of bioinformatics tools was informed by the results
f the Second Critical Assessment for Metagenome Interpreta-
ion (CAMI II) [ 8 , 36 ], striving for the maxim um tr ade-off between
erformance, efficiency, and software sustainability. Although the

atter is a subjective factor, selecting and streamlining dependen-
ies with regard to code quality, maintenance, and community
upport is a critical factor when maintaining complex bioinfor-
atics pipelines [ 6 , 37 ]. Each thir d-party softw are (along with its
ersion) is defined in an individual requirements file that is used
y Snak emak e to cr eate a virtual envir onment and run that par-
icular step. To facilitate citing these tools, Meta phor pac ka ges a
ibs/ directory containing all citations in the Bibtext format. 

The w orkflo w takes 2 files as input: a tab-delimited file con-
aining sample names and file paths to the raw reads and a con-
guration file in the YAML format, which will set the w orkflo w pa-
ameters (see Fig. 1 ). These files can be automatically generated by
etaphor and edited by the user or created from scratch. The out-

ut of Metaphor consists of a directory for each module, further
ubdivided into the rules within each module . T his is described in
etail in the documentation [ 38 ]. 

ssessment on CAMI II synthetic datasets 

o demonstrate the functionality of Metaphor, we analyzed
atasets from CAMI II [ 8 ], described in Table 3 . All datasets con-
ist of short and long reads generated by simulation of collections
f r efer ence genomes [ 39 ]. Onl y short r eads wer e used for eac h
ataset, as Metaphor does not yet support long r eads. Specificall y,
e used the Marine metagenome dataset (identified as “marmg”),

he Strain Madness dataset (identified as “strmg”), and the Hu-
an Microbiome dataset, which consists of 5 sets of samples,

ac h corr esponding to a differ ent sampling location in the human
ody, whic h wer e tr eated as distinct datasets [ 3 ]. The following
tr ategies wer e emplo y ed for eac h dataset: single assembl y, sin-
le binning (SASB), where each sample is individually assembled
nd binned; single assembly, cobinning (SACB), where each sam-
le is assembled individually and then binned with other sam-
les from the same dataset; and coassembly, cobinning (CACB),
here all samples from the dataset are assembled and binned to-

ether. Table 4 illustrates how this works in practice, in terms of
ener ated output files. Meta phor allows defining m ultiple gr oups
or coassembly or cobinning to analyze multiple independent
atasets with a single execution. 

In order to assess the effect of different assembly strategies, we
sed MetaQUAST [ 18 ] to compare the assemblies generated by the
 orkflo w with the collections of r efer ence genomes. For the differ-

nt binning strategies, we compared metrics obtained from DAS
ool, the software used for dereplicating and evaluating genome
ins, after a second round of dere plication with dRe p [ 40 ]. This

s because data generated with the SASB strategy will likely re-
ult in redundant bins, as for that strategy, there is no dereplica-
ion between samples, and since samples within a dataset have
imilar composition, it is likely that a genome bin can be gener-
ted r epeatedl y by differ ent samples. dRep performs dereplica-
ion based on the av er a ge nucleotide identity between genomes,
 metric that has been consistently used as a proxy to differenti-
te taxonomy at the species and strain levels [ 41 ]. dRep was run
ith default clustering parameters and without any length, com-
leteness, or contamination cutoffs. We used Spartan [ 42 ], the
igh Performance Computing system at the University of Mel-
ourne, to run the pipeline. Jobs wer e dispatc hed to nodes with
he SLURM scheduler, using up to 64 processors and 300 GB RAM
er node. 

esults and Discussion 

fter running Metaphor on the CAMI II Marine, Strain Madness,
nd Human Microbiome datasets, we illustrate the different out-
uts generated by the workflow and compare the effects of differ-
nt assembly and binning strategies on w orkflo w performance. 
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Table 1: Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [ 29 ]. Data adapted to include 
Metaphor 

Features 
Metaphor 
v1.7.7 ATLAS [ 30 ] MetaWRAP [ 31 ] nf-core/mag [ 32 ] MAGNETO [ 29 ] 

Pr epr ocessing 
Reads trimming � � � � � 

Contamination � � � � � 

Assembly 
Coassembly possible � � � � 

Coassembly by groups � 

Compute sets to 
coassemble 

� 

Assembl y e v aluation � 

Binning 
Cobinning possible � � � � 

Multiple binning software � � � 

Bin refinement � � � 

Bin r eassembl y � � 

Postprocessing 
MAGs quality c hec k � � � � � 

Dere plication ste p � � � � � 

Genome annotation � � � � � 

Gene catalog � � � 

HTML report � � � � 

Reproducibility 
Workflow management � � � � 

P ac ka ges mana gement � � � � 

Table 2: Modules , steps , and software used in Metaphor 

Module Step Software 

Quality control (QC) Trim adapters and filter low-quality reads fastp [ 14 ] 
Generate QC reports FastQC [ 15 ] 
Combine QC reports MultiQC [ 16 ] 

Assembly Assemble filtered and merged reads into contigs MegaHit [ 17 ] 
Perform assembly evaluation MetaQUAST [ 18 ] 

Assemble report and plots Metaphor script ∗

Mapping Ma p r eads MiniMap2 [ 19 ] 
Sort and index mapped reads Samtools [ 20 ] 

Annotation Predict coding sequences from contigs Prodigal[ 21 ] 
Annotate coding sequences Diamond, NCBI COG [ 22 , 23 ] 

Annotate MAGs Prokka [ 24 ] 
Annotate report and plots Metaphor script ∗

Binning Cluster contigs into bins VAMB [ 25 ] 
Cluster contigs into bins MetaBAT2 [ 26 ] 
Cluster contigs into bins CONCOCT [ 27 ] 

Dereplicate and score bins DAS Tool [ 28 ] 
Binning report and plots Metaphor script ∗

Postprocessing Concatenate benchmarks Metaphor script ∗

Plot benchmarks Metaphor script ∗

∗ External libraries used in Metaphor scripts: [ 33–35 ]. 
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Reconstruction of metagenome-assembled 

genomes 

Meta phor pr oduces genome bins gener ated with 3 tools—Vamb,
MetaBAT2, and CONCOCT [ 25–27 ]—that are refined with the 
DAS Tool [ 28 ]. The DAS Tool performs bin refinement through a 
“der eplication, a ggr egation, and scoring” pr ocess, in whic h candi- 
date bins ar e initiall y scor ed based on the pr esence/absence of 
single-copy marker genes (SCGs, which are a proxy for bin com- 
pleteness). Redundant candidate bin sets are then a ggr egated,
and an iter ativ e scoring pr ocess is performed, so onl y the best- 
quality, nonr edundant bins r emain; the bin scor e ( S b ) incr eases 
ith the number of SCGs and decreases with duplicate SCGs per
in. Please refer to [ 28 ] for an overview of the DAS algorithm
nd the formula to determine the bin score . T he input for each
inning tool differs slightly, but they all r el y on the catalog of
ontigs obtained from the assembly and the coverage files ob-
ained from the read mapping module (see Fig. 1 ). A report is
ener ated for eac h of the binning gr oups (onl y 1 is generated if
obinning is performed), which highlights 3 k e y metrics: com-
leteness, r edundancy, and bin scor e. The first 2 metrics are cal-
ulated by the presence/absence of single-copy genes, and the 
atter is a function of the former two. Plots generated by an
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Figure 1: Simplified workflow dia gr am. Workflow modules are represented by rectangular blue shapes and data files are represented by oval y ello w 

shapes, except for entrypoint files shown in a dashed yellow r ectangle. Arr ows indicate input and output of data between modules. 

Table 3: Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset, 
along with the amount of r efer ence genomes used to generate the dataset 

Dataset Identifier No. of samples Size (GB) 
No. reference 

genomes 

Marine marmg 10 50 622 
Strain Madness strmg 100 200 408 
Human Airways h_airways 10 44 1,394 
Human Genital h_urogenital 9 39 1,394 
Human Gut h_gastrointestinal 10 44 1,057 
Human Oral h_oral 10 43 1,057 
Human Skin h_skin 10 44 1,394 
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xample r eport ar e shown in Fig. 2 . It is possible to compare
he performance of the different binning software and obtain the
roportion of bins above a specified particular quality threshold
ased on the bin score . T he source table for the report is provided,
o that users can generate custom reports and inspect specific in-
ividual bins. Bins that pass the quality threshold are stored in

ndividual FASTA files, so they can easily be used for downstream
nalyses with tools such as CheckM or GTDB-Tk [ 43 , 44 ]. We chose
ot to include these software in the workflow as they r el y on fairly

ar ge r efer ence databases and/or contain se v er al differ ent steps
hat are dependent on third-party softwar e, whic h would affect
etaphor’s portability. Bin collections generated with Metaphor
an be imported into the Anvi’o along with cov er a ge data (BAM
les), so users can use the inter activ e interface of Anvi’o to exam-

ne the bins. 

ontig-level taxonomic and functional profiling 

o facilitate quantitative metagenomics applications, Metaphor’s
nnotation module gener ates contig-le v el functional and taxo-
omic profiles based on the NCBI COG database [ 23 ]. These are
btained by predicting coding sequences with Prodigal and then
ligning the resulting amino acid files with Diamond [ 21 , 22 ] in the
iter ativ e” mode . T his setting performs repeated rounds of align-

ent, with an incr easing degr ee of sensitivity when no hits are
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Table 4: Output files for each strategy. If only 1 dataset/group is being analyzed, assembly and binning results are named as “Coassembly”
and “Cobinning,” r espectiv el y. If m ultiple datasets/gr oups ar e used, the r esults ar e named according to the gr oup/dataset’s name 

Str a tegy Description Reads files Assemblies Bins 

SASB Single assembly, single 
binning 

Sample_0.fastq Sample_0_contigs.fasta Sample_0_bins/ 

Sample_1.fastq Sample_1_contigs.fasta Sample_1_bins/ 
Sample_2.fastq Sample_2_contigs.fasta Sample_2_bins/ 

SACB Single assembly, cobinning Sample_0.fastq Sample_0_contigs.fasta Cobinning_bins/ 
Sample_1.fastq Sample_1_contigs.fasta 
Sample_2.fastq Sample_2_contigs.fasta 

CACB Coassembly, cobinning Sample_0.fastq Coassembly_contigs.fasta Cobinning_bins/ 
Sample_1.fastq 
Sample_2.fastq 

Figure 2: Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the CACB (coassembly, cobinning) setting. 
(A) A stac ked histogr am of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line . (B) T he size (in base pairs) and 
(C) N50 of bins . T he y-axis is in log-scale. (D) Scatterplot of completeness and redundancy for each bin. Colors indicate the tool used to generate the 
bin, and the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of 
A). (E) The number of bins that passed or failed the quality threshold for each binning tool. 
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detected in the pr e vious r ound. Abundances for eac h featur e ar e 
calculated based on the cov er a ge of all coding sequences that 
align to that featur e. Figur e 3 illustrates the profile visualizations 
offer ed by Meta phor: a heatma p of COG categories for the func- 
tional profile and a stacked barplot for the most abundant taxa 
(for the latter, 1 plot is generated for each taxonomic rank). The 
annotation module outputs count tables with both absolute and 

r elativ e abundance values of taxa and functional categories and 

may be dir ectl y imported b y do wnstr eam statistical toolkits suc h 

as MixOmics or PhyloSeq [ 10 , 11 ]. 

Quality control and performance metrics 

Additional outputs produced by Metaphor include the quality 
contr ol r eports fr om the fastp and FastQC tools, with a summary 
of FastQC outputs being produced by MultiQC [ 14–16 ]. A simple 
r eport is pr oduced by the assembl y module with sequence statis- 
tics of the assembled contigs (e.g., N50, number of contigs, total 
and mean length of contigs), and performance metrics. At the 
nd of the w orkflo w execution, the postprocessing module gen-
r ates figur es obtained fr om the “benc hmark” files pr ovided by
nak emak e . T hese files contain process information such as run-
ime and memory consumption. Metaphor plots these metrics in 

 ways: total per rule and per-sample mean (Fig. 4 ) as some rules
un only once across all samples, while other rules run per sam-
le . T hese plots help identify computational bottlenecks and as-
ess whether computing resources are adequate. 

ssembly and binning strategies 

he effects of distinct assembly and binning strategies on the fi-
al output of metagenomic w orkflo ws are highly dependent on
he data source and r esearc h context [ 8 ]. As such, the choice of
ndividual or group assembly and binning can only be assessed
 posteriori. We compared 3 different strategies: SASB , SACB , and
ACB; see Tables 3 and 4 and “Assessment on CAMI II synthetic
atasets” section for details. For assembly, we used the 5 different
roups in the Human Microbiome dataset along with the Strain
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Figure 3: Annotation plots generated by Metaphor on the Strain Madness (“strmg”) and the Marine (“marmg”) datasets. (A) The functional profile as a 
heatmap of the relative abundance of functional COG categories (y-axis) across samples (x-axis) for 5 samples from the Strain Madness and Marine 
datasets . (B) T he taxonomic pr ofile of the Marine dataset as a stac ked bar plot of r elativ e abundance of taxa. In this case, the phylum rank was used, 
but Metaphor generates this for the most common taxonomic ranks (phylum, class, order, family, genus, species). The number of abundant taxa can 
be easily adjusted in the w orkflo w settings. For both taxonomic and functional profiles, abundance of each feature is calculated from coverage values 
for each gene. 
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F igure 4: P erformance metrics r eport gener ated by Meta phor on the Marine dataset pr ocessed with the SASB str ategy. Total runtime per rule (A), mean 
runtime per sample (B), total memory usage per rule (C), and mean memory usage per sample (D). The x-axis is in log format. Cutoffs are applied to 
omit rules with short runtime or low memory usage. Colors indicate the workflow module of each rule. 
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Madness and Marine datasets. We only used the latter 2 datasets 
for the binning assessment. 

We used 6 metrics to e v aluate assembl y performance: percent- 
age of recovered genome fraction, size of the largest contig, du- 
plication ratio, length of misassembled contigs, number of mis- 
assemblies, and number of mismatches per 100,000 base pairs.
High values for the first 2 metrics and low values for the last 4 
indicate better performance. We observed a gener al tr ade-off be- 
tween assembly completeness (represented by the first 2 metrics) 
and the number of errors in the assembly (represented by the 
last 4 metrics), shown in Fig. 5 (Supplementary Fig. S1). In most 
datasets, assemblies were more complete and contiguous, albeit 
with more errors when the coassembly strategy was used. The ex- 
ception was the Strain Madness (“strmg”) dataset, for which the 
individual assembly was more complete and contiguous, albeit 
with mor e err ors . T his ma y be attributed to the high degree of 
str ain/intr aspecies div ersity in that dataset [ 8 ]. A high degr ee of 
similarity between the related genomes likely confounds assem- 
bly algorithms, and pooling samples together may a ggr av ate this 
effect [ 5 ]. 

To e v aluate differ ences between binning str ategies, we com- 
pared the number and quality of bins after refinement with the 
AS Tool. Bins generated with each approach were further derepli-
ated with dRep [ 40 ]. This is because the SASB str ategy gener ates a
et of bins for each sample, and datasets with similar composition
ill likel y gener ate r edundant bins, as there is no dereplication
f bins between samples. Results varied significantly between the 
arine and Strain Madness datasets. In both datasets, the mean

in score was the highest for the CACB strategy (Supplementary
ig. S2). Ho w e v er, in the Str ain Madness dataset, CACB pr oduced a
ignificantly lo w er number of bins (33 compared with 259 and 215
enerated with SASB and SACB, respectively), which did not occur
n the Marine dataset. The performance of each binning tool is
lso variable between strategies and conditional on the charac- 
eristics of the original dataset, with no clear “winner,” and each
ool favoring particular performance metrics, in a gr eement with
 esults fr om the CAMI II challenge [ 8 ]. Tools like DAS Tool attempt
o conciliate the output of multiple binning algorithms to generate 
 consensus output that theor eticall y outperforms each individ-
al algorithm. 

Since the binning performance is assessed as a proxy of the
ombination of quantity and quality of generated bins, rather 
han only one metric or the other, we calculated the cumula-
ive bin score (the sum of scores of all bins) and the number
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Figure 5: Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the 
MetaQUAST tool. Data points above the 98th percentile were classified as outliers and removed from the figure to improve visualization. See 
Supplementary Fig. S1 for the full data. The title at the top of each panel indicates the plotted metric. Panels A and C show percentages along the 
x-axis, while the remainder show absolute values. 
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f bins above an increasing score threshold, shown in Fig. 6 .
he higher the threshold, the more significant the differences
etween the cum ulativ e scor es, as onl y bins with the highest
uality compose the score. For the Marine dataset, we observed
 higher score and a larger number of bins in the CACB strat-
gy and the exact opposite in the Strain Madness dataset. In
oth datasets, there was a clear difference between SASB before
ereplication and the other strategies, confirming that several
ighly similar samples produce redundant bins . T hat difference
as also present in the SACB strategy, albeit not so pronounced

see Supplementary Figs. S2, S3 and S4 for the comparison of
er eplicated and non-der eplicated data). This suggests that for
oth of these strategies, further dereplication is recommended
 5 ]. Although the Strain Madness dataset sho ws few er bins gen-
rated with CACB, a summary of the bins r ecov er ed with that
ataset is displayed in Supplementary Table S1. The cum ulativ e
in score for that strategy remained similar to SACB and SASB
bove the 0.8 score threshold, since there are fewer bins with a
core lo w er than that. In that same dataset, SASB sho w ed the
est performance, although differences were small above the 0.8
hreshold. In the Marine dataset, there were more pronounced
ifferences between strategies . C ACB produced the larger quan-
ity and higher cum ulativ e scor e of bins, follo w ed b y SASB
nd SACB. 
In summary, our results indicate that, for most metagenomic
nal ysis scenarios, coassembl y follo w ed b y cobinning is recom-
ended, assuming that samples are sourced from a similar envi-

onment or population. The exception to this is when when there
s a high le v el of intr aspecies/str ain-le v el div ersity acr oss samples,
ike in the Strain Madness dataset. In that scenario, single assem-
ly follo w ed b y single binning is pr eferr ed, follo w ed b y dereplica-
ion of bins between samples . T here is , howe v er, a tr ade-off be-
ween the different approaches, as computational requirements
re higher for the pooled strategies. Coassembly resulted in higher
enome r ecov ery fr actions and lar ger contigs, although usuall y
t the expense of a higher number of misassemblies and higher
uplication ratio. When combining coassembly with cobinning,
here is a remarkable improvement in the quantity and quality
f bins generated for a diverse dataset (r epr esented by the Marine
ataset), whereas the difference was negligible in the Strain Mad-
ess dataset. Ther efor e, when deciding the assembly and binning
trategy, it is important to consider the expected strain-level di-
ersity and abundances of each individual genome, as the interac-
ion between these factors is likely to limit the resolution of recov-
red bins . T his is shown in the C AMI II challenge [ 8 ] (see Fig. 1G);
enomes with low strain diversity (i.e., are less than 95% similar to
ny other genome) have a higher correlation between sequencing
ov er a ge and r ecov er ed fr action than common genomes ( ≥95%
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Figure 6: Cum ulativ e bin scor e and number of bins between binning strategies for the Marine and Strain Madness datasets. Lines show the cum ulativ e 
bin score (A, B) and number of bins (C, D) along the y-axis, for bins above a certain score threshold (x-axis). Left column shows Marine dataset, and 
right column shows Strain Madness dataset. 
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similar to other genomes in the sample), although many times,
sequencing cov er a ge was not all corr elated with genome r ecov- 
ery fr action, especiall y for smaller bins that r epr esent plasmids 
or circular elements. 

Availability and Future Directions 

Metaphor is available through Bioconda [ 45 ], a popular reposi- 
tory of bioinformatics software. It can be installed with a single 
command from the conda package manager [ 46 ] or from source 
using pip, the Python pac ka ge mana ger. The installation of all 
thir d-party softw are used b y Meta phor is handled automaticall y 
by Snak emak e and conda. It can be easily deplo y ed in differ- 
ent computing en vironments , such as high-performance comput- 
ing clusters and cloud instances, due to Snak emak e’s support 
of execution pr ofiles. Meta phor is de v eloped with documented 

best practices in w orkflo w development [ 6 , 47 ], stri ving for re pro- 
ducibility and tr anspar ency of its results. Data used for testing 
Metaphor’s installation (see documentation for details) are avail- 
able from GitHub at https://github.com/vinisalazar/mg-example- 
data . These data are a subset of the CAMI I challenge data [ 36 ] that 
r e r educed in size in order to run test commands in a r easonable
ime. 

The w orkflo w may be extended to support downstream tools
uch for genome analysis such as GTDB-Tk, CheckM, and dRep.
 his ma y help with further impr ov ement of str ain-le v el r esolution

n bins; there are a number of strategies for that, such as identi-
cation of misassembled contigs or using the assembl y gr a ph for
ariant detection [ 48 , 49 ]. New functionality may also be added
or the identification of eukaryotic and vir al contigs; Meta phor
ould benefit fr om ne w third-party software to facilitate the gen-

r ation of non-pr okaryotic bins in the near future . T he output
f Metaphor’s “annotation” module is suitable for ad hoc identi- 
cation of eukaryotic and viral contigs; after selecting the anno-
ated prokaryotic contigs, it is possible to filter them out, leaving
nannotated (putative) eukaryotic and viral contigs . T hese can
hen be used as input for a eukaryotic or viral discovery pipeline
 50–52 ], but this process could be further impr ov ed by facilitating
he use of custom r efer ence databases in the annotation mod-
le . T his can also be done dir ectl y with the output of the as-
embly module, but in that case, there will not be any screen-
ng for prokaryotic contigs . One dra wback of this approach is that

https://github.com/vinisalazar/mg-example-data
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ac h eukaryotic/vir al discov ery pipeline has specific input data
ormatting r equir ements . T his integr ation with non-pr okaryotic
ipelines, along with support for long r eads, ar e priority featur es
o be added to future major versions of Metaphor. 

vailability of Source Code and 

equirements 

roject name: Metaphor 
r oject homepa ge: https://github.com/vinisalazar/meta phor
ocumentation: https://metaphor -wor kflow.readthedocs.io/
perating system(s): Linux, Mac OS (Intel) 
r ogr amming langua ge: Snak emak e (Python 3) 
ther r equir ements: Conda, Snak emak e v7 or higher, Python 3.7
r higher. 
icense: MIT 

RID number: SCR_023701 

dditional Files 

upplementary Fig. S1. Differ ences between assembl y str ategies
cross datasets. Same data as Fig. 5 , but including outliers. 
upplementary Fig. S2. Boxplot of bin scores across different
tr ategies. Eac h data point is a genome bin, and the y-axis depicts
in scores from 0 to 1. Columns separate datasets, and colors rep-
 esent differ ent str ategies. Numbers underneath eac h bar show
he number of data points for that bar. Bin sets were dereplicated
ith dRep. 
upplementary Fig. S3. Boxplot of bin scores across different
tr ategies for non-der eplicated data. Same as Fig. S2, but with
on-der eplicated data. Eac h data point is a genome bin, and the y-
xis depicts bin scores from 0 to 1. Columns separate datasets, and
olors r epr esent differ ent str ategies. Numbers underneath eac h
ar show the number of data points for that bar. 
upplementary Fig. S4. Cum ulativ e bin scor e and number of bins
etween binning strategies for the Marine and Strain Madness
atasets. Solid lines show the same data as Fig. 6 , and dashed lines
how data based on bins prior to dereplication with dRep. 
upplementary Table S1. Summary of genome bins r ecov er ed
rom the Strain Madness dataset, CACB strategy. “Bin ID” indi-
ates the binning algorithm that generated the bin, “Bin score
 b ” is the r elativ e bin scor e, SCG r efers to single-copy gene in
SCG completeness,” and “SCG redundancy,” “FastANI r efer ence,”
nd “GTDB classification” refer to the reference genome and cor-
esponding taxonom y assignment. Taxonom y determined with
TDB-Tk v2.3.0, r efer ence data r214 [ 44 ]. 

bbreviations 

 ACB: coassembly, cobinning; C AMI II: Second Critical Assess-
ent for Metagenome Interpretation; GRM: genome-resolved
eta genomics; MAG: meta genome-assembled genome; NCBI:

he National Center for Biotechnology Information; QC: quality
ontr ol; SACB: single assembl y, cobinning SASB: single assembl y,
ingle binning; SCG: single-copy marker gene. 

a ta Av ailability 
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