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Summary
Background Single-cell transcriptomic studies have greatly improved organ-specific insights into macrophage
polarization states are essential for the initiation and resolution of inflammation in all tissues; however, such
insights are yet to translate into therapies that can predictably alter macrophage fate.

Method Using machine learning algorithms on human macrophages, here we reveal the continuum of polarization
states that is shared across diverse contexts. A path, comprised of 338 genes accurately identified both physiologic and
pathologic spectra of “reactivity” and “tolerance”, and remained relevant across tissues, organs, species, and immune
cells (>12,500 diverse datasets).

Findings This 338-gene signature identified macrophage polarization states at single-cell resolution, in physiology and
across diverse human diseases, and in murine pre-clinical disease models. The signature consistently outperformed
conventional signatures in the degree of transcriptome-proteome overlap, and in detecting disease states; it also
prognosticated outcomes across diverse acute and chronic diseases, e.g., sepsis, liver fibrosis, aging, and cancers.
Crowd-sourced genetic and pharmacologic studies confirmed that model-rationalized interventions trigger
predictable macrophage fates.

Interpretation These findings provide a formal and universally relevant definition of macrophage states and a pre-
dictive framework (http://hegemon.ucsd.edu/SMaRT) for the scientific community to develop macrophage-targeted
precision diagnostics and therapeutics.
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Research in context

Evidence before this study
The concept of macrophage polarization is well established in
immunology and has been widely studied. There are multiple
biomarkers that have been used to distinguish between
reactive (M1) and tolerant (M2) macrophages, such as the
expression of specific surface receptors, cytokines, and
metabolic enzymes. The use of biomarkers for macrophage
polarization is not always straightforward, as the phenotype
of macrophages can be influenced by multiple factors and can
vary between different tissues. There is no universal
biomarker of macrophage polarization that can be used across
all tissues and conditions.

Added value of this study
This work identifies a Signature of Macrophage Reactivity and
Tolerance (SMaRT) that is surprisingly conserved in many

tissues and conditions. A set of 338-genes derived from
Boolean Implication Network model of macrophages
identified macrophage polarization states in single cell, in
diverse physiology, tissue and disease context. The signature
was strongly associated with outcome in several diseases.
Further, genetic, and pharmacologic manipulations of several
SMaRT genes were found to modulate macrophage
polarization exactly as predicted by the model.

Implications of all the available evidence
The SMaRT signatures provide a quantitative and qualitative
framework for assessing macrophage polarization across
diverse tissues and conditions. The genes identified here
reveal several hitherto unforeseen players of macrophage
polarizations and potentially high-value targets to manipulate
the same.
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Introduction
Macrophages are complex; as sentinel cells of the innate
immune system, they are found in various organs and
their dysregulated activation can directly impact organ
functions and the outcome of all diseases.1,2 Macrophages
were initially classified as M1 (the classically activated
macrophages) and M2 (the alternatively activated macro-
phages) based on their functions at the extremes of po-
larization states.3 However, the current M1 and/or M2
signatures fail to describe the diverse, polyfunctional and
plastic cells, and the myriad of continuum states that they
adopt in the tissue at steady-state and during disease.4–7 To
cope with this degree of diversity and plasticity, several
definitions of macrophage subtypes have emerged, each
representing specialized contexts, e.g., TAMs, tumour-
associated macrophages8; LAMs, lipid-associated macro-
phages in atherosclerosis9; DAMs, disease-associated
microglia in neurodegenerative disorders10; SAMs, scar-
associated macrophages in liver fibrosis.11–13 These defi-
nitions were geared to identify divergent markers, spatial
localization, origin, and functional pathways associated
with macrophages during disease; however, they fall short
in predictive or prognostic abilities.

We sought to create and validate a comprehensive
model of macrophage processes for defining, tracking,
and even predicting macrophage fate after perturbation
(see Fig. 1a and Supplementary Fig. S1A for workflow
outline). We hypothesized that such a model might
inspire formal definitions for macrophage polarization
states that are reflective of fundamental processes and
maintain relevance across tissues, organs, diseases and
species. In addition, it may also rationalize diagnostics
and therapeutics to detect and reset, respectively,
deranged macrophage states in disease. We show that
such formal definition(s) of macrophage states is not only
possible, but also provide evidence for their usefulness in
single cell data analysis, in prediction and prognostication.
Methods

Detailed methods
Data collection and annotation
Publicly available microarray and RNASeq databases
were downloaded from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus
(GEO) website.14–16 Gene expression summarization was
performed by normalizing Affymetrix platforms by RMA
(Robust Multichip Average)17,18 and RNASeq platforms by
computing TPM (Transcripts Per Millions)19 values
whenever normalized data were not available in GEO. We
used log2(TPM) if TPM > 1 and (TPM—1) if TPM < 1 as
the final gene expression value for analyses. We also used
log2(TPM + 1) in some datasets. We also used publicly
data normalized using RPKM,20 FPKM,21,22 TPM,23,24 and
CPM.25,26 In the context of Affymetrix microarray data we
believe that RMA works better than MAS 5.0.27

Macrophage datasets used for network analysis. Previously
published pooled macrophage dataset from GEO
(GSE134312, n = 197) assayed on the Human U133 Plus
2.0 (GPL570), Human U133A 2.0 (GPL571) and Human
U133A (GPL96) platforms were used to perform macro-
phage network analysis. This dataset was manually anno-
tated with M0, M1 or M2 phenotypes. Accession numbers
for the M0, M1, and M2 phenotypes are presented in
Supplementary Table S1. Five validation datasets are used
to test the macrophage gene signature: GSE35449 (7 M0, 7
M1, 7 M2), GSE46903 (64 M0, 29 M1, 40 M2), GSE61298
(6 M0, 6 M1, 6 M2), GSE55536 human peripheral blood
mononuclear cell-derived macrophage (6 M0, 6 M1, 6
www.thelancet.com Vol 94 August, 2023
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Fig. 1: BoNE-assisted formulation of formal definitions of macrophage polarization. a) Overview of workflow and approach used in this
work. b and c) A pooled dataset of diverse human transcriptomes (b; n = 197) was used to build a Boolean implication network (c-top) and
visualized as gene clusters (nodes, comprised of genes that are equivalent to each other) that are interconnected based on one of the six
overwhelming Boolean implication relationship between the clusters (directed edges; c-bottom). d) Display of the major Boolean paths within
the network prioritized based on the cluster size. Annotations of “immunoreactive” and “immunotolerant” ends of the spectrum are based
on the expression profile of the gene clusters in 68 samples within the pooled dataset that were stimulated in vitro as M1 and M2, respectively.

Articles

www.thelancet.com Vol 94 August, 2023 3

www.thelancet.com/digital-health


Articles

4

M2), GSE55536 iPSC derived macrophages (3 M0, 3 M1, 3
M2). See Supplementary Information 1 for all datasets
analysed in this work.

Computational approaches
StepMiner analysis. StepMiner is a computational tool
that identifies step-wise transitions in a time-series
data.28 StepMiner performs an adaptive regression
scheme to identify the best possible step up or down
based on sum-of-square errors. The steps are placed
between time points at the sharpest change between low
expression and high expression levels, which gives
insight into the timing of the gene expression-switching
event. To fit a step function, the algorithm evaluates all
possible step positions, and for each position, it com-
putes the average of the values on both sides of the step
for the constant segments. An adaptive regression
scheme is used that chooses the step positions that
minimize the square error with the fitted data. Finally, a
regression test statistic is computed as follows:

F stat = ∑n
i=1(X̂ i − X)2/(m − 1)

∑n
i=1(Xi − X̂ i)2/(n −m)

Where Xi for i = 1 to n are the values, X̂i for i = 1 to n
are fitted values. m is the degrees of freedom used for
the adaptive regression analysis. X is the average of all
the values: X = 1

n ∗ ∑n
j= 1Xj. For a step position at k, the

fitted values X̂l are computed by using 1
k ∗ ∑n

j= 1Xj for
i = 1 to k and 1

(n−k) ∗ ∑n
j= k+ 1Xj for i = k+ 1 to n.

Boolean analysis. Boolean logic is a simple mathematic
relationship of two values, i.e., high/low, 1/0, or positive/
negative. The Boolean analysis of gene expression data
requires the conversion of expression levels into two
possible values. The StepMiner algorithm is reused to
perform Boolean analysis of gene expression data.29 The
Boolean analysis is a statistical approach which creates
binary logical inferences that explain the relationships
between phenomena. Boolean analysis is performed to
determine the relationship between the expression levels
of pairs of genes. The StepMiner algorithm is applied to
gene expression levels to convert them into Boolean values
(high and low). In this algorithm, first the expression
values are sorted from low to high and a rising step
e) Reactome pathway analysis of each cluster along the top continuum
clusters see http://hegemon.ucsd.edu/SMaRT/). f and g) Training (f) wa
proaches; the best-performing Boolean path, #13-14-3 was then validated
datasets used see Supplementary Table S1. The performance was mea
Comparative analysis of performance of the BoNE-derived versus other tra
Heatmap displaying the pattern of gene expression in C#13, 14 and 3. Se
the genes in either C#13 alone or C#14-3 alone to classify M0/M1/M2 p
Schematic summarizing the model-derived formal definitions of macroph
C#13 (hypo to hyper- “reactivity” spectrum) and those in C#14 + 3 (hyp
entire range of physiologic and pathologic response can be assessed via
function is fitted to the series to identify the threshold.
Middle of the step is used as the StepMiner threshold.
This threshold is used to convert gene expression values
into Boolean values. A noise margin of 2-fold change is
applied around the threshold to determine intermediate
values, and these values are ignored during Boolean
analysis. In a scatter plot, there are four possible quadrants
based on Boolean values: (low, low), (low, high), (high,
low), (high, high). A Boolean implication relationship is
observed if any one of the four possible quadrants or two
diagonally opposite quadrants are sparsely populated.
Based on this rule, there are six kinds of Boolean impli-
cation relationships. Two of them are symmetric: equiva-
lent (corresponding to the positively correlated genes),
opposite (corresponding to the highly negatively correlated
genes). Four of the Boolean relationships are asymmetric,
and each corresponds to one sparse quadrant: (low =>
low), (high => low), (low => high), (high => high). Boo-
leanNet statistics (Fig. 2a) is used to assess the sparsity of a
quadrant and the significance of the Boolean implication
relationships.29,30 Given a pair of genes A and B, four
quadrants are identified by using the StepMiner thresh-
olds on A and B by ignoring the Intermediate values
defined by the noise margin of 2 fold change ( ± 0.5
around StepMiner threshold). Number of samples in each
quadrant are defined as a00, a01, a10, and a11 (Fig. 1a) which
is different from X in the previous equation of F stat.
Total number of samples where gene expression values for
A and B are low is computed using the following equa-
tions.

nAlow = (a00 + a01), nBlow = (a00 + a10),
Total number of samples considered is computed

using following equation.

total= a00+a01+a10+a11
Expected number of samples in each quadrant is

computedby assuming independencebetweenAandB.For
example, expected number of samples in the bottom left
quadrant e00 = n̂ is computed as probability of A low
((a00 + a01)/total) multiplied by probability of B low
((a00 + a10)/total) multiplied by total number of samples.
Followingequation isused to compute theexpectednumber
of samples.
paths was performed to identify the enriched pathways (for other
s performed on the 68 pooled samples using machine-learning ap-
(g) in multiple independent human macrophage datasets. For a list of
sured by computing ROC AUC for a logistic regression model. h)
ditional approaches in segregating M0/M1/M2 polarization states. i)
lective genes are labelled. j) Validation studies assessing the ability of
olarization states in multiple human macrophage datasets. k) Top:
age polarization states based on the levels of expression of genes in
o to hyper- “tolerant” spectrum). Bottom: A composite score of the
the BoNE-derived path #13 → 14 → 3.
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Fig. 2: Definitions of “reactivity” and “tolerance” are conserved across tissues, organs, species, and diverse immune cell types. a and b)
Validation studies assessing the ability of SMaRT genes to classify diverse tissue-resident macrophage datasets from both humans and mice.
Performance is measured by computing ROC-AUC. Barplots show the ranking order of different sample types based on the composite scores of
C#13 and path #14-3. c and d) Validation studies (c) assessing the ability of SMaRT genes to classify active vs inactive states of diverse immune
cell types in both humans and mice. The schematic (d) summarizes findings in c. e) Published disease-associated macrophage gene signatures
(see Supplemental Information 2) are analysed for significant overlaps with various gene clusters in the Boolean map of macrophage processes.
Results are displayed as heatmaps of -Log10(p) values as determined by a hypergeometric test. f and g) Scatterplots of the composite score of
C#13 and path #14-3 in human (f, GSE168710, GSE164498 24 h) and mouse (g, GSE161125, GSE158094 24 h) single cell RNASeq datasets
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n= aij, n̂ = (nAlow / total ∗ nBlow / total) ∗ total

To check whether a quadrant is sparse, a statistical
test for (e00 > a00) or (n̂>n) is performed by computing
S00 and p00 using following equations. A quadrant is
considered sparse if S00 is high (n̂>n) and p00 is small.

Sij = n̂ − n̅̅̅̂̅
n

√

p00 = 1
2
( a00
(a00 + a01) +

a00
(a00 + a10))

A suitable threshold is chosen for S00 > sThr and
p00 < pThr to check sparse quadrant. A Boolean impli-
cation relationship is identified when a sparse quadrant
is discovered using following equation.

Boolean Implication= (Sij > sThr, pij < pThr)
A relationship is called Boolean equivalent if top-left

and bottom-right quadrants are sparse.

Equivalent= (S01 > sThr,P01 < pThr, S10 > sThr,P10 < pThr

Boolean opposite relationships have sparse top-right
(a11) and bottom-left (a00) quadrants.

Opposite= (S00 > sThr,P00 < pThr, S11 > sThr,P11 < pThr)
Boolean equivalent and opposite are symmetric

relationship because the relationship from A to B is
same as from B to A. Asymmetric relationship forms
when there is only one quadrant sparse (A low => B low:
top-left; A low => B high: bottom-left; A high => B high:
bottom-right; A high => B low: top-right). These re-
lationships are asymmetric because the relationship
from A to B is different from B to A. For example, A
low => B low and B low => A low are two different
relationships.

A low => B high is discovered if the bottom-left (a00)
quadrant is sparse and this relationship satisfies
following conditions.
with well defined macrophage polarization states (M0, M1, M2). Blue lines
types are reported in the bottom-left quadrant. Pvalue is computed by tw
analysis of the single cell RNASeq datasets. i) PCA, UMAP and BoNE analy
ileal biopsy (uninvolved and involved) samples from Crohn’s disease (CD)
thresholds (2.5, blue lines) on TYROBP and FCER1G. Blue lines correspon
C#14-3 (bottom plots). Bottom-left quadrant is evaluated for enrichmen
involved vs involved CD). Percentages of different cell types are reported
proportions z-test.
A low=> B high= (S00 > sThr,P00 < pThr)
Similarly, A low => B low is identified if the top-left

(a01) quadrant is sparse.

A low=>B low= (S01 > sThr,P01 < pThr)
A high => B high Boolean implication is established

if the bottom-right (a10) quadrant is sparse as described
below.

A high=>B high= (S10 > sThr,P10 < pThr)
Boolean implicationAhigh =>B low is found if the top-

right (a11) quadrant is sparse using following equation.

A high=>B low= (S11 > sThr,P11 < pThr)
For each quadrant a statistic Sij and an error rate pij is

computed. Sij > sThr and pij < pThr are the thresholds
used on the BooleanNet statistics to identify Boolean
implication relationships.

Boolean analyses in the test dataset GSE134312 uses
a threshold of sThr = 3 and pThr = 0.1. These thresholds
are exactly same as the previously used thresholds
sThr = 3 and pThr = 0.1 for BooleanNet.27,29,31 False
discovery rate is computed for these thresholds (FDR
<0.000001) by using randomly permuting gene expres-
sion data in GSE134312.

Boolean network explorer (BoNE). Boolean network ex-
plorer (BoNE) provides an integrated platform for the
construction, visualization and querying of a network of
progressive changes underlying a disease or a biological
process in three steps (Supplementary Fig. S1A): First,
the expression levels of all genes in these datasets were
converted to binary values (high or low) using the
StepMiner algorithm. Second, gene expression re-
lationships between pairs of genes were classified into
one-of-six possible Boolean Implication Relationships
(BIRs), two symmetric and four asymmetric, and
expressed as Boolean implication statements. This of-
fers a distinct advantage from conventional computa-
tional methods (Bayesian, Differential, etc.) that rely
exclusively on symmetric linear relationships in
correspond to the StepMiner thresholds. Percentages of different cell
o tailed two proportions z-test for M1 vs M0. h) Traditional UMAP
sis of single cell RNASeq dataset GSE134809 that includes blood and
patients. Macrophages were selected as the top right corner by using
d to the StepMiner thresholds in the scatterplot between C#13 and
t of cell types across tissue (blood vs ileal) and disease states (un-
in the bottom-left quadrant. P value is computed by two tailed two
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networks. The other advantage of using BIRs is that they
are robust to the noise of sample heterogeneity (i.e.,
healthy, diseased, genotypic, phenotypic, ethnic, in-
terventions, disease severity) and every sample follows
the same mathematical equation, and hence is likely to
be reproducible in independent validation datasets.
Third, genes with similar expression architectures,
determined by sharing at least half of the equivalences
among gene pairs, were grouped into clusters and
organized into a network by determining the over-
whelming Boolean relationships observed between any
two clusters. In the resultant Boolean implication
network, clusters of genes are the nodes, and the BIR
between the clusters are the directed edges; BoNE en-
ables their discovery in an unsupervised way while
remaining agnostic to the sample type.

Statistical analyses. Gene signature is used to classify
sample categories and the performance of the multi-
class classification is measured by ROC-AUC (Receiver
Operating Characteristics Area Under The Curve)
values. A color-coded bar plot is combined with a den-
sity or violin + swarm plot to visualize the gene
signature-based classification. All statistical tests were
performed using R version 3.2.3 (2015-12-10). Standard
t-tests were performed using python scipy.stats.ttest_ind
package (version 0.19.0) with Welch’s Two Sample t-test
(unpaired, unequal variance (equal_var = False), and
unequal sample size) parameters. Multiple hypothesis
corrections were performed by adjusting p values with
statsmodels.stats.multitest.multipletests (fdr_bh: Benja-
mini/Hochberg principles). The results were indepen-
dently validated with R statistical software (R version
3.6.1; 2019-07-05). Pathway analysis of gene lists were
carried out via the Reactome database and algorithm.32

Reactome identifies signalling and metabolic mole-
cules and organizes their relations into biological path-
ways and processes. Kaplan–Meier analysis is
performed using lifelines python package version
0.14.6.

Boolean implication network construction. A Boolean
implication network (BIN) is created by identifying all
significant pairwise Boolean implication relationships
(BIRs) for GSE134312 datasets (Supplementary
Fig. S1B). The Boolean implication network contains
the six possible Boolean relationships between genes in
the form of a directed graph with nodes as genes and
edges as the Boolean relationship between the genes.
The nodes in the BIN are genes and the edges corre-
spond to BIRs. Equivalent and Opposite relationships
are denoted by undirected edges and the other four
types (low => low; high => low; low => high; high =>
high) of BIRs are denoted by having a directed edge
between them. The network of equivalences seems to
follow a scale-free trend; however, other asymmetric
relations in the network do not follow scale-free
www.thelancet.com Vol 94 August, 2023
properties. BIR is strong and robust when the sample
sizes are usually more than 200. However, it is also
possible to build BIN for smaller dataset such as the
selected macrophage GSE134312 dataset (n = 197). The
macrophage dataset GSE134312 was prepared for
Boolean analysis by filtering genes that had a reasonable
dynamic range of expression values. When the dynamic
range of expression values was small, it was difficult to
distinguish if the values were all low or all high or there
were some high and some low values. Thus, it was
determined to be best to ignore them during Boolean
analysis. The filtering step was performed by analyzing
the fraction of high and low values identified by the
StepMiner algorithm.28 Any probe set or genes which
contained less than 5% of high or low values were
dropped from the analysis.

Clustered Boolean Implication network. Clustering was
performed in the Boolean implication network to
dramatically reduce the complexity of the network
(Supplementary Fig. S1C). A clustered Boolean impli-
cation network (CBIN) was created by clustering nodes
in the original BIN by following the equivalent BIRs.
One approach is to build connected components in a
undirected graph of Boolean equivalences. However,
because of noise the connected components become
internally inconsistent e.g., two genes opposite to each
other becomes part of the same connected component.
In order to avoid such situation, we need to break the
component by removing the weak links. To identify the
weakest links, we first computed a minimum spanning
tree for the graph and computed Jaccard similarity co-
efficient for every edge in this tree. Ideally if two
members are part of the same cluster they should share
as many connections as possible. If they share less than
half of their total individual connections (Jaccard simi-
larity coefficient less than 0.5) the edges are dropped
from further analysis. Thus, many weak equivalences
were dropped using the above algorithm leaving the
clusters internally consistent. We removed all edges that
have Jaccard similarity coefficient less than 0.5 and built
the connected components with the rest. The connected
components were used to cluster the BIN which is
converted to the nodes of the CBIN. Increasing the
Jaccard similarity cut-off will result in more compact
and correlated clusters in CBIN. The distribution of
cluster sizes was plotted in a log–log scale to observe the
characteristic of the Boolean network (Supplementary
Fig. S1D). To ensure that the cluster sizes exhibit
scale-free properties, the Jaccard similarity cut-off is
modified such that they are evenly distributed along a
straight line on a log–log plot (Supplementary Fig. S1D).
A new graph was built that connected the individual
clusters to each other using Boolean relationships.
Genes in each cluster is ranked based on the number of
equivalences within the cluster. Link between two
clusters (A, B) was established by using the top
7
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representative node from A that was connected to most
of the member of A and sampling 6 nodes from cluster
B and identifying the overwhelming majority of BIRs
(Supplementary Fig. S1C) between the nodes from each
cluster. The 6 nodes include the top representative gene
(first rank), the gene next to top (second rank), middle
(floor (n/2)th rank where n is the cluster size), gene next
to middle (floor (n/2)—1 rank), middle from top half
(floor (n/4)th ranked gene), and middle from the top 1/
4th (floor (n/8)th ranked gene) representative nodes
from cluster B if size of the cluster is greater than 10. If
size of the cluster is between 2 and 10, top two and
middle one is picked to test the relationship with cluster
A. If the size of the cluster is 1, then it is used to test the
relationship with cluster A. Testing multiple nodes
provides the most common type of relationships found
between cluster A and B. We suggest referring the
codebase released for additional details.

A CBIN was created using the selected GSE134312
datasets. Each cluster was associated with reactive or
tolerant macrophage samples based on where these gene
clusters were highly expressed. The edges between the
clusters represented the Boolean relationships that are
color-coded as follows: orange for low => high, dark blue
for low => low, green for high => high, red for high =>
low, light blue for equivalent and black for opposite.

Boolean paths. The asymmetric BIRs provide a unique
dimension to the network that is fundamentally
different from any other gene expression networks in
the literature. Traversing a set of nodes in a directed
graph of the Boolean network constitutes a Boolean path
that can be interpreted as follows. A simple Boolean
path involves two nodes and the directed edge between
them. This simple Boolean path can be interpreted as
shown in the supplementary figure (Supplementary
Fig. S1E). For the nodes X and Y with X low => Y low
only quadrant #1 is sparse; the other quadrants #0, #2,
and #3 are filled with samples (Supplementary
Fig. S1E). Assuming monotonicity in X and Y, the
quadrants can be ordered in two possible ways: 0-2-3
and 3-2-0. The path corresponds to 0-2-3 begins with X
low and Y low. This is interpreted as X turns on first and
then Y turns on along a hypothetical biological path
defined by the sample order. Similarly, Y turns off first
and then X turns off in the path 3-2-0. A complex path in
the Boolean network involves more than one Boolean
implication relationship (Supplementary Fig. S1F).
Three Boolean implication relationships can be used to
group samples into five bins and the bins can be ordered
in two possible ways (Supplementary Fig. S1F, forward,
reverse). Another example of a path is illustrated in
supplementary figure (Supplementary Fig. S1G).

Discovery of paths in clustered Boolean implication net-
work. We focus on paths that are transitive (such as
Supplementary Fig. S1F and G) because they represent
a simple change in gene regulation, i.e., going from
low-to-high or high-to-low once along a path (See Bool-
ean paths above). By contrast, complex change refers to
changes of gene regulation multiple times along a path
such as a gene going from high-to-low and then back to
high. Discovery of paths start with a node that repre-
sents the biggest cluster in the CBIN. Since a path of
high => high, high => low, and low => low can be used
to order samples as shown in Supplementary Fig. S1F,
we try to identify paths of this type that intersects the
big clusters (top 5, based on size) in the network. To
maintain the transitivity this path can be expanded as
the chain of high => high, followed by high => low,
followed by another chain of low => low. We would like
to keep one high => low in a path because that will
cover genes that are both up- and down-regulated.
Since, the path A high => B high can also be written
as B low => A low, the chain of high => high can be
reduced to the chain of low => low in reverse direction.
Therefore, we must focus only on the high => low and
chain of low => low. We developed a simple, intuitive
algorithm that traverses the nodes of the CBIN starting
with the biggest cluster and greedily chooses next big
cluster connected to the nodes visited in sequence. The
emphasis on cluster sizes comes from the fundamental
assumption that size determines importance and rele-
vance. Therefore, we start from a big cluster (A1 from
the top 5) and identify other clusters that form a chain
of low => low. Further, we identify other clusters that
are either opposite to A1 or they have high => low
relationship with A1, and the biggest cluster (A2)
among these clusters were chosen. In addition, a chain
of low => low relationship from A2 is identified. In each
subsequent step, again the biggest cluster among the
different choices was greedily chosen. Finally equiva-
lence relationship from each cluster is used to gather
more genes in each cluster and the whole path is
clustered based on equivalence relationships. Depth-
first traversal (DFS) was used to follow the path of
low => low where bigger clusters are visited first. The
search was performed until a cluster was reached for
which there is no low => low relationships. For
example, starting with cluster S, the search will return S
low => A1 low, A1 low => A2 low, and A2 low => A3 low
if A3 doesn’t have any low => low relationships. Simi-
larly, a new starting point is considered S2 such that S2
is the biggest cluster X that has either S high => X low
or S Opposite X. From cluster S2 another DFS was
performed to retrieve the longest possible path of
low => low. The search may return S2 low => B1 low,
B1 low => B2 low if B2 doesn’t have any low => low
relationships. In summary, the most prominent Bool-
ean path was discovered by starting with the largest
cluster and then exploring edges that connected to the
next largest cluster in a greedy manner. This process
was repeated to explore paths that connect the big
clusters in the network.
www.thelancet.com Vol 94 August, 2023
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Scoring Boolean path for sample order. A composite
score was computed for a specified Boolean path that
can be used to order the sample which was consistent
with the logical order. To compute the score, first the
genes present in each cluster were normalized and
averaged. Gene expression values were normalized ac-
cording to a modified Z-score approach centered around
StepMiner threshold (formula = (expr − SThr)/3*stddev;
Supplementary Fig. S2B). Weighted linear combination
of the averages from the clusters of a Boolean path was
used to create a score for each sample. The weights
along the path either monotonically increased or
decreased to make the sample order consistent with the
logical order based on BIR. The samples were ordered
based on the final weighted (−1 for C#13, 1 for C#14 and
2 for C#3) and linearly combined score (Supplementary
Fig. S2C). The direction of the path was derived from
the connection from a reactive cluster to a tolerant
cluster. The sample order is visualized by a color-coded
bar plot and a violin + swarm plot (Supplementary
Fig. S2C). A noise margin is computed for this com-
posite score which follows the same linearly weighted
combined score on 2-fold change ( ± 0.5 around Step-
Miner threshold).

Summary of genes in the clusters. Reactome pathway
analysis of each cluster along the top continuum paths
was performed to identify the enriched pathways.32 The
pathway description was used to summarize at a high-
level what kind of biological processes are enriched in
a particular cluster. List of genes and the pathways
enriched in them are provided in Supplemental
Information 2. Clusters 13, 14, 3 list of genes are
ranked based on equivalences within the cluster and the
differential expression between M1 and M2.

Cross-species gene name conversion. Orthologous hu-
man and mouse genes were identified using ensemble
GRCh38.p13-100 gene annotations. Human to mouse
gene name conversion and vice-versa used this database.

Machine learning to discover models of macrophage polar-
ization. We implement supervised learning in which
we use labelled training data of extremes of macrophage
polarized states to train a model that can recognize a
continuum of diverse functional states during macro-
phage polarization. Briefly, to identify gene regulatory
changes during macrophage polarizations from M0 to
M1 and/or M2, we employed the MiDReG (Mining
Developmentally Regulated Genes) algorithm, which
utilizes statistical learning techniques.30,33 By applying
statistical model checking to Boolean invariant rules
within a static cross-sectional dataset, MiDReG infers
the underlying temporal events. It identifies temporal
logical changes in gene regulation by exploring transi-
tive Boolean paths (Supplementary Fig. S1E–G). We
applied the MiDReG algorithm to analyse large and
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diverse macrophage datasets (GSE134312), discovering
Boolean invariant rules and constructing a clustered
Boolean Implication Network. The model was trained by
labelling the macrophage polarization states in
GSE134312 as M0 (n = 47), M1 (n = 13) and M2 (n = 8)
based on ligand treatments that are well-established as
stimuli for driving either M1 (LPS, IFNγ) or M2 (IL4,
IL13) states (See Supplementary Table S1). The algo-
rithm takes the macrophage network (selected graph)
and this labelled dataset GSE134312 as inputs and
identifies the best model to recognize the labels (See
function learningAlgorithm in github codebase BoNE/
SMaRT/MacUtils.py and the outputs in BoNE/SMaRT/
macrophage.ipynb). The algorithm enables a compre-
hensive search for macrophage polarization states based
on transitive Boolean paths that contains three nodes
with one high => low relationships. The high => low
relationships cover both up/down regulated genes and
additional Boolean path of high => high or low => low
provides features to improve predictions. An unbiased
search for these patterns results in 7 different Boolean
paths [1, 2, 3], [1, 14, 3], [12, 5, 6], [11, 10-8], [13-14-3],
[10, 8, 9], and [1, 12, 5]. The nodes on the high =>
high side were assigned negative weights (−2, −1, etc.)
and the nodes on the low => low side assigned positive
weights (1, 2 etc.) to compute an optimal composite
score. Three different ROC-AUCs were computed (M0,
M1 and M2) to measure the performance of the com-
posite scores for the Boolean paths. ROC-AUC of M1
and M2 were multiplied together that represent overall
performance of a Boolean path. Performance of Boolean
path 13-14-3 was better than all other paths.

Signatures of macrophage reactivity and tolerance (S-Ma-R-
T) computation. BoNE uses Boolean implication
network on macrophage dataset to build a signature of
macrophage polarization. Selected clusters by size con-
nected by high => high (green arrow), high => low (red
arrows) and low => low (blue arrows) Boolean implica-
tion relationships. Reactome analysis of each clusters
shows the biological processes the genes are involved in
(Supplementary Fig. S2A). A path is selected in the
network that is used to test M1/M2 states classification.
This process is demonstrated by using a path #13-14-3
on GSE134312 (Supplementary Fig. S2B and C).

Single cell data analysis. Single cell datasets were pro-
cessed using scanpy (v1.5.1) framework. Composite
scores for C#13 (weight = −1) and C#14-3 (weights = 1,
2) were computed like bulk RNASeq datasets. Scatter-
plot between C13 and C14-3 score were plotted using
pandas plotting functions. StepMiner threshold is
computed for C#13 and C#14-3 composite scores and
display as vertical and horizontal lines in the scatter-
plots. Bottom-left quadrants enrich reactive and top-
right quadrants enrich tolerant macrophages based on
our BoNE derived models.
9
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Normalization of gene expression based on circadian
rhythm. Since the state of macrophage swings from
reactive to tolerant from day to night34 (See
Supplementary Fig. S3), it is important to control for this
variation during analysis of macrophage polarization. To
start the normalization process, clock genes (such as
DBP, ARNTL, etc.) or gene signatures that capture
circadian rhythm is used to adjust the BoNE score
(Supplementary Fig. S4). First, both the BoNE score
(Supplementary Fig. S4B) and the clock gene expression
are scaled for each sample type based on their dynamic
range of expression values (min – max). For example, the
dataset GSE98895 contains two sample types: C (Con-
trol), and MetS (Metabolic Syndrome). Let’s take one
sample from the MetS group (x, y) where x is the clock
gene expression value and y is the original BoNE score
(Supplementary Fig. S4C). Bounding box for the MetS
group demonstrates the range of values for both the
BoNE score (S1) and the clock gene expression (S2). An
average of BoNE scores and the clock gene expression is
shown using an orange diamond. The distance of (x, y)
from the orange diamond (S3, S4) is used to scale both
values (x − S3*(S2 + 1)/(S1 + 1), y + S4*(S1 + 1)/(S2 + 1)).
This process is repeated using control (C) samples using
the green diamond. Linear regression is used to compute
the trend between the transformed BoNE score and clock
gene expression (y = mx + c; Supplementary Fig. S4D).
The trend is subtracted from the transformed BoNE score
to compute the final normalized BoNE score (y = mx − c).
Samples are now rank ordered based on the final
normalized BoNE score to visualize the effect of
normalization process.

Proteomics analysis. A multiplexed TMT (tandem mass
tags) quantitative proteomics dataset has been obtained
from He, L. et al.35 (see Key Resource Table). To generate
Reagent or resource Source

Deposited data

Pooled human macrophage array
Ccdc88a KO peritoneal macrophages

NCBI GEO (T
Information-

Proteomics dataset, reanalysed from PMID: 34731634 MassIVE repo

Experimental models: Organisms/strains

Ccdc88a fl/fl LysMCre/- mice PMID: 33055

Software and algorithms

Numpy Python

Scipy Python

Seaborn Python

Matplotlib Python

Hierarchical exploration of gene expression microarrays online
(Hegemon)

HTML, JavaSc

Boolean network explorer (BoNE) Python

Other

Interactive website This paper

Key resource table
this dataset, authors had differentiated human THP-
1 cells with phorbol myristate acetate (PMA) for 24 h
into macrophages (M0 state). The M0 cells were sub-
sequently treated with IL4 for M2 polarization and with
LPS and IFNγ for M1 polarization over a 24-h time-
period. Samples were processed for quantitative mass
spectrometry at 1 h, 4 h, 8 h, and 24 h. Ratio of raw
intensity values has been compared between M1 and
M2 states to obtain the list of induced proteins at various
time points (see Supplemental Information 3). To
obtain the list of proteins induced in M1 state, the cut-
off used for induction of proteins when comparing the
raw intensity ratio for LPS/IFNγ over IL4 stimulation for
all time points was ≥2. To obtain the list of proteins
induced in M2 state, the cut-off used for induction of
proteins when comparing the raw intensity ratio for IL4
over LPS/IFNγ stimulation for all time points was ≥ 1.5.

To assess the differential enrichment of proteins
across different signatures for both M1 and M2 polari-
zation states at various time points, we used the
following equation to calculate the z-test of proportions,

z= (p1 − p2)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(1 − p)( 1

n1+ 1
n2)√

Here, p1 is sample proportion (x1/n1) of proteins
translated from the “reactive” signature that were
induced ≥2 fold upon LPS stimulation. And p2 is the
sample proportion (x2/n2) of proteins translated from
the “tolerance” signature that were induced ≥1.5 fold
upon IL4 stimulation. Here, p = (x1 + x2)/(n1 + n2).

Ethics statement. No ethical approval was required as
our study design incorporated publicly available
datasets.
Identifier

he National Center for Biotechnology
Gene expression omnibus)

GSE134312
GSE203423

sitory MSV000084672

214

https://numpy.org

https://scipy.org

https://seaborn.pydata.org

https://matplotlib.org

ript, Python, PHP https://github.com/sahoo00/
Hegemon

https://github.com/sahoo00/
BoNE

http://hegemon.ucsd.edu/SMaRT/
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Results
A computational model of continuum states in
macrophage processes
We chose a Boolean approach to build transcriptomic
network29; this approach has been used to create maps
of evolving cellular states along any disease continuum
and identify cellular states in diverse tissues and con-
texts with high degrees of precision (see detailed
Methods). The Boolean approach relies on invariant
relationships that are conserved despite heterogeneity in
the samples used for the analysis. Invariant relation-
ships among pairs of genes that are conserved across
samples representative of maximum possible diversity,
i.e., irrespective of their origin (normal or disease),
laboratories and/or cohorts, different perturbations, are
assumed to be fundamentally important for any given
process.

For model training and development, we used a
pooled all-human microarray dataset that included 197
manually annotated heterogeneous macrophage data-
sets from GEO (GSE13431236; Fig. 1a–c; Supplementary
Fig. S1A and B; see Supplemental Information 1 for
catalogue of datasets). These datasets contained primary
tissue-derived macrophages (both healthy and diseased
tissues) and cultured macrophage cell lines (e.g., THP1),
either untreated or treated with diverse sets of ligands
that are known to induce either M1 (n = 13) or M2
(n = 8) polarized states (see Supplementary Table S1).

A graph (Fig. 1d and Supplementary Figs. S1C and
S2A) is built, comprised of gene clusters (nodes) con-
nected to each other using Boolean implication re-
lationships (edges). The network displayed scale-free
properties, as expected (Supplementary Fig. S1D). We
oriented ourselves to the resultant network by querying
and locating the known ‘M1/M2’ samples; the ‘M1’
samples segregated towards one end, and ‘M2’ samples
on the other, implying that the paths of connected
clusters within the resultant network represent a con-
tinuum of cellular states in macrophages within the
immunologic spectrum (Supplementary Fig. S1E–G).
Reactome pathway analyses32 of each cluster along the
top continuum paths revealed a multitude of cellular
processes that are impacted during macrophage polari-
zation (Fig. 1e and Supplemental Information 4; Gene
clusters and reactome pathways can be queried at:
http://hegemon.ucsd.edu/SMaRT/).

Identification of signatures of macrophage
‘reactivity’ and ‘tolerance’ (SMaRT)
Next, various interconnected gene clusters (i.e., Boolean
paths) were assessed for their ability to accurately clas-
sify the samples (based on the genes in the clusters and
computing a weighted average of gene expression values
www.thelancet.com Vol 94 August, 2023
outlined in Supplementary Fig. S2B) (Fig. 1f). A multi-
variate analysis of the top five Boolean paths revealed
that the path connecting clusters(C)#13 → 14 → 3 is the
best (p < 0.001) at discriminating M1 (ROC-AUC 0.98)
and M2 (ROC-AUC 0.99) (Fig. 1f and Supplementary
Fig. S2C). Path #13 → 14 → 3 was subsequently vali-
dated in five other independent datasets (Fig. 1g). A
comparative analysis of #13 → 14 → 3 path vs other
traditional approaches, e.g., Differential Expression,37

Correlation Network,37 Hierarchical Clustering38 and
Differential and interactome analyses39 showed the su-
periority of the BoNE-derived path in separating M0-M1-
M2 states. The Boolean path matched differential
expression in its ability to distinguish M1 state, while
exceeding the remaining traditional approaches (Fig. 1h
and Supplementary Fig. S5). A heatmap of the pattern of
gene expression in each cluster in M0-M1-M2 states is
shown in Fig. 1i.

Furthermore, C#13 predicted M1 perfectly (ROC-
AUC = 1.00) and the path #14→ 3 predicted M2 close to
perfection (ROC-AUC = ranging from 0.80 to 1.00) in all
cohorts tested (Fig. 1j). This indicates that while the path
#13 → 14 → 3 is the most accurate path across all hu-
man macrophage-derived datasets collected and ana-
lysed, C#13 and the path #14 → 3 carry relevant
information on macrophage states independently of
each other. C#13 is associated with M1-like state and
expression of these genes is predicted to reflect the
extent of “immunoreactivity” of macrophages. Path
#14 → 3 is associated with a M2-like state and expres-
sion of these genes is predicted to reflect the extent of
“immunotolerance”. We define the two distinct macro-
phage polarization states in physiology as “reactive” and
“tolerant” based on basal C#13 and #14 → 3 scores,
respectively (Fig. 1k). Four additional macrophage states
could also exist, presumably in disease states, i.e., hy-
perreactive (high C#13), hyper tolerant (high #14 → 3),
hyporeactive (low C#13), and hypo tolerant (low
#14 → 3) (Fig. 1k). Henceforth, we refer to these genes
as signatures of macrophage reactivity and tolerance,
abbreviated as ‘SMaRT’ (See http://hegemon.ucsd.edu/
SMaRT/and Supplemental Information 2 for the list of
genes, ranked based on their log2 fold change between
M1 vs M2 human macrophage samples in our training
dataset, GSE134312).

SMaRT genes are relevant across tissues, organs,
species, and immune cells
We found that the path #13 → 14 → 3 successfully
identified M1/M2-polarization states in diverse tissue-
resident macrophages (brain-resident microglia, the
Langerhan’s cells in the skin, intestinal and lung alve-
olar macrophages, etc.), in both humans and mice
(Fig. 2a and b). See Supplemental Information 1 for the
degree of heterogeneity represented in these datasets.
Surprisingly, the path could also separate reactive and
tolerant states of other immune cells, including
11
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lymphocytes (B/T and NK-T), natural killer (NK) cells,
neutrophils, dendritic, basophils, eosinophils, and mast
cells (Fig. 2c and Supplementary Fig. S2H). Together,
these findings indicate that the SMaRT-based defini-
tions of ‘reactivity’ and ‘tolerance’ remain relevant in the
context of tissue-resident macrophages despite their
adaptation to the tissue and/or organ-specific microen-
vironment for their identity.40–42 These definitions also
maintain relevance in mice, whose immune system is
different from ours.43 Findings suggest that the SMaRT-
based definitions may reflect the fundamental immune-
reactive and tolerant gene regulatory mechanisms that
are shared among diverse cells in our immune system,
regardless of whether they are derived from the myeloid
or lymphoid lineage (Fig. 2d).

The network captures physiologic macrophage
states and functions
We found that our model of macrophage processes in-
cludes several well-defined macrophage subtypes
(Supplementary Fig. S2I). The classical M1 subtype was
represented in C#1 and #13 on the reactive end of the
model, alongside TCR+ macrophages in C#1 and #12;
the latter is known to release CCL2 and have high
phagocytic abilities.44 On the tolerant end of the model,
we found the TAMs in C#2, #5, #6, and the CD169+
macrophages in C#2, #3, and #7; both subtypes have
been implicated in immunological tolerance.45–47 As one
would anticipate, the tissue-resident macrophages (M2a-
d) that are known for their plasticity of polarization
states were more centrally placed in C#2 and #5. Finally,
gene signatures of scar-associated non-inflammatory
(ni) macrophages that restrict inflammation in liver
cirrhosis (SAM B12 and SAM ni,13 Fig. 2e) and damage-
associated microglia (DAMs10; Fig. 2e) that restrict the
progression of neurodegeneration significantly over-
lapped with the tolerant clusters C#14 and #3. A gene
signature that was recently shown to be induced in
monocytes and macrophages in all viral pandemics48

(ViP), past and present, overlapped as expected, with
the reactive C#13 (Supplemental Information 2 lists all
gene signatures in Fig. 2e).

Members of the family of pattern recognition re-
ceptors (PRRs; Supplementary Table S2), via which
macrophages ‘sense’ its surroundings,49 were distrib-
uted in various nodes within the model, overlapping
with each other (Supplementary Fig. S2J). PRRs that
sense pathogens or apoptotic cells to stimulate phago-
cytosis and mediate inflammation, e.g., toll-like (TLRs),
nucleotide oligomerization domain (NODs) and recep-
tor for advanced glycation end products (RAGE) were
found on the ‘reactive’ side of the model. The TLRs,
scavengers and C-type lectins also overlapped with
path#13 → 14 → 3, but only on the tolerant end (cluster
#3) of the spectrum.

The circadian genes were distributed within clusters
along a path (#1→ 2→3→ 4) (Supplementary Fig. S2K),
intersecting at the tolerant end of the path#13→ 14→ 3,
i.e., C#3. The daytime circadian genes were in the
reactive end of the model and showed an inverse
high => low Boolean relationship with night-time
circadian genes; the latter were mostly in the tolerant
end of the model (Supplementary Fig. S3A–C). This
finding is consistent with the current belief that mac-
rophages ‘kill’ (react) during the day and ‘heal’ (tolerate)
during the night.50 We also show that the performance
of the tolerant signature (C#14-3) in diseases that have
an intricate relationship with circadian rhythms, such as
metabolic syndrome,51 can be further improved by
normalization based on a clock gene or clock gene
signature (Supplementary Fig. S4).

It is noteworthy that while C#13 is associated with
‘reactivity’, C#14 and C#3 are associated with ‘toler-
ance’, the other clusters do not clearly represent either
state. Reactome pathway analysis for the remaining
clusters showed: C#1 (3213 genes) is the biggest cluster
with no significant pathways; C#2 (2448 genes) is
enriched in SUMOylation-related processes; Clusters
C#4, C#6, C#8, C#9, C#10, and C#12 have no signifi-
cantly enriched pathways; C#5 (Viral Infection,
Nonsense-mediated decay), C#7 (WNT signalling),
C#11 (Gap Junction), C#13 (Immune System), C#14
(Viral Infection, Nonsense-mediated decay) (See
Supplemental Information 4).

SMaRT genes identify polarization states at single
cell resolution
An analysis of composite expression scores of genes in
C#13 vs path #14 → 3 revealed a consistent pattern of
macrophages polarized towards M1 and M2 in multiple
independent single cell RNA Seq (scSeq) datasets
(Fig. 2f and g and Supplementary Fig. S2D–G) in both
human (GSE168710, GSE164498, Fig. 2f) and mouse
(GSE161125, GSE158094, Fig. 2g). A StepMiner
threshold (blue lines, Fig. 2f and g) is computed for both
C#13 and path #14 → 3 composite scores that divide the
scatterplots into four different quadrants. Bottom-left
quadrant shows a significant enrichment of reactive
macrophages (M1) in all four scatterplots (p < 0.001,
Fig. 2f and g). Traditional UMAP analyses in the above
datasets show distinct clusters for the different polarized
states (Fig. 2h) but it is hard to translate that in Crohn’s
disease (CD) dataset (GSE134809, Fig. 2i-top). Since
BoNE derived signatures show significant enrichment of
the reactive macrophages in the bottom-left quadrant (as
shown in Fig. 2f and g), it can easily be tested in CD
dataset. As expected, in the bottom-left quadrant (reac-
tive macrophages) of the CD dataset (Fig. 2i-bottom),
macrophages from involved tissues are significantly
enriched (p < 0.001) compared to uninvolved whereas
no significant enrichment (p = 0.08) was observed be-
tween ileal vs blood tissue. These findings are consistent
with macrophage phenotypes observed in inflammatory
bowel disease patients.52,53 The SMaRT genes were also
www.thelancet.com Vol 94 August, 2023
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able to recognize differential enrichment of reactive and
tolerant macrophages in scSeq studies of yet another
complex, chronic inflammatory condition of multicel-
lular origin, i.e., pulmonary fibrosis (GSE122960)
(Supplementary Fig. S6).

Furthermore, to test if presence of both reactive and
tolerant states can be detected by BoNE models, we
artificially created pseudobulk samples using various
proportions of M1 and M2 cells, and one sample with
30% M1 and 30% M2 cells (Mixed) in the background of
lung cells from a scSeq dataset GSE150708 (human,
Supplementary Fig. S2D). The ‘Mixed’ sample was
categorized as both tolerant and reactive as expected
using C#13 and path #14-3 signatures (Supplementary
Fig. S2D). Blood from CD-afflicted subjects
(GSE34809, Supplementary Fig. S2G) was categorized
as both tolerant and reactive, which could reflect their
proinflammatory state in the setting of impaired mi-
crobial clearance.54

SMaRT genes identify pathologic polarization
states in diseases
To determine how the Boolean network-derived formal
definitions perform in disease states, we analysed a
plethora of disease conditions and tissues (Fig. 3a–n and
Supplemental Information 1). We computed a com-
posite immune response score derived from C#13 alone
or C#14 and #3, which quantitatively estimates the de-
gree of “reactivity” and “tolerance”, respectively, and
tested it in diverse conditions. An analysis of full-
thickness colon tissues representing the 2 major sub-
types of inflammatory bowel disease (IBD), ulcerative
colitis (UC) and Crohn’s disease (CD) (Supplementary
Fig. S7A) revealed that reactivity is a common feature
in both UC and CD (Fig. 3a, top; Supplementary
Fig. S7B-left). However, tolerance was enhanced only
in CD (Supplementary Fig. S7B-right), which is consis-
tent with the notion that ‘alternatively’ activated tolerant
macrophages may drive the transmural nature of the
inflammation, ineffective bacterial clearance, and
accompanying tissue remodelling (fibrosis, stricture,
fistula), all features that are observed uniquely in CD,55

but not UC. Reactivity alone could prognosticate
outcome (i.e., segregate responder vs non-responder)
regardless of the heterogeneity of the UC cohorts and
the diverse treatment modalities (Supplementary
Fig. S7C and D), consistent with the widely-accepted
notion that hyperinflammatory macrophages are
drivers56 of the disease and key targets for therapeutics.57

Insufficient datasets precluded similar analyses in the
case of CD.

We also found that “reactivity” and “tolerance” dif-
fers along the length of the colon crypt—the surface is
more reactive, whereas the stem-cell niche at the bottom
is more “tolerant” (Fig. 3b and Supplementary Fig. S7E
and F). We also found that “hypo-reactivity” [low C#13]
and “complete tolerance” [high #14 → 3] are two states
www.thelancet.com Vol 94 August, 2023
that are progressively accentuated during colorectal
carcinoma (CRC) initiation and the emergence of che-
moresistance (Fig. 3c and Supplementary Fig. S7G and
H). Consistent with the fact that most of the CRCs are
found located in the left (distal) colon and microbe-
driven risk is high in that segment,58 we found that
segment to be more tolerant than the right (proximal)
segment (Fig. 3d).

We detected altered macrophage states during the
initiation and progression of several human other dis-
eases, ranging from arthritis, through neurodegenera-
tive diseases to viral pandemics (see Fig. 3e–n and
Supplementary Figs. S8A–N and S9A–E). Our defini-
tions for “reactivity” and “tolerance” could accurately
identify the underlying pathologic macrophage states
implicated in each condition. Together, these results
show that the BoNE-derived signature can detect
different subsets of macrophages are essential to the
pathogenesis of many diseases. Findings also agree with
the notion that disease chronicity is invariably associated
with mixed polarization states (whose detection has
largely been enabled by scSeq studies) where each state
plays an opposing (balanced) role.2,8–13

SMaRT genes rationalize the choice of mouse
models
Although mice are the preferred model species for
research,59 most agree that their innate immune systems
differ.43 C57BL/6J and Balb/c mice are two most used
mouse strains that differ in their immune responses,
giving rise to distinct disease outcomes, which in turn
rationalizes their use as pre-clinical models for human
diseases (Fig. 3o). Our signature successfully classified
the macrophages from these two strains in three inde-
pendent cohorts60,61 (Fig. 3p); C57BL/6 emerged as more
reactive and Balb/c as more tolerant (Fig. 3q). These
findings are consistent with the observation that BALB/c
mice are more susceptible to a variety of pathogens,62–64

and are useful for modelling tumour initiation and
progression and for making antibodies. By contrast,
C57BL/6 mice are resistant to infections and are the
most common strain used for modelling inflammatory
diseases, e.g., arthritis, metabolic disorders [NASH,
atherosclerosis, etc.65–67]. We conclude that the model-
derived definitions for “reactivity” and “tolerance” —(i)
capture the contrasting immunophenotypes of these two
murine strains previously reported by Mills et al.,3 and
(ii) rationalize the choice of each strain as preferred
models for modelling a unique set of human diseases.
Findings also suggest that the model-derived signatures
could serve as an objective guide for assessing the
appropriateness of any species/strains/sub-strains as
pre-clinical models.

SMaRT genes carry diagnostic value
Next we compared head-to-head the diagnostic and
prognostic potential of the newly defined polarization
13
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Fig. 3: Definitions of “reactivity” and “tolerance” detects pathologic macrophage states in disease. Tissue immune microenvironment is
visualized (in panels a–n) as bubble plots of ROC-AUC values (radii of circles are based on the ROC-AUC; Key on top) demonstrating the direction
of gene regulation (Up vs Down; Key on top) for the classification of samples using BoNE-derived gene signatures of either reactive (R; C#13) or
tolerant (T; C#14-3) or overall (O; path #13 → 14 → 3) in columns. The ROC-AUC values are provided next to the bubble. Sample diversity and
sizes are as follows: a) IBD; GSE83687, n = 134; 60 Normal, 32 Ulcerative Colitis, 42 Crohn’s Disease. b) Colon crypt; GSE77953, 6 Normal
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states against four traditional definitions: differential
expression analysis37 (DExp), correlation network68

(CorrN), hierarchical clustering + fold change38

(HiClu), and differential + interactome analysis39

(Diff + Int). A composite immune response score
derived from C#13 alone, which quantitatively estimates
the degree of “reactivity” was tested on multiple datasets
generated from tissues derived from patients with
known clinically relevant diagnoses. A hyper-reactive
state was invariably associated with graft rejection in
transplanted hearts, livers, and kidneys (Fig. 3r). A ‘hy-
per-reactive’ state also classified IBD-afflicted children
from those with non-IBD indications (8–18 y age) with
reasonable accuracy in a prospective study where the
blood samples were drawn at the time of diagnostic
colonoscopy (Fig. 3r). Among the critically ill patients in
the ICU, a hyper-reactive state was associated with better
28-day survival for those with ARDS on ventilators
(Fig. 3r) and improved survival without the need for
liver transplantation in those diagnosed with Tylenol-
induced acute liver failure (Fig. 3r). While some of the
four other traditional methodologies fared similar to the
new definitions in some cohorts, none performed as
well, and/or as consistently. Findings suggest that the
BoNE-derived signatures may capture fundamental as-
pects of macrophage polarization that drive disease
states.

SMaRT genes can prognosticate outcome
We next computed a composite immune response score
based on either the path #13-14-3 or C#13 alone. When
used as a composite score, a low score value represents
“reactive” and high score value represent “tolerant”
states. This signature was tested on all transcriptomic
datasets found on the NCBI GEO database (as of 04/
Surface vs 7 Normal Crypt base. c); Colon cancer: Pooled colon dataset fr
anatomy: Proximal (right) vs distal (left) normal colon from mouse (GSE
Fig. S7 for violin plots. e) Arthritis; GSE55235, GSE55457 and GSE55584
Hepatitis: GSE89632, n = 63; 20 fatty liver, 19 Non-alcoholic steatohe
GSE94397 and GSE94399, n = 195; 109 Healthy, 13 Alcoholic Hepatitis
hepatitis (GSE70779, n = 18; 9 Pre-treatment, 9 Post-treatment with direc
n = 115; 39 Non-smoker, 49 Smoker, 15 Asthma, 12, Chronic Obstructiv
Newborn babies, 3 Adults, 3 Old-adults. i) Cardiomyopathy (CM), ischem
NICM, 11 ICM; GSE127244, n = 24 mouse samples, 16 NICM, 8 ICM. j) Neu
(n = 253), Alzheimer’s disease (AD); GSE35864, HIV-associated neurocog
(FTD; n = 56); GSE59630, Down’s Syndrome (DS; n = 116); GSE124571
response syndrome (SIRS) and sepsis; GSE63042 (n = 129); GSE110487
(n = 110), Pre- and post-insulin treatment muscle biopsies from 20 insulin
from 20 control, 20 metabolic syndrome. m) Sleep deprivation and cir
GSE80612, twin, n = 22 human peripheral blood leukocytes; GSE98582, n
T2DM. n) Viral pandemics, such as SARS, MERS, Ebola, and others [see
relevant to panels e–j. See Supplementary Fig. S9 for violin plots relevant
strains (C57/B6 and Balb/c) commonly used for modeling two broad cate
of genetically diverse macrophage datasets based on expression levels of
potential of various indicated gene signatures were tested on multiple da
clinically relevant outcome, as indicated. In each case, BoNE-derived sign
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2022) originating from prospective studies, regardless of
disease. Prospective studies were chosen because they
rarely have selection bias from enrolment procedures
because the outcomes have not yet occurred at the time
of enrolment. In the context of cancers, “reactive” tu-
mours carried a worse prognosis than “tolerant” ones
across a variety of solid tumour subtypes, e.g., colorectal
(n = 555; Fig. 4a), breast, pancreas, prostate, glioblas-
toma and bladder cancers (Supplementary Fig. S9F).
These findings are consistent with the well-recognized
role of inflammatory cells in the tumour
microenvironment.69

In a cohort of 216 patients with HCV-related liver
fibrosis, overall survival was reduced among patients
with a “reactive” signature on their liver biopsies
compared to those with a “tolerant” signature (Fig. 4b).
These findings are consistent with the known role of
activated macrophages in chronic liver injury, inflam-
mation and fibrosis.70–73

In a cohort of 802 patients with sepsis, 28-day mor-
tality was worse among those with a “tolerant” signature
compared to those with a “reactive” signature (Fig. 4c).
This finding is consistent with the notion that “endo-
toxin tolerance” during sepsis carries poor outcome.74

In a cohort of 114 patients with idiopathic pulmonary
fibrosis (IPF), an incurable disease that is characterized
by progressive fibrosis requiring lung transplantation,75

a “reactive” signature was associated with shorter
transplant-free survival (Fig. 4d). Results are in keeping
with the widely accepted notion that proinflammatory
pulmonary macrophages are known to drive inflam-
mation and fibrosis in the lung.76

Among 517 recipients of kidney transplants, a
“reactive” signature was associated with increased graft
loss in two independent cohorts (Fig. 4e–f). Findings are
om NCBI GEO; n = 170 Normal, 68 Adenomas, 1662 CRCs. d) Colon
64423, n = 6) and human (GSE20881, n = 75). See Supplementary
, n = 79; 20 Normal, 33 Rheumatoid Arthritis, 26 Osteoarthritis. f)
patitis (NASH) and 24 healthy, alcoholic liver disease (GSE94417,
, 6 Alcoholic fatty liver (AFL), 67 Alcoholic cirrhosis (AC) and viral
t-acting anti-virals). g) Chronic lung disease; GSE2125 and GSE13896,
e Pulmonary Disease (COPD). h) Aging process; GSE60216, n = 9; 3
ic and non-ischemic (I/NI); GSE104423, n = 25 human samples; 14
rodegenerative brain disorders; GSE118553 (n = 401) and GSE48350
nitive disorder (HAND; n = 72); GSE13162, frontotemporal dementia
, Creutzfeldt-Jakob Disease (CJD; n = 21). k) Systemic inflammatory
(n = 31). l) Type 2 diabetes and metabolic syndrome; GSE22309
sensitive, 20 insulin resistant, 15 T2DM; GSE98895 (n = 40), PBMCs
cadian rhythm; GSE9444, n = 131 mouse brain and liver samples;
= 555 human blood samples; GSE104674, n = 48, 24 healthy and 24
Supplementary Fig. S9E]. See Supplementary Fig. S8 for violin plots
to k–m. o–q) Schematic (o) summarizes the use of two major mouse
gories of human diseases. Bar plots (p) showing sample classification
genes in C#13. Schematic (q) summarizes findings. r) The diagnostic
tasets generated from tissues derived from patients with the known
atures were compared against four traditional approaches.

15

www.thelancet.com/digital-health


dc

g

e

b

f

a

Fig. 4: Prognostic potentials of SMaRT genes. a–g) The prognostic performance of the BoNE-derived SMaRT genes is evaluated across diverse
disease conditions (colon cancer, a; liver fibrosis, b; sepsis, c; idiopathic pulmonary fibrosis, d; kidney transplantation, e and f; inflammaging, g-
left). Results are displayed as Kaplan Meier (KM) curves with significance (p values) as assessed by log-rank-test. A composite immune response
score is computed using Boolean path #13 → 14 → 3 or C#13 alone, as indicated within each KM plot. Low score = “reactive”; high
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in keeping with prior body of work implicating inflam-
matory macrophages (both number and extent of acti-
vation) as culprits in both acute and chronic allograft
rejection and graft loss.77–79

Finally, among 151 nonagenarians in the Vitality 90+
study,80 a “reactive” signature was associated with higher
mortality in men (Fig. 4g-left). No significant results
were found in women (Fig. 4g-right). Results are in
keeping with the fact that the plasma levels of the
‘classical’ marker of inflammaging, i.e., interleukin-6
(IL-6) and a pro-inflammatory gene signature in
PBMCs were correlated in men, whereas no correlations
were observed in women.81

These findings demonstrate a degree of robustness
and consistency in the prognostic ability of the newly
defined signatures of macrophage polarization across
diverse diseases and independent datasets.

SMaRT genes are significantly enriched in the
macrophage proteome
We used Tandem Mass Tag (TMT) proteomics datasets
from THP1-derived macrophages (M0, PMA) that were
polarized to M1-M2 states (see workflow Fig. 5a) and
asked if the BoNE-derived gene clusters are translated to
proteins. We found that the BoNE-derived SMaRT genes
were induced significantly in the THP1 proteome
(Supplemental Information 3). Consistent with our hy-
pothesis that C#13 and path #14 → 3 carry independent
information regarding “reactivity” and “tolerance”, we
found that LPS and IFNγ-induced M1 polarization was
associated with significant differential translation of
genes in C#13 (Fig. 5b-top), whereas IL4-induced po-
larization was associated with significant differential
translation of genes in C#14 and C#3 (Fig. 5b-bottom).
Such differential protein translation continued to take
place over 24 h (Fig. 5b).

Comparative analyses showed that while the “reac-
tivity” signatures identified by two other conventional
methodologies–Differential Expression and Correlation
Network– also reached significance; Fig. 5b-top), “toler-
ance” signatures derived by all other conventional ap-
proaches did not (Fig. 5b-bottom). Heatmaps show the
dynamic and opposing nature of the proteins translated
by the genes within the BoNE-derived gene signatures
during polarization (Fig. 5c and d).

Findings demonstrate that the gene signatures of
‘reactivity’ and ‘tolerance’ identified here are signifi-
cantly represented also in the translated proteome.
score = “tolerant”. A threshold is computed using StepMiner by searchin
separate these two states. g-right) Scatterplot between all possible thresh
from the log-rank test for both male (blue) vs female (pink) separate
Supplementary Fig. S9F for other cancers (breast, prostate, pancreas, glio
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Perturbation of SMaRT genes results in predictable
outcomes
We next asked if network-rationalized interventions
result in predictable outcomes upon perturbation, e.g.,
gene depletion (CRISPR, shRNA, KO mice) or over-
expression, expression of functionally defective mu-
tants, or chemical agonists/inhibitors. To this end, we
carried out real-world crowdsourcing experiments on
macrophage datasets in which interventions were con-
ducted by different groups using diverse manipulations
(Fig. 6a). In addition, we leveraged an existing asset
within our own group, a previously validated myeloid
specific CCDC88A-KO82 (Ccdc88afl/fl/LysMCre) model
(CCDC88A belongs to C#14). Depletion or pharmaco-
logic inhibition of any gene in C#13 was predicted to
suppress reactivity and enhance tolerance, whereas
overexpression or pharmacologic stimulation of the
same should have an opposite impact, i.e., enhance
reactivity and suppress tolerance. Similarly, depletion/
inhibition of any gene in C#14 was predicted to enhance
reactivity and suppress tolerance (Fig. 6b, left and
Supplementary Table S3). The depletion of genes in C#3
is predicted to not have a robust impact on the network
because of the Low => Low relationship with C#14.

We began with the ENCODE portal,83 a resource that
was born out of the larger initiative called the ENCODE
integrative analysis84; it is an encyclopedia of large, un-
biased shRNA library screen on the human K562
chronic myeloid leukaemia cell line. This dataset con-
tained 4 of the 137 genes in C#14 and none from
C#13.83 In all 4 cases, the depletion of genes in C#14
resulted in the predicted outcome of enhanced reactivity
and hypo tolerance (Fig. 6b, right). A systematic search
of the NCBI GEO database also revealed 16 other in-
dependent datasets reporting the impact of in-
terventions on genes in C#13 (9 datasets) and C#14 (7
datasets) (Supplementary Table S3). Regardless of the
heterogeneous nature of the interventions and lab-to-lab
variations in the type of cells/tissues used, predictions
matched the observed outcomes in each instance. At
least in one instance (i.e., STAT3), we could confirm the
alignment of phenotypes between gene deletion and
pharmacologic inhibition, implying that both ap-
proaches must have converged on the same biology.
Because such alignment and/or convergence is seen in
many instances,85 findings suggest that the current
model can accurately guide outcome-driven pharmaco-
logic interventions.
g three options (thr, thr ± noise margin) on the immune score to
olds of the #13 → 14 → 3 composite score and -log10 of the p value
ly. Pvalues are significant above the red line (p = 0.05). See also
blastoma, and bladder).
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Fig. 5: SMaRT genes are differentially translated in polarized macrophages. a) Overview of the experimental design. PMA-treated human
THP-1 cell lines (M0) are polarized to M1 (with LPS and IFNγ) or M2 (with IL4), followed by multiplexed mass spectrometry at indicated time
points. The fraction of the global macrophage transcriptome (from the pooled 197 macrophage datasets) that is represented in the global
macrophage proteome is subsequently assessed for induction (or not) of proteins that are translated by various gene signatures. b) Selectivity
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Fig. 6: Crowd-sourced assessment of the predictive potential of the SMaRT genes. a) Overview of our workflow and approach for crowd-
sourced validation. Publicly available transcriptomic datasets reporting the outcome of intervention studies (genetic or pharmacologic ma-
nipulations) on macrophages/monocytes targeting any of the 185 genes in C#13 and C#14 were analysed using the BoNE platform for
macrophage states. b) Predicted impact of positive (+, either overexpression [OvExp] or agonist stimulations) or negative (−; genetic −/−
models, shRNA, or chemical inhibitors) interventions and observed macrophage polarization states are shown. Performance is measured by
computing ROC AUC for a logistic regression model. See Supplementary Table S3.
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Together, these crowd-sourced studies rigorously and
independently validate the definitions of macrophage
polarization states; the fundamental nature of these def-
initions appear to remain relevant despite the thunderous
heterogeneity of models and methods used by so many.

Discussion
The lack of consensus on how to define macrophage
activation has impeded progress in multiple ways;
despite a panoply of existing descriptors, most remain
contentious and/or confusing. AI-guided gene expres-
sion signatures presented here, SMaRT, offers a set of
standardized definitions of macrophage polarization
that encompasses four principles: (i) they are comprised
of an unbiased collection of markers of macrophage
of induction of proteins upon LPS and IFNγ (top) or IL4 (bottom) stimu
using z-test of proportions and −log (10) p values are displayed as heatma
Information 3) translated at different time points by genes in C#13 (c) a
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activation that are represented in both the transcriptome
and the proteome; (ii) they remain meaningful and
relevant regardless of the source of macrophages (i.e.,
bone marrow, circulation, tissue-resident); (iii) they
perform well across diverse activators, both in vitro and
in vivo (i.e., recombinant ligands and cytokines, mi-
crobes, or multifactorial, as in the setting of complex
disease states), and (iv) they provide a predictive
framework that can be exploited for diagnostic purposes
and for outcome-rationalized therapeutic interventions.
These principles unify experimental standards for
diverse experimental scenarios and interpretations
across diverse tissues and diseases.

Finally, these SMaRT genes provide a common
framework for macrophage activation nomenclature,
lation at various timepoints was assessed across different signatures
ps. c and d) z normalized Log of intensities of proteins (Supplemental
nd C#14 + 3 (d) is displayed as heatmaps.
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which should enable laboratories to detect and report a
given immunophenotype of macrophage in a standard-
ized way. Standardization is expected to spur the
development of robust strategies to address the multi-
tude of macrophage-related disorders. It also serves as a
starting point for the development of new diagnostics
and immunomodulatory therapies.
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