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Key Points

• Epcoritamab-mediated
killing of CLL cells by
autologous T cells
correlates with the
effector-to-target ratio
but not CD20
expression.

• Epcoritamab efficacy is
increased by
concurrent use of a
BTKi or venetoclax,
supporting
combination therapy.
Chronic lymphocytic leukemia (CLL) is an immunosuppressive disease characterized by

increased infectious morbidity and inferior antitumor activity of immunotherapies.

Targeted therapy with Bruton’s tyrosine kinase inhibitors (BTKis) or the Bcl-2 inhibitor

venetoclax has profoundly improved treatment outcomes in CLL. To overcome or prevent

drug resistance and extend the duration of response after a time-limited therapy,

combination regimens are tested. Anti-CD20 antibodies that recruit cell- and complement-

mediated effector functions are commonly used. Epcoritamab (GEN3013), an anti–CD3×CD20

bispecific antibody that recruits T-cell effector functions, has demonstrated potent clinical

activity in patients with relapsed CD20+ B-cell non-Hodgkin lymphoma. Development of CLL

therapy is ongoing. To characterize epcoritamab-mediated cytotoxicity against primary CLL

cells, peripheral blood mononuclear cells from treatment-naive and BTKi-treated patients,

including patients progressing on therapy, were cultured with epcoritamab alone or in

combination with venetoclax. Ongoing treatment with BTKi and high effector-to-target ratios

were associated with superior in vitro cytotoxicity. Cytotoxic activity was independent of

CD20 expression on CLL cells and observed in samples from patients whose condition

progressed while receiving BTKi. Epcoritamab induced significant T-cell expansion,

activation, and differentiation into Th1 and effector memory cells in all patient samples. In

patient-derived xenografts, epcoritamab reduced the blood and spleen disease burden

compared with that in mice receiving a nontargeting control. In vitro, the combination of

venetoclax with epcoritamab induced superior killing of CLL cells than either agent alone.

These data support the investigation of epcoritamab in combination with BTKis or

venetoclax to consolidate responses and target emergent drug-resistant subclones.
Introduction

Bruton tyrosine kinase inhibitors (BTKis) and the BCL-2 inhibitor venetoclax have profoundly changed
the treatment landscape of chronic lymphocytic leukemia (CLL).1 Ibrutinib, the first-in-class BTKi,
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covalently binds to a cysteine residue (C481) in the active site,
leading to sustained inhibition of BTK-dependent signaling.2-4 In
addition to BTK, ibrutinib inhibits interleukin-2–inducible kinase
(ITK) and TEC. Covalent BTKis that do not inhibit ITK include
acalabrutinib and zanubrutinib.5,6 Although side effect profiles
differ, the 3 BTKis demonstrated potent clinical efficacy.5-10

Although the depth of response tends to improve with extended
therapy, minimal residual disease–negative remissions are
uncommon with BTKis.11-13 The most common reasons for BTKi
discontinuation are disease progression and side effects.11,14

Acquired resistance to covalent BTKis has been linked to muta-
tions affecting the C481 residue, thereby preventing covalent
binding.15-17 The BCL-2–targeting drug venetoclax is used in
combination with obinutuzumab in first line and with rituximab for
patients with relapsed/refractory (R/R) CLL, including patients
whose conditions progressed while receiving BTKis, and has
resulted in durable responses and minimal residual disease nega-
tivity.18-21 Recently, the focus has been on combination therapies
that could deepen the response, shorten the duration of therapy,
and prevent or overcome drug resistance.

CLL is characterized by defects of cellular and humoral immunity
that increase infectious morbidity and mortality, decrease vaccine
responses, and hamper the efficacy of immunotherapeutic
approaches.22,23 Ibrutinib improves T-cell immunity by modulating
T-cell differentiation, reducing the expression of inhibitory receptors,
and restoring immune synapse formation.24-30 Although some of
these effects were initially attributed to ITK inhibition,24,25,31,32 more
recent studies with acalabrutinib, which does not inhibit ITK, have
shown similar changes in the T-cell compartment.25,33,34 Improved
T-cell function in patients on BTKi therapy provides a rationale for
combination immunotherapy. We recently reported superior T-cell
cytotoxicity of an anti–CD3×CD19 bispecific antibody (bsAb)
against CLL cells in peripheral blood mononuclear cells (PBMCs)
from patients being treated with ibrutinib or acalabrutinib.34,35 In a
patient-derived xenograft model, the CD3×CD19 bsAb eliminated
primary CLL cells, including those from patients with disease pro-
gression while receiving ibrutinib.35 Mechanistically, BTKi therapy
downmodulates an immunosuppressive program in CLL cells,
resulting in improved T-cell cytotoxicity.34

Epcoritamab (DuoBody-CD3xCD20, GEN3013) is a full-length
human immunoglobulin G1 (IgG1) bsAb in which Fc-dependent
effector functions are silenced by 3 point mutations that were
selected based on functional assays.36,37 Epcoritamab’s potent
activity was demonstrated ex vivo against tumor cells from patients
who were treatment-naive and had R/R diffuse large B-cell
lymphoma (DLBCL), follicular lymphoma, and mantle cell
lymphoma.37,38 In an ongoing phase 1/2a clinical trial (NCT03625
037), subcutaneous administration of epcoritamab showed effi-
cient antitumor activity as a single agent, achieving 68% and 90%
overall response rates and 45% and 50% complete responses in
R/R DLBCL and follicular lymphoma, respectively.39,40 The first
results from the phase 1b/2 EPCORE CLL-1 trial (NCT04623541)
showed a favorable safety profile and promising antileukemic
activity in patients with R/R CLL.41

To explore the possible benefits of combining epcoritamab with BTKi
or venetoclax, we obtained PBMCs from treatment-naive patients
with CLL and from patients treated with either ibrutinib or acalab-
rutinib and assessed epcoritamab-dependent activation and
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cytotoxicity of autologous T cells in vitro and in patient-derived
xenograft (PDX) models. Combinations with venetoclax were
tested in vitro.

Patients, materials, and methods

Patients and clinical samples

PBMCs were obtained from patients with CLL enrolled in phase 2
clinical trials with ibrutinib (NCT01500733) or acalabrutinib
(NCT02337829), and/or in an observational study
(NCT00923507), samples from treatment-naive patients were
collected. These studies were approved by the institutional review
board, and written informed consent was obtained in accordance
with the Declaration of Helsinki. Patient characteristics are sum-
marized in Table 1, and sample usage in supplemental Table 1.
Samples from all treated patients were collected upon the initiation
of BTKi therapy, irrespective of whether patients continued to
respond or had progressive disease (supplemental Table 2).

Bispecific antibodies

Epcoritamab (DuoBody-CD3xCD20, GEN3013) is a full-length
IgG1 bsAb generated by controlled F(ab)-arm exchange of a
humanized CD3 monoclonal Ab (mAb) and the human CD20 mAb
7D8. The nontargeting mAb B12 IgG1 isotype and bispecific
antibodies B12×CD20 and B12×CD3 were used as controls, all
of which were provided by Genmab.

In vitro cell cultures

Cryopreserved PBMCs were thawed and plated as described in
the supplemental Methods. Epcoritamab, or nontargeting B12
isotype, and bsAbs B12×CD20 and B12×CD3 were added to
cultures at a titrated concentration of 6.6 nM. Cells incubated at
37◦C (5% CO2) were harvested after 0, 3, or 7 days. Antibody
effects were normalized to viability in the B12-control condition. For
combination with venetoclax, the method is detailed in
supplemental Methods.

In vivo murine studies

Experiments using NOD/scid/SCID/IL2Rγnull (NSG) mice (The
Jackson Laboratory, JAX strain 5557) were conducted in accor-
dance with protocols approved by the institutional animal care and
use committee. PDXs of CLL were generated as previously
described.35,42 Briefly, 5 × 107 human CLL PBMCs were intro-
duced into NSG mice via IV tail vein injection on experimental day
0. On day 2, CLL engraftment was confirmed via the flow cytometry
of peripheral blood, and epcoritamab or B12 control (0.5 mg/kg)
was injected intraperitoneally on days 3 and 10. CLL tumor burden
was assessed in peripheral blood on days 10 and 17, and in the
spleen on day 17.

Flow cytometry

Cells were stained with commercial Abs (supplemental Table 3).
CLL cells were identified as CD8–CD4– or CD5+CD24+. Cell
viability was assessed using the LIVE/DEAD fixable violet stain
(Invitrogen). Specific lysis rates using the frequency of CLL live
cells after culture with epcoritamab and B12 were calculated as
follows: (B12 control viability – epcoritamab-treated viability) ÷
(B12 control viability) × 100. Effector T-cell–to–target CLL ratios
(E:T) were determined based on frequencies of live cells using this
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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Table 1. Patient characteristics

Treatment-naive, number

or median (% or range)

On ibrutinib, number

or median (% or range)

On acalabrutinib, number

or median (% or range)

Progressing, number

or median (% or range)

Age 59 (48-77) 67 (53-78) 61 (50-74) 64 (39-76)

Sex

Female 10 (50%) 6 (50%) 6 (40%) 0 (0%)

Male 10 (50%) 6 (50%) 9 (60%) 10 (100%)

Prior therapy

No 20 (100%) 6 (60%) 5 (33%) 8 (80%)

Yes 0 (0%) 4 (40%) 10 (67%) 2 (20%)

IGHV

Mutated 8 (40%) 5 (42%) 5 (33%) 0 (0%)

Unmutated 10 (50%) 5 (42%) 10 (67%) 10 (100%)

Missing 2 (10%) 2 (16%) 0 (0%) 0 (0%)

FISH

del 17p 2 (10%) 4 (33%) 1 (7%) 6 (60%)

Absolute lymphocyte count 110 (10-328) 37 (5-317) 31 (4-146) 12 (6-31)

T-cell–to–CLL cell ratio 0.03 (0.01-0.08) 0.5 (0.01-0.40) 0.1 (0.01-0.56) 0.40 (0.08-0.69)

Time on BTKi therapy (mo) - 9 (5.5-57) 6 (5.2-48) 50 (15-72)

All characteristics given apply to the time of sample collection for the study.
Patients treated with ibrutinib (n = 19) or acalabrutinib (n = 18) had completed at least 6 cycles, and 10 (37%) had completed at least 12 cycles.
Among patients with disease progression, 7 (70%) were treated with ibrutinib and 3 (30%) with acalabrutinib.
FISH, florescence in situ hybrization; IGHV, immunoglobulin heavy-chain variable region mutational status.
formula: (CD8+% × CD4+%) ÷ %CLL. For cell immunopheno-
typing, the method is detailed in supplemental Methods.

Luminex cytokine immunoassay

Supernatant from cultured PBMCs with epcoritamab or B12
control was collected after 7 days of culture and analyzed with the
Milliplex MAP Human High Sensitivity T-Cell Magnetic Bead Panel
(Millipore Corporation) following the manufacturer’s protocol
(supplemental Methods).

Clustering of samples based on T-cell response to

bsAb

T-cell activation in response to epcoritamab after 3 days was
assessed via flow cytometry using 8 markers (supplemental Table 3).
Median centered data are displayed in heat maps with samples
grouped based on linkage clustering using GeneCluster 3.0 (http://
bonsai.hgc.jp/~mdehoon/software/cluster/manual/TreeView).

Statistical analysis

The statistical significance between patient groups was calculated
using the Mann-Whitney test. To compare the responses to
different treatments in individual patient samples, Wilcoxon
matched-pair signed rank test and paired t test were used. Data
were analyzed with GraphPad Prism 7 software.
Results

Epcoritamab induced cytotoxicity in vitro in PBMCs

from patients with CLL

We investigated epcoritamab-induced cytotoxicity in PMBCs from
patients with CLL who were either treatment-naive (n = 20) or
8 AUGUST 2023 • VOLUME 7, NUMBER 15
being treated with a BTKi (n = 19, ibrutinib and n = 18, acalab-
rutinib); 19 received a BTKi as the first-line therapy. At the time of
sample collection, 10 patients had progressing disease while on
therapy. Patient characteristics are summarized in Table 1, and
details for patients with progressive disease are summarized in
supplemental Table 2.

PBMCs were incubated in vitro for up to 7 days with epcoritamab
or controls, including the nontargeting B12 IgG1 isotype and
bsAbs B12×CD20 and B12×CD3. We measured cell viability after
3 and 7 days using flow cytometry and observed a significant
decrease in the number of live CLL cells in the presence of
epcoritamab, compared with the number of controls (supplemental
Figure 1A). Because CLL cell viability was comparable for all 3
controls (supplemental Figure 1B), only the B12 isotype control
was used in most of the subsequent analysis. After 3 days
(Figure 1A), the median percentage (interquartile range) of live CLL
cells was 67% (range, 41%-82%) in the presence of epcoritamab
or B12 control, 80% (range, 53%-89%) in samples from patients
who were ibrutinib-treated (P = .009), 71% (range, 63%-77%) and
79% (range, 67%-89%) in those from patients who were
acalabrutinib-treated (P = .03), and 34% (range, 13%-64%) and
75% (range, 70%-76%) in samples from patients who had pro-
gressing disease while on BTKi (P = .05). In PBMCs from
treatment-naive patients, CLL cell viability was higher with epcor-
itamab, at 77% (range, 66%-82%) compared with 67% (range,
58%-81%) with B12 control (P = .01; Figure 1A). By day 7
(Figure 1B), CLL cell viability in PBMCs from treatment-naive
patients was significantly lower with epcoritamab, at 57% (range,
36%-72%), than with the control, at 74% (range, 56%-82%) (P =
.03). Overall, CLL cell viability on day 7 was significantly lower with
epcoritamab than with B12 control: for patients treated with
ibrutinib, it was 7% (range, 1%-61%) vs 80% (range, 63%-94%)
EPCORITAMAB BISPECIFIC ANTIBODY IN CLL 4091
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Figure 1. Epcoritamab induces a high degree of CLL cytotoxicity in vitro that

is enhanced by prior treatment with BTKis. CLL cell viability was assessed in

PBMCs from patients with CLL after culture with either epcoritamab or the B12

nontargeting control antibody (6.6nM): treatment-naive (TN); n = 13, triangles);

ibrutinib-treated (IBR; n = 12, circles); acalabrutinib-treated (ACA; n = 14, diamonds)

patients; and patients with progressing disease while receiving a BTKi (RES; n = 7).

CLL cell viability (A) after 3 and (B) after 7 days in culture with B12 or epcoritamab.

(C) Percentage of specific lysis of CLL cells by epcoritamab was calculated as

follows: ([%B12-treated CLL viability – %epcoritamab-treated CLL viability] ÷ [%

B12-treated CLL viability] × 100). Asterisks indicate statistical significance using
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(P = .0005); for acalabrutinib-treated patients, it was 62% (range,
18%-75%) vs 85% (range, 77%-95%) (P = .0001); and for
patients progressing on BTKi, it was 5% (range, 0.5%-35%) vs
72% (range, 66%-81%) (P = .02), respectively (Figure 1B).

To compare the effect of epcoritamab between the different
groups, we calculated CLL-specific lysis rates by normalizing the
frequency of CLL live cells after culturing with epcoritamab to cell
viability stage with the B12 control. After culturing CLL live cells for
3 days with epcoritamab, the median (interquartile range)
CLL-specific lysis rate was −10% (range, −15% to –3%) in
PBMCs from treatment-naive patients, compared with 7% (range,
4%-23%) for patients treated with ibrutinib (P = .0005) and 9%
(range, –1 to 29) for those treated with acalabrutinib (P = .001).
After 7 days, the median CLL-specific lysis rate was 29% (range,
–4 to 50) for patients who were treatment-naive, 90% (range,
27%-98%) for patients who were ibrutinib-treated (P = .01), and
41% (range, 17%-81%) for patients who were acalabrutinib-
treated (P = .1). There was no statistically significant difference
in CLL-specific lysis between patients treated with ibrutinib or
acalabrutinib (P ≥ .1) (Figure 1C). Interestingly, superior epcor-
itamab activity was observed in PBMCs from patients with pro-
gressing disease while on BTKis, with a CLL cell–specific lytic rate
of 41% (range, 15%-85%) after 3 days and 93% (range, 56%-
99%) after 7 days (P < .005 for comparison with treatment-naive
patients).

In summary, epcoritamab effectively induced autologous T cells to
lyse CLL cells in vitro. Compared with samples from treatment-
naive patients, epcoritamab-mediated cytotoxicity was higher in
PBMCs from patients being treated with a BTKi, including that for
patients who had progressive disease upon therapy.

Epcoritamab-induced CLL cell lysis correlated with

E:T ratio but not with CD20 expression

We evaluated the relationship between epcoritamab-induced CLL
cell lysis and CD20 target antigen expression or effector T-cell
frequencies in PBMCs at the start of the experiments. Baseline E:T
ratios ranged from 0.02 to 0.6, with higher ratios in samples from
patients treated with BTKi and patients with progressing disease
while on BTKi than in samples from treatment-naive patients
(Figure 2A). Baseline E:T ratios and CLL-specific lysis after 7 days
of epcoritamab highly correlated (r = 0.6; P < .0001; Figure 2B)
with comparable Spearman r values in samples from patients who
were treatment-naive, ibrutinib-, and acalabrutinib-treated
(supplemental Figure 1C). Consistently, we found a negative cor-
relation between patients’ absolute lymphocyte counts and CLL
cell lysis (r = −0.5; P < .0001; supplemental Figure 1D). Among
samples from patients treated with BTKi, baseline E:T ratios highly
correlated with the duration of BTKi therapy (r = 0.6; P < .0001;
supplemental Figure 1E).

A wide range of CD20 expression levels in CLL cells was
observed, with patients treated with ibrutinib expressing the lowest
CD20 levels compared with the treatment-naive group (P = .02;
Figure 2C). There was no statistically significant difference in
Figure 1 (continued) Wilcoxon matched-pair signed rank test for comparison of

different treatments applied to individual patient samples and Mann-Whitney test for

the comparison of different patient groups. *P < .05; **P < .01; ***P < .001.
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Figure 2. Epcoritamab-induced cytotoxicity in CLL

PBMCs correlates with the E:T ratio but not with

CD20 expression levels. (A) Comparison of baseline E:T

ratio, calculated as follows: (% CD4+ and CD8+ T cells) ÷

% CLL cells, in indicated patient groups: TN (n = 13, red

triangles), IBR (n = 12, blue circles), ACA (n = 14, green

diamonds), and RES (n = 7). (B) Spearman correlation of

baseline E:T ratios and percentage of CLL cell–specific

lysis in samples from all 4 groups cultured with

epcoritamab for 7 days. (C) Comparison of baseline CD20

mean fluorescence intensity (MFI) in CLL cells between

different patient groups. (D) Spearman’s correlation of

baseline CD20 MFI and percentage of specific lysis of CLL

cells in samples from all 4 groups cultured with

epcoritamab for 7 days. Asterisks indicate statistical

significance using Mann-Whitney test for the comparison

of different patient groups. *P < .05; **P < .01; ***P <

.001; ****P < .0001.
CD20 expression on CLL cells from patients treated with acalab-
rutinib, treatment-naive patients, and patients with disease pro-
gressing while receiving BTKi. Across all samples, baseline CD20
expression levels did not correlate with epcoritamab-induced
cytotoxicity on day 7 (Figure 2D). There was also no correlation
between CLL cell lysis and immunoglobulin heavy chain variable
(IGHV) region mutational status, Rai stage, cytogenetic charac-
teristics, or prior treatment status (data not shown).

Taken together, the E:T ratio emerged as a major determinant of
epcoritamab-mediated cytotoxicity. In contrast, cytotoxic activity
was comparable across the wide range of CD20 expression levels
observed in these samples.

Epcoritamab enhances autologous T-cell cytotoxic

effector function, activation, and proliferation

To determine the effect of epcoritamab on T-cell activation and
proliferation, we quantified the frequency of CD4+ and CD8+

T cells expressing immunophenotypic markers of activation and
cytotoxic potential at baseline and after 3 days of culture
(supplemental Figure 2A). Compared with B12 controls, the pro-
portion of CD4+ and CD8+ T cells expressing Ki-67, granzyme B,
8 AUGUST 2023 • VOLUME 7, NUMBER 15
HLA-DR, PD-1, CTLA-4, TIM-3, and LAG-3 increased significantly
after 3 days of culture with epcoritamab in all patient groups
(supplemental Figure 2B). No T-cell activation or proliferation was
observed with B12×CD3 (supplemental Figure 3) or B12×CD20
(not shown) control bsAbs.

To explore the relationship between epcoritamab-induced T-cell
response and cytotoxic activity, we performed hierarchical clus-
tering of patient samples based on the frequency of CD4+ or CD8+

T cells expressing these immunophenotypic markers on day 3.
Samples were divided into 2 major clusters: cluster A with relatively
lower expression and cluster B with higher expression of markers
indicative of activation, proliferation, and cytotoxic potential
(Figure 3A). The more activated samples in B clusters, compared
with those in A clusters, were associated with significantly higher
cytotoxic activity on day 3 for both CD4+ (P = .02; Figure 3B) and
CD8+ (P = .006; Figure 3C) T cells. On day 7, median CLL cell
lysis for the activated CD8+ cluster was 82% (range, 46%-96%)
compared with 25% (range, 8%-89%) for cluster A (P = .02;
Figure 3C), whereas there was no statistically significant difference
for the CD4+ cells. Notably, the B clusters were enriched for BTKi-
treated samples (supplemental Figure 4A) and had higher median
E:T ratios compared with cluster A: for CD4+, 0.29 and 0.05 and
EPCORITAMAB BISPECIFIC ANTIBODY IN CLL 4093
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Figure 3. Epcoritamab induces autologous T-cell activation and expansion. Markers of T-cell activation and cytotoxic potential were assessed via flow cytometry, in

PBMCs from patients who were TN (n = 7), IBR (n = 10), or ACA (n = 11) cultured with epcoritamab or B12 control for 3 days. Samples from RES (n = 7) were also included. (A)

Heatmap depicts the median centered frequencies of CD4+ and CD8+ T cells expressing the indicated markers; samples were grouped based on hierarchical clustering.

Comparison of CLL-specific killing after 3 and 7 days of treatment between grouping based on (B) CD4 activation and (C) CD8 activation state. Each symbol represents 1 patient

sample, and the median and interquartile range are indicated. (D) CD4+ and CD8+ T-cell counts were quantified via flow cytometry after 7 days of culture with epcoritamab (blue

symbols) or B12 control (red symbols). Each symbol represents 1 patient sample. Asterisks indicate statistical significance using Wilcoxon matched-pair signed rank test for

comparison of different treatments applied to individual patient samples and Mann-Whitney test for comparison of different patient groups. *P < .05; **P < .001; ***P< .001.
for CD8+, 0.23 and 0.04, respectively (P < .01 for both compari-
sons; supplemental Figure 4B). Similarly, within cluster A, greater
CLL cell killing was associated with higher E:T ratios (supplemental
Figure 4C).

Epcoritamab induced both CD4 and CD8 T-cell expansion in vitro.
On day 7, the median increase in CD4+ T cells with epcoritamab
compared with the B12 control condition was 13-fold for the
treatment-naive group (P = .016), sixfold for ibrutinib and
acalabrutinib-treated group (P = .019 and P = .001; respectively),
and sevenfold for BTKi progressive disease group (P = .016).
The median increase of CD8+ T-cell counts with epcoritamab was
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15-fold for the treatment-naive patients (P = .016), sevenfold and
fourfold for patients treated with ibrutinib and acalabrutinib,res-
pectively, (P = .009 and P = .003, respectively), and fourfold for
patients with progressing disease while on BTKi (P = .016;
Figure 3D).

Epcoritamab induces Th1 polarization and memory

T-cell differentiation

Th1, Th2, and Th17 T-helper subsets were identified via flow
cytometry and staining for CCR6 and CXCR3 (supplemental
Figure 5A). Ex vivo, Th1:Th2 ratios were biased toward Th2 in all
8 AUGUST 2023 • VOLUME 7, NUMBER 15



patient samples (supplemental Figure 5B). In vitro, epcoritamab
promoted Th1 polarization as early as on day 3 (supplemental
Figure 5C).34 After 7 days, the median Th1:Th2 ratio in B12 and
epcoritamab-treated PBMCs increased from 0.2 to 0.6 (P = .03) for
treatment-naive, from 0.4 to 3 (P = .002) for ibrutinib-treated,
from 0.7 to 2 (P = .005) for acalabrutinib-treated, and from 0.4 to
2 (P = .16) for the progressive disease cohorts (Figure 4A). We
also found a significant increase in the concentration of Th1 cyto-
kines in cell culture supernatants on day 7 (Figure 4B). For example,
the median concentration of interferon-gamma was <50 pg/mL in
B12 control-treated samples but was >2000 pg/mL in
epcoritamab-treated samples (P ≤ .03). Likewise, concentrations of
tumor necrosis factor α (P ≤ .02) and granulocyte-macrophage
colony-stimulating factor (P = .008) significantly increased in
epcoritamab-treated samples compared with that in controls.
Although we detected increases in the concentration of the Th2
cytokines, such as IL-5, upon epcoritamab treatment, their con-
centrations remained very low (≤ 300 ρg/mL).

Using CCR7 and CD45RO expression, measured via flow
cytometry, we identified T-cell subsets as naive, central memory
(CM), effector memory (EM), and effector T cells (supplemental
Figure 5D). Ex vivo, no significant difference in the T-cell
compartment composition was observed between the patient
groups (supplemental Figure 5E). After 7 days, the median fre-
quency of T-EM among CD4+ T cells was higher in epcoritamab-
treated cultures than in controls: 39% vs 17% (P = .006) in
patients who were ibrutinib-treated, 37% vs 25% (P = .04) in those
who were acalabrutinib-treated, and 60% vs 18% (P = .016) in
those who were treatment-naive, respectively (Figure 4C). Like-
wise, among CD8+ T cells the median frequencies of T-EM in
epcoritamab-treated cultures vs in controls were 57% vs 42% (P =
.03) for ibrutinib-treated, 55% vs 35% (P = .04) for acalabrutinib-
treated, and 58% vs 32% (P = .07) in treatment-naive patients.
Numerically, the frequency of CM T cells increased in all
epcoritamab-treated cultures compared with that in controls, but
the change reached statistical significance only for CD8 T cells
from patients who were treatment-naive and those treated with
ibrutinib (Figure 4C). Conversely, the frequency of naive T cells
significantly decreased in all cultures. In samples from patients who
had progressing disease while on BTKi, the proportion of CM and
EM was very high in all conditions, and no statistically significant
shifts were observed (P > .1).

In summary, the addition of epcoritamab to CLL PBMCs in vitro
promoted Th1 polarization and differentiation in EM and CM T cells,
with a concurrent reduction in the frequency of naive T cells.

Epcoritamab mediates the CLL-directed cytotoxicity

by autologous T cells in vivo

Next, we tested epcoritamab in a PDX mouse model.35 PBMCs
from 7 patients were injected into 35 mice, with 5 mice per patient.
Three patients were treatment-naive and 4 patients had pro-
gressing disease while on BTKi therapy (supplemental Table 3).
We excluded 4 mice showing low engraftment on day 2. The 31
mice with acceptable human cell engraftment were stratified based
on the engraftment level (supplemental Figure 6) to receive
epcoritamab (n = 17) or B12 control (n = 14) on days 3 and 10
(Figure 5A). CLL cell burden in the blood and spleens was quan-
tified via flow cytometry (Figure 5B).
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Compared with mice that received B12 control, the median
leukemic cell burden in mice treated with epcoritamab was
reduced by 71% after 1 injection (day 10; P < .0001) and by 94%
after the second injection (day 17; P = .003; Figure 5C). In the
spleen, tumor infiltration was reduced by >99% in epcoritamab-
treated mice (P < .0001; Figure 5D). There was no apparent dif-
ference in the efficacy of epcoritamab against CLL cells obtained
from treatment-naive patients or patients who had progressing
disease while continuously recceiving BTKi treatment. We
attempted to engraft samples from patients in remission on BTKi
but were unable to achieve acceptable engraftment for in vivo
studies.

Epcoritamab effectively induced CLL-directed cytotoxicity in vivo,
which, in our PDX model, was dependent on autologous T cells.
We observed a high degree of activity against circulating as well as
splenic CLL cells in samples from treatment-naive patients and
patients who had progressing disease while receiving BTKi
therapy.

The combination of epcoritamab with venetoclax is

more cytotoxic than either agent alone

The Bcl-2 inhibitor venetoclax, combined with anti-CD20 anti-
bodies, is effective in treating patients with progressing disease
while on BTKi.18-21 Here, we tested the addition of venetoclax to
epcoritamab in vitro. We titrated the dose of venetoclax to 5nM to
achieve half-maximal killing of CLL cells after 48 hours of culture
(data not shown). PBMCs were incubated for up to 7 days with
B12/dimethyl sulfoxide control vs epcoritamab, venetoclax, or both
agents combined. After 7 days of venetoclax, the median CLL cell
viability was 29% (range, 22%-55%) in treatment-naive patients
(P < .0001, vs control), 31% (range, 27%-61%) in patients treated
with BTKi (P = .001), and 21% (range, 15%-66%) in patients with
progressing disease while receiving a BTKi (P = .004). In PBMCs
treated with the combination of epcoritamab and venetoclax, the
CLL cell viability decreased significantly compared with that in
PBMCs treated with either agent alone (Figure 6A): it decreased to
14% (range, 6%-28%) for treatment-naive patients (P ≤ .006), to
2% (range, 0.6%-12%) for patients treated with BTKi (P ≤ .005),
and to 3% (range, 0.6%-5%) for patients with progressing disease
while receiving a BTKi (P ≤ .01). As seen with single-agent
epcoritamab, the E:T ratio and cytotoxicity activity were highly
correlated for the combination of epcoritamab with venetoclax (r =
0.6; P < .0001; Figure 6B). The addition of venetoclax did not
differentially reshape the T-cell compartment compared with single-
agent epcoritamab (supplemental Figure 7A-B).To account for
interpatient variations in T-cell frequency, we enriched CLL cells to
> 95% by depleting autologous T cells and adding healthy donor
PBMCs as the T-cell source at a fixed 1:3 E:T ratio. Within 48
hours, CLL cell viability had significantly decreased in the presence
of epcoritamab combined with venetoclax vs single agents in all 3
patient groups (P ≤ .05; supplemental Figure 7C-D). Taken
together, using autologous or allogeneic T cells as effectors, the
combination of epcoritamab and venetoclax was more active than
either agent alone.

Discussion

CLL cells are sensitive to T-cell attack, as demonstrated with donor
lymphocyte infusion after allogeneic stem cell transplantation43
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Figure 5. Epcoritamab eliminates CLL cells in PDXs. (A) PBMCs from patients who were TN (n = 3, triangles) and RES (n = 4, squares) were injected into NSG mice on

experimental day 0. Cell engraftment was confirmed on day 2 via flow cytometry. Mice were then treated once weekly with either epcoritamab or B12 control (0.5 mg/kg).

Four or 5 mice were included for each patient and divided between the 2 treatment groups (n = 7 patients; n = 31 mice). (B) Representative flow cytometry dot plots of peripheral

blood from mice treated with either epcoritamab (EPCO) or B12 control (B12) on day 2 (top, before treatment), day 10 (middle, after 1 injection), and day 17 (bottom, after

2 injections). (C) Comparison of the mean CLL cell count in the peripheral blood between EPCO-treated (blue) and B12-treated (red) groups on experimental days 10 and 17.

(D) Percentage of CLL cells among nucleated cells in the spleen on experimental day 17 between the EPCO-treated (blue) and B12-treated (red) groups. The median

and interquartile ranges are indicated. Asterisks indicate statistical significance using Mann-Whitney test. **P< .01; ****P< .0001.
and successes with chimeric antigen receptor (CAR) T-cell
therapy.44,45 bsAbs offer an off-the-shelf approach that depends
on the cytotoxic effector functions of autologous T cells.
The cellular immune dysfunction characteristic of CLL hampers
CAR T-cell efficacy46-48 and may also hamper the activity of bsAbs.
Here, we tested epcoritamab across a clinical spectrum of CLL
disease course by including samples from patients who were
treatment-naive, those treated with BTKi, and those with pro-
gressing disease while on BTKi therapy. In vitro, epcoritamab-
induced CLL cytotoxicity was readily demonstrable in PBMCs
from treatment-naive patients and was enhanced in samples
Figure 4. Epcoritamab shifts T-cell differentiation toward Th1 polarization and e

T cells was assessed based on CCR6 and CXCR3 expression. Th1:Th2 ratio (log2 transform

in PBMCs from patients who were TN (n = 7), IBR (n = 10), ACA (n = 11), and RES (n = 7)

Each symbol represents 1 patient sample. (B) Th1 (interferon-gamma, tumor necrosis factor

and IL-5) cytokine levels measured via Luminex cytokine assays in cell supernatants harvest

from patients who were TN (n = 8), IBR (n = 8), and ACA (n = 8). (C) T-cell differentiation in

T cells, EM T cells, and effector T cells, based on CCR7 and CD45RO expression for samp

after 7 days of culture with EPCO or B12. Pie charts represent the median proportion of

T-effector memory or T-central memory in cultures treated with EPCO compared with B12
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from patients with ongoing BTKi therapy, including patients with
progressive disease. Epcoritamab expanded CD4+ and CD8+ T
cells, induced memory T-cell differentiation, and promoted Th1
polarization. These attributes are associated with long-term pro-
tective responses to cancer immunotherapy,49,50 including in
patients with aggressive lymphoma treated with CD19-targeting
CAR T cells.51

Low CD20 expression is characteristic of CLL, as are low E:T
ratios, given the high number of circulating tumor cells. We found
that epcoritamab-mediated cytotoxicity did not correlate with
nhances its differentiation into EM T cells. (A) Th1 and Th2 polarization of CD4+

ed) was calculated using the percentage of Th1 and Th2 subsets within CD4+ T cells

after 7 days of culture with epcoritamab (blue symbols) or B12 control (red symbols).

α, and granulocyte-macrophage colony-stimulating factor) and Th2 (interleukin-6 [IL-6]

ed after 7 days of exposure to epcoritamab (EPCO) or B12 control (B12) for samples

CD4+ or CD8+ subsets was assessed via flow cytometry, separating naive T cells, CM

les from patients who were TN (n = 7), IBR (n = 10), ACA (n = 11), and RES (n = 7)

each subset. Asterisks indicate statistically significant expansion of CD4 and CD8

as determined using Wilcoxon matched-pair signed rank test. *P< .05; **P< .01.
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CD20 expression, consistent with observations on lymph node
biopsy specimen from patients with B-cell lymphomas.38 Efficacy of
epcoritamab in PDXs of lymphoma has also been reported in the
presence of rituximab,37 and although rituximab interfered with
epcoritamab binding to CD20-expressing cells in vitro, tumor-cell
cytotoxicity was minimally affected by clinically relevant concen-
trations of rituximab.52 Taken together, epcoritamab-mediated
cytotoxicity can be achieved despite low antigen density in tumor
cells. This contrasts with reported associations of low CD20
expression with reduced benefits of anti-CD20 antibodies in
CLL.53,54 Although anti-CD20 antibodies improve response rates
and survival in combinations with chemotherapy,55,56 BTKis can
interfere with Fc receptor–mediated effector functions,57-59 and
the benefit of combining anti-CD20 mAbs with BTKis remains ill-
defined.60-62 Therefore, anti-CD20 bsAbs that direct cytotoxic
T cells against tumor cells and are equally effective against cells
with low target antigen density represent an attractive new com-
bination partner to BTKi therapy.

In contrast to our data from earlier studies with the CD19/CD3
bsAb,34,35 epcoritamab-mediated cytotoxicity correlated with
E:T ratios. Samples from patients receiving BTKi therapy,
including those whose disease progressed, had higher E:T
ratios compared with samples from treatment-naive patients,
partly explaining the superior activity of the bsAb in patients
receiving BTKis. In addition, BTKis, by transcriptionally
downregulating immunosuppressive molecules in CLL cells,
create an environment favorable to cellular immunotherapy.34

Consistently, we found that epcoritamab induced a higher
degree of T-cell activation, proliferation, and expression of
cytotoxic effectors in T cells from patients receiving BTKis than
in treatment-naive patients, irrespective of which BTKi the
patients received.

Epcoritamab mediates potent in vivo cytotoxicity against CLL
cells in the PDX model. Reflecting the situation in patients, the
activity of the bsAb in this model depends on the effector func-
tions of autologous T cells. Limitations of the model include a lack
of survival end points because the CLL xenografts do not lead to
the death of the host.35,42 Furthermore, interpatient variability in
engraftment limits interpatient comparisons. Nevertheless, the
significant reduction in tumor burden after only 2 injections of
epcoritamab clearly demonstrates the potent activity of bsAbs
in vivo. Importantly, epcoritamab was also effective in mice xen-
ografted with samples from patients with progressing disease
while receiving BTKis, a high-risk group with a poor
prognosis.15,63
Figure 6. The combination of epcoritamab with venetoclax induced a higher

degree of CLL cytotoxicity in vitro than either agent alone. PBMCs from

patients who were TN (n = 15), patients treated with BTKi (BTKi, n = 11; IBR, 4; and

ACA, 7), and patients who were RES (n = 9) were cultured with either B12/dimethyl

sulfoxide control (CTRL), epcoritamab (EPCO), 5nM venetoclax (VEN), or the

combination of epcoritamab with venetoclax (EPCO + VEN). (A) CLL cell viability

after 7 days of culture. (B) Spearman correlation of baseline E:T ratios and

percentage of CLL cell–specific lysis in samples from all 3 groups cultured with

EPCO + VEN for 7 days. Asterisks indicate statistical significance using Wilcoxon

matched-pair signed rank test for the comparison of different treatments applied to

individual patient samples. *P < .05; **P < .01; ***P < .001; ****P < .0001.
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The BCL-2 inhibitor venetoclax, combined with anti-CD20 anti-
bodies, is a commonly used second-line therapy for patients
resistant or intolerant to BTKis. Venetoclax increased the cytotox-
icity of epcoritamab against CLL cells in vitro, including in PBMCs
from patients with progressing disease while on BTKis. These data
support investigations of epcoritamab in combination with ven-
etoclax in patients with progressing disease while on BTKis or
as consolidation for patients at an increased risk of failure with
single-agent BTKi therapy.64 Venetoclax has been reported to
reshape the T-cell compartment by reducing the number of follic-
ular helper and regulatory T cells and improving T-cell metabolic
function through the depletion of CLL cells.65,66 However, the
effects of venetoclax and its combination with epcoritamab on
immune function in patients with CLL need to be further
investigated.

In summary, our results assert the potential of epcoritamab as a
novel treatment option for patients with CLL and support clinical
investigations of epcoritamab in combination with BTKis or ven-
etoclax and as salvage therapy in patients with progressing disease
while receiving BTKi therapy.
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