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Glucocorticoids (GCs; ie, steroids) are important chemotherapeutic agents in the treatment of B-cell
precursor acute lymphoblastic leukemia (B-ALL),1 and de novo GC resistance predicts relapse and
poor clinical outcome.2,3 Glucocorticoids induce B-ALL cell apoptosis through the activation of
glucocorticoid receptor (GR), a ligand-induced nuclear receptor transcription factor (TF).4,5 We pre-
viously identified disruptions to GR-bound cis-regulatory elements controlling TLE1 expression, a GC-
response gene upregulated by steroids, as a novel mechanism affecting GC resistance in primary
B-ALL cells from patients.6 Supporting our findings, TLE1 expression was found to be associated with
GC resistance in primary B-ALL cells from patients, with 40% of samples of the patients who are GC-
resistant harboring low TLE1 expression that further correlates with treatment response (supplemental
Figure 1).7,8 In this regard, TLE1 was also identified as an indicator of adverse prognosis in patients with
ALL.9 Because TLE1 functions as a repressor of canonical Wnt signaling10 and investigations in other
cell systems have suggested interaction between GC and canonical Wnt signaling pathways,11-13 we
investigated mechanisms connecting TLE1 to GC resistance and the extent of cross talk between GC
and canonical Wnt signaling pathways in B-ALL.

Firstly, we examined the functional effects of a homozygous knockout (KO) of TLE1 on GCs and
canonical Wnt signaling using CRISPR-Cas9 genome editing in the Nalm6 human B-ALL cell line
(Figures 1A-B). Consistent with our previous observations,6 we found that TLE1 KO led to significantly
increased resistance to GCs (ie, prednisolone) with more than a fivefold increase in prednisolone lethal
concentration 50% (LC50) compared with that in wild-type (WT) cells (Figure 1C). To better under-
stand the broader effects of TLE1 disruption on GC signaling, we conducted RNA sequencing in WT
and TLE1 KO Nalm6 cells treated with prednisolone or vehicle control for 24 hours. Differentially
expressed gene analyses between WT and TLE1 KO cells in the presence or absence of prednisolone
helped identify an enrichment for apoptotic signaling and cell cycle pathways at TLE1 KO repressed
genes and diverse metabolic pathways for TLE1 KO activated genes (Figure 1D; supplemental
Figure 2; supplemental Table 1). Similar results were obtained using dexamethasone (Figure 1E). To
identify TLE1-dependent changes to canonical Wnt signaling, both WT and TLE1 KO cells were
transfected with the M50 Super 8xTOPFlash reporter plasmid14 and treated for 24 hours with a
canonical Wnt signaling agonist (CHIR-99021) or vehicle control. This assay measures β-catenin–
driven luciferase activity as an indicator of endogenous canonical Wnt signaling. Under both treatment
conditions, TLE1 KO cells showed increased canonical Wnt activity compared with WT cells
(Figure 1F), which is consistent with the role of TLE1 as a repressor of canonical Wnt signaling.10
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Figure 1. Impact of TLE1 knockout on GC and canonical Wnt signaling. (A) Schematic representation of CRISPR/Cas9 genome editing of exon 7 of the TLE1 gene, with

deep sequencing confirmation of the edit to both strands in Nalm6 cells. (B) Western blot showing protein expression of TLE1 (~83 kD; Abcam ab183742) in both TLE1 KO

Nalm6 and WT Nalm6 cells. Ponceau staining for total protein (bottom). (C) Prednisolone drug response curves in TLE1 KO Nalm6 cells (red) and WT Nalm6 cells (blue) after 72

hours of prednisolone treatment (left); n = 3 per group. Concentrations of prednisolone used were 5 pM, 50 pM, 0.5 nM, 5 nM, 50 nM, 0.5 μM, 5 μM, 50 μM, and 500 μM. LC50

fold-change in TLE1 KO Nalm6 cells compared with WT Nalm6 cells (right). (D-E) Volcano plots showing differentially expressed genes between WT and TLE1 KO cells after 24

hours of prednisolone (5 μM) treatment (D) or dexamethasone (100 nM) treatment (E). Genes involved in apoptotic pathways are shown in red, and several notable genes are

highlighted. (F) β-Catenin luciferase reporter assay for WT Nalm6 and TLE1 KO cells treated with or without CHIR-99021 (0.5 μM) for 24 hours, n = 6 per group.
Next, we assessed the GC and canonical Wnt signaling pathway
cross talk in B-ALL cells independent of TLE1 KO. Two human
B-ALL cell lines (Nalm6 and 697) were treated with different
prednisolone concentrations for 72 hours in the presence or
absence of Wnt agonist, CHIR-99021. At all GC concentrations
and in both cell lines, cotreatment with the Wnt agonist significantly
increased cellular viability relative to treatment with prednisolone
alone (supplemental Figure 3). Similar results were also obtained
using dexamethasone (supplemental Figure 4). In addition, we
4108 RESEARCH LETTER
confirmed this effect through ex vivo GC drug viability studies in
xenograft cell samples derived from patients with B-ALL
(supplemental Figure 5). These findings suggest that Wnt activation
opposes GC-induced apoptosis, which is consistent with the role
for canonical Wnt signaling in cell proliferation and cancer predis-
position15 and prior findings from B-ALL cell viability experiments
using Wnt antagonist.16 Concordant with these data, we identified
synergy from cotreatment with prednisolone or dexamethasone and
canonical Wnt antagonists (supplemental Figure 6) and in TLE1 KO
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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Figure 2. Crosstalk and antagonism between GC and canonical Wnt signaling. (A) CUT&RUN sequencing read enrichment at LEF1 binding sites ± 1 kb (cell signaling

antibody #2230). Enrichment is shown for a 24-hour treatment with vehicle control (left) or prednisolone (5 μM; GC) (right). (B) Log2-transformed normalized CUT&RUN

sequencing read counts at LEF1 binding sites treated for 24 hours with vehicle control (x-axis) or prednisolone (y-axis). Binding sites exhibiting significant differences in occupancy

(false discovery rate <0.05) are shown in pink. (C) Integrative Genomics Viewer (IGV) genome browser images of signal tracks providing examples of GR and LEF1 co-occupancy

at BCL6 (left) and BMF (right) gene loci. (D) Log2-transformed fold changes of genes commonly regulated by GC and Wnt signaling pathways in Nalm6 cells after 24 hours of

treatment using 5 μM prednisolone (GC-response genes; x-axis) or 0.5 μM CHIR-99021 (Wnt-response genes; y-axis). GC-response and Wnt-response gene log2 fold changes

are provided. The percentage of genes in each quadrant is provided, and genes showing opposing effects are highlighted in quadrants 2 and 4. Red denotes genes involved in cell

death, cell proliferation, and/or cell cycle pathways and notable genes are labeled. (E) Log2-transformed fold changes of genes commonly regulated by GC and Wnt signaling

pathways in Nalm6 cells after 24 hours of treatment using 100 nM dexamethasone (GC-response genes; x-axis) or 0.5 μM CHIR-99021 (Wnt-response genes; y-axis).

GC-response and Wnt-response gene log2 fold changes are provided. The percentage of genes in each quadrant is provided, and genes showing opposing effects are

highlighted in quadrants 2 and 4. Red denotes genes involved in cell death, cell proliferation, and/or cell cycle pathways and notable genes are labeled. (F) Volcano plot of

differential protein expression between prednisolone (5 μM) or CHIR-99021 (0.5 μM) treatment for 24 hours. Plot shows proteins of discordantly regulated prednisolone-response

and Wnt-response genes with consistent directionality. Red denotes proteins involved in cell death, cell proliferation, and/or cell cycle pathways, and notable proteins are labeled.
GC-resistant cells (supplemental Figure 7).17 To further determine
the extent to which GCs affect canonical Wnt signaling, we
measured β-catenin–driven luciferase reporter activity in B-ALL cells
treated with prednisolone and/or CHIR-99021. We found that
prednisolone treatment significantly dampened canonical Wnt
signaling in the presence or absence of Wnt agonist, with consis-
tent results also observed in TLE1 KO cells (supplemental Figure 8).
Cross talk between GC and canonical Wnt signaling was also
observed in T-cell ALL (T-ALL; supplemental Figures 9-11).
Collectively, these data indicate cross talk and antagonism between
these 2 signaling pathways. The use of xenograft cell samples
derived from patients was approved by the institutional review board
at St Jude Children’s Research Hospital.

We further investigated genomic mechanisms that promote
antagonism between GC and canonical Wnt signaling pathways.
8 AUGUST 2023 • VOLUME 7, NUMBER 15
Using Nalm6 prednisolone- and dexamethasone-response genes,
we found that in addition to upregulation of the TLE1 canonical Wnt
repressor gene, both GCs repressed the canonical Wnt activating
TF gene LEF1 (supplemental Figure 12). Consistent effects on
TLE1 and LEF1 expression were also reported in a panel of 19
human B-ALL cell lines after dexamethasone treatment.18 We
therefore asked whether a 24-hour GC treatment resulted in
decreased genome occupancy of LEF1. Using the CUT&RUN
assay, we determined that LEF1 binding was less at 32 105 (53%)
and more at only 730 (1.2%) of the sites after 24 hours of pred-
nisolone treatment (Figures 2A-B). Strikingly, we also uncovered
that 58% of GR binding sites (previously mapped in the study by
Bergeron et al6) overlap with LEF1 binding sites (examples in
Figure 2C), and genes associated with these overlapping sites were
significantly enriched for cell proliferation and apoptotic signaling
pathways. Consistent results were also observed for the canonical
RESEARCH LETTER 4109



Wnt activating TF TCF7L2 using CUT&RUN, with 91% of differ-
entially bound TCF7L2 sites exhibiting decreased occupancy after
prednisolone treatment and 20% of GR binding events overlapping
TCF7L2 binding sites at genes enriched for apoptotic signaling
(false discovery rate = 1.2 × 10-8; supplemental Figure 13).

To determine whether overlapping TF occupancy affects cross talk
between GC and canonical Wnt signaling transcriptional
responses, RNA sequencing was performed using WT Nalm6 cells
treated for 24 hours with CHIR-99021 or vehicle control. We
identified that 84% of Wnt-response genes were also
prednisolone-response genes in Nalm6 cells. Supporting a mutual
antagonism between these 2 signaling pathways, 73% of these
common response genes exhibited discordant changes in gene
expression (Figure 2D) and were enriched in cell death and cell
cycle pathways (supplemental Table 2). Consistent patterns were
also found using dexamethasone-response genes in Nalm6 cells
(Figure 2E) and CEM T-ALL cells (supplemental Figure 14), with
most Wnt-response genes overlapping GC-response genes and
most of these common response genes being discordantly regu-
lated (Nalm6 = 74% and CEM = 65%) and enriched for similar
biological pathways (supplemental Table 2). More than 94% of
discordantly regulated prednisolone-response genes were also
discordantly regulated dexamethasone-response genes. Most
discordantly regulated prednisolone-response genes (58%) were
also associated with overlapping GR and LEF1 or GR and TCF7L2
binding events in Nalm6 cells. Sixty-one discordantly regulated
prednisolone-response genes were also previously linked to GC
resistance in primary B-ALL cells from >200 patients
(supplemental Table 3),7 supporting a broader impact on GC
resistance, and most of these genes (46 of 61 [75%]) were
associated with overlapping GR and LEF1 or GR and TCF7L2
binding events. Most discordantly regulated GC-response genes
(≥66%) also exhibited a more blunted GC response in TLE1 KO
cells compared with that in WT cells, concordant with enhanced
canonical Wnt signaling and reduced cellular apoptosis from TLE1
ablation (supplemental Figure 15). To determine whether this
transcriptional antagonism translates to the proteome level, we
performed mass spectrometry in Nalm6 cells after a 24-hour
treatment with prednisolone or CHIR-99021. We discovered that
50% of discordantly regulated prednisolone-response genes also
exhibited significantly different patterns as proteins (supplemental
Table 4), and 66% of these proteins displayed consistent direc-
tionality (Figure 2F).

Collectively, our data uncovered extensive cross talk and mutual
antagonism between GC and canonical Wnt signaling pathways in
B-ALL cells, and we confirmed similar effects in T-ALL cells. This
antagonism is mediated in part through binding of GC and Wnt TFs
to common cis-regulatory elements associated with cell death and
cell proliferation genes. This overlap in TF occupancy was further
accompanied by overlapping and opposing transcriptional pro-
grams that affected protein expression. Overall, these data suggest
that cis-regulatory disruptions at TLE1 are linked to GC resistance
in primary B-ALL cells from patients through reduced GC-mediated
apoptosis via enhanced canonical Wnt signaling. As a result of the
deep genomic and gene regulatory connectivity between these 2
signaling pathways, our data support the importance of canonical
Wnt signaling in mediating GC resistance in B-ALL and further
suggest that treatment with canonical Wnt antagonists may improve
GC sensitivity in patients with resistant disease.
4110 RESEARCH LETTER
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