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ABSTRACT
To make informative public policy decisions in battling the ongoing
COVID-19 pandemic, it is important to know the disease prevalence
in a population. There are two intertwined difficulties in estimating
this prevalence based on testing results from a group of subjects.
First, the test is prone to measurement error with unknown sensi-
tivity and specificity. Second, the prevalence tends to be low at the
initial stage of the pandemic and wemay not be able to determine if
a positive test result is a false positive due to the imperfect test speci-
ficity. The statistical inference based on a large sample approxima-
tion or conventional bootstrapmay not be valid in such cases. In this
paper, we have proposed a set of confidence intervals, whose valid-
ity doesn’t depend on the sample size in the unweighted setting. For
the weighted setting, the proposed inference is equivalent to hybrid
bootstrap methods, whose performance is also more robust than
thosebasedonasymptotic approximations. Themethods are used to
reanalyze data from a study investigating the antibody prevalence in
Santa Clara County, California in addition to several other seropreva-
lence studies. Simulation studies have been conducted to examine
the finite-sample performance of the proposed method.
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1. Introduction

Determining the proportion of people who have developed antibodies to SARS-CoV-2 due
to prior exposure is an important piece of information for guiding the responsemeasures to
COVID-19 in different populations. This proportion is also key to understanding the sever-
ity of the disease in terms of estimating the infection fatality rate among those infected; for
example, see [3,6,13,21], and for an overview of 82 studies, see [14]. One effective way of
estimating the proportion of people who have developed antibodies is to conduct a sur-
vey in the community of interest: sample a subgroup of people from the target population
and measure their antibody status using a test kit. The prevalence of SARS-CoV-2 anti-
bodies can oftentimes be low, in the range of 0–2%, especially at the early stage of viral
spread in a population. In these circumstances, the simple proportion of the positive results
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among all conducted tests can be a poor estimate of the true prevalence due to the simple
fact that all tests are not perfect [19]. For example, suppose that the test used in the study
has fairly good operational characteristics: sensitivity= 95% and specificity= 99%. Then,
if the true prevalence rate in the study population is 1%, based on a simple calculation,
1% × 95% + 99% × (1 − 99%) = 1.9% of the tests would be positive. The proportion of
positive tests, in this case, is almost double the true prevalence.

Therefore, the proportion of the positive testsmay not represent the true prevalence and
should be adjusted for the sensitivity and specificity of the deployed test. If the sensitivity
and specificity of the test are unrealistically assumed to be known, an unbiased estimate
of the true prevalence can be obtained easily and its 95% confidence interval can be con-
structed [18]. However, this is usually not the case, and in practice, the reported sensitivity
and specificity of the test are often obtained based on a limited number of experiments and
are randomestimates subject to errors themselves. In the absence of a gold reference to esti-
mate sensitivity and specificity against, a Bayesian approach is suggested in [7]. Therefore,
it is important to develop an inference procedure to account for the randomness from study
data as well as from reported sensitivity and specificity.When the prevalence is low and the
specificity is around (1-prevalence), statistical inference based on large sample approxima-
tion such as delta-method and naive bootstrap may not be reliable. In this paper, we have
proposed an exact inferencemethod for the disease prevalence without requiring any large
sample approximation if the study participants are randomly sampled from the target pop-
ulation.When biased sampling is used, the weighted inference is needed to correct the bias
in estimating the prevalence in the target population. As an extension of the exact method,
we have proposed a novel hybrid bootstrap method, which has a more robust finite sample
performance than that based on a simple large sample approximation. The method can be
useful for statistical inference of the prevalence of antibodies to SARS-CoV-2 in a given
population.

2. Method

2.1. Exact inference based on random sampling

Our goal is to construct a reliable confidence interval for disease prevalence in scenarios
with true specificity close to 1, where the normality assumption for the reported sensitiv-
ity does not necessarily hold. In a typical setting, we observe three separate estimates for
the proportion of positive tests r0, sensitivity p0, and specificity q0, denoted by r̂, p̂ and
q̂, respectively. Specifically, we assume to observe three independent binomials random
variables

d ∼ Bin(D, r0),

m ∼ Bin(M, p0),

n ∼ Bin(N, q0),

r̂ = d/D, p̂ = m/M and q̂ = n/N, whereD is the sample size in the current study;M is the
number of positive reference samples used to estimate the sensitivity; andN is the number
of negative reference samples used to estimate the specificity. Normally, D is big relative to
M andN, whose typical values are in the range of tens or hundreds. Because we assume the
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experiments to estimate the prevalence, the assay sensitivity, and the assay specificity have
no overlap in samples, r̂, p̂ and q̂ are independent.

Based on the relationship

r0 = π0p0 + (1 − π0)(1 − q0),

we may solve for the true disease prevalence π0 in terms of r0, p0, and q0 as

π0 = f (r0, p0, q0), (1)

where

f (r, p, q) := r + q − 1
p + q − 1

.

A simple point estimator of the prevalence π0 adjusted for sensitivity and specificity is thus

π̂ = f (r̂, p̂, q̂). (2)

As min(D,M,N) → ∞, under the regularity conditions listed in Theorem A.1 in the
appendix, the central limit theorem suggests the weak convergence for each of the binomial
random variables. Coupled with the fact that these three estimators are based on indepen-
dent samples from separate experiments, it suggests asymptotic independence and the joint
weak convergence

⎡
⎣

√
D(r̂ − r0)√
M(p̂ − p0)√
N(q̂ − q0)

⎤
⎦ d−→ N

⎛
⎝
⎡
⎣00
0

⎤
⎦ ,

⎡
⎣r0(1 − r0) 0 0

0 p0(1 − p0) 0
0 0 q0(1 − q0)

⎤
⎦
⎞
⎠ ,

and π̂ − π0 can be approximated by a mean zero Gaussian distribution with variance

r0(1 − r0)
D(p0 + q0 − 1)2

+ π2
0 p0(1 − p0)

M(p0 + q0 − 1)2
+ (r0 − p0)2q0(1 − q0)

N(p0 + q0 − 1)4
.

This variance is unknown but can be consistently estimated by

σ̂ 2 = r̂(1 − r̂)
D(p̂ + q̂ − 1)2

+ π̂2p̂(1 − p̂)
M(p̂ + q̂ − 1)2

+ (r̂ − p̂)2q̂(1 − q̂)
N(p̂ + q̂ − 1)4

.

Therefore, a simple 95% confidence interval for π0 can be constructed as[
π̂ − 1.96σ̂ , π̂ + 1.96σ̂

]
. (3)

This confidence interval can be viewed as a product of inverting a Wald test H0 : π0 = π

based on the test statistic

T̂(π) = π̂ − π

σ̂

which approximately follows a standard Gaussian distribution with mean zero and unit
variance under the null hypothesis H0 : π0 = π . Specifically, the p-value of the test can be
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calculated as

p(π) = P(|Z| > |T̂(π)|)
and the 95% confidence interval based on (3) can be expressed as

{π | p(π) > 0.05},
i.e. all π , at which we cannot reject the null hypothesis at the 0.05 significance level. Here
Z ∼ N(0, 1).

Remark 2.1: The derivation of the asymptotic joint distribution of r̂, p̂ and q̂ above relies
on the fact that they are all independent. In a more complex setting, where the test result is
obtained by dichotomizing a continuous biomarker level, those estimates can be dependent
if the cut-off value itself is estimated empirically, and we would want to account for its
randomness when performing inference on p0, q0 and π0 [1,22].

Remark 2.2: In the extreme case, the confidence interval above may include negative val-
ues. To preserve the appropriate range of the prevalence, one may first construct the 95%
confidence interval for logit(π0) as[

logit(π̂) − 1.96σ̂
π̂ (1 − π̂)

, logit(π̂) + 1.96σ̂
π̂ (1 − π̂)

]

and transform it back via expit(·) to a confidence interval for π0.

When q0 is close to 1 and/or r0 is close to zero, the null distribution of T̂ may not be
approximated well by the standard normal and the p-value based on asymptotic approx-
imation, i.e. p(π), becomes unreliable. The bootstrap method has also been used to
construct the confidence interval of π0. There are different variations of the bootstrap
method. The simplest version draws

r∗b ∼ Bin(D, r̂)/D,

p∗
b ∼ Bin(M, p̂)/M,

q∗
b ∼ Bin(N, q̂)/N,

and calculate π∗
b = f (r∗b , p

∗
b , q

∗
b) for b = 1, . . . ,B, where B is a large integer specified by the

user. Then two ends of the 95% confidence interval of π0 can be constructed as 2.5 and
97.5 percentile of {π∗

b , b = 1, . . . ,B}. However, the validity of the bootstrap method also
relies on a large sample approximation, which may be broken in some settings of interest.

To address this concern, we propose to calculate the exact confidence interval by invert-
ing a test, while accounting for nuisance parameters. Chan and Zhang [4] proposed an
exact confidence interval for the difference in two binomial proportions, treating the pro-
portion in the reference group as a nuisance parameter. The exact confidence interval was
constructed by inverting a hypothesis test for the difference in proportion, in which the
p-value was computed by considering all potential values for the nuisance parameter and
thus exact. The author of [9,10,15,20] proposed similar methods for different statistical
models such as the beta-binomial model [10] and normal-normal random effects model in
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meta-analysis [15]. Here, we adopt a similar approach and proceed through the following
steps:

(1) Construct 99.9% confidence interval for r0, p0 and q0 denoted by Ir, Ip and Iq, respec-
tively. The high coverage level of 99.9% is chosen to ensure that the probability of
(r0, p0, q0) ∈ Ir × Ip × Iq is much greater than 95%. For example, we can take Ir to
consist of all probabilities r such that

min {P(Bin(D, r) ≥ d),P(Bin(D, r) ≤ d)} ≥ 0.1%.

Confidence intervals Ip and Iq can be constructed similarly.
(2) For a given π , define �π = {(r, p, q) | f (r, p, q) = π , (r, p, q) ∈ Ir × Ip × Iq}.
(3) Select a dense net ‘spanning’ �π : {(rk, pk, qk) ∈ �π , k = 1, . . . ,K} such that for any

(r, p, q) ∈ �π , there exists a k ∈ {1, . . . ,K} such that |rk − r| + |pk − p| + |qk − q| ≤
ε for a small constant ε > 0.

(4) For each (rk, pk, qk) from the net, we simulate

r∗b ∼ Bin(D, rk)/D,

p∗
b ∼ Bin(M, pk)/M,

q∗
b ∼ Bin(N, qk)/N,

and let

π∗
b = f (r∗b , p

∗
b , q

∗
b),

σ ∗
b
2 = r∗b(1 − r∗b)

D(p∗
b + q∗

b − 1)2
+ π∗

b
2p∗

b(1 − p∗
b)

M(p∗
b + q∗

b − 1)2
+ (r∗b − p∗

b)
2q∗

b(1 − q∗
b)

N(p∗
b + q∗

b − 1)4

for b = 1, . . . ,B, where B is a large number such as 1, 000. The distribution of
T̂(rk, pk, qk) under the simple null hypothesis H0 : (r0, p0, q0) = (rk, pk, qk) can be
approximated by the empirical distribution of

{T∗
b (rk, pk, qk), b = 1, . . . ,B},

where

T∗
b (rk, pk, qk) = π∗

b − π

σ ∗
b

.

Specifically, the exact p-value for testing H0 : (r0, p0, q0) = (rk, pk, qk) can be esti-
mated by

p̂(rk, pk, qk) = B−1
B∑

b=1

I(|T∗
b (rk, pk, qk)| ≥ |T̂(π)|),

where I(·) is the indicator function.
(5) Since H0 : π0 = π is a composite null hypothesis, the exact p-value for testing H0 :

π0 = π can be approximated by

p̂(π) = max
k=1,...,K

p̂(rk, pk, qk).
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Lastly, the 95% confidence interval for π0 can be constructed as

{π | p̂(π) ≥ 0.05 − 0.003},
i.e. all π ’s with an exact p-value is greater than 0.05−0.003 = 0.047. The adjustment of
0.003 in the significance level is needed to account for the joint coverage level of three
confidence intervals Ir, Ip, and Iq at step (1), i.e. P((r0, p0, q0) ∈ Ir × Ip × Iq) ≥ 1 − 0.003.

Remark 2.3: If�π = φ, i.e. there is no (r, p, q) ∈ Ir × Ip × Iq such that f (r, p, q) = π , then
let p̂(π) = 0.

Remark 2.4: The construction of the grid points in �π can be completed by first consid-
ering all the points {(pi, qj)}, where {pi} is a set of evenly spaced points over Ip and {qj}
is a set of evenly spaced points over Iq. Then for each (pi, qj), we may solve the equation
f (r, pi, qj) = π in terms of r. If the solution rij ∈ Ir, then the triplet (pi, qj, rij) is included
in a dense net.

The proposed exact confidence intervals always can cover the true prevalence at the
desired level regardless of the sample size, if we ignore the Monte-Carlo error in calcu-
lating the p-value p̂(rk, pk, qk), which can be made arbitrarily small by increasing B in the
simulation and considering a more dense net spanning the region �π .

The computation can be slow, since for each hypothesis test, we need to simulate the null
distribution of T̂(π) for many triplets (rk, pk, qk) ∈ �π . We can accelerate this computa-
tion using hybrid bootstrap [5], where some nuisance parameters are fixed to their point
estimates when approximating the distribution of the test statistic. For example, we may
assume p0 = p̂ and only consider pairs (r, q) such that f (r, p̂, q) = π to generate the exact
p-value of H0 : π0 = π . Specifically, we may let {qj, j = 1, . . . , J} be evenly spaced points
over Iq and let rj = π p̂ − (1 − π)(qj − 1). In the end,

p̂(π) = max
1≤j≤J,rj∈Ir

p̂(rj, p̂, qj).

Since p0 is fixed at p̂, the number of pairs (r, q) to be considered for each fixed level π

can be much smaller than the number of triplets (r, p, q). The price for gaining the com-
putation speed is sacrificing the ‘exact’ coverage level in a finite sample due to the fact
that the observed point estimator of the nuisance parameters may be quite different from
the true parameter. Consequently, the coverage level of the confidence interval based on
hybrid bootstrap is not always guaranteed in all settings.However, we expect that it still per-
forms better than the naive confidence interval (3), where all unknown parameters were
assumed to be their observed estimates. It can be viewed as a compromise between the
computational intensive exact inference and asymptotic inference based on large sample
approximations.

2.2. Hybrid bootstrap for weighted inference

When the survey for studying disease prevalence is not conducted using a representative
sample, appropriate weighting of the samples is needed to obtain an unbiased estimate of
the prevalence. There are two typical settings. (1) There are several strata and the sampling
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is considered random (and thus representative) within each stratum; In such a case, the
strata-specific weighting will be employed. (2) The sampling represents a population dif-
ferent from the target, but a propensity score can be constructed and individual-specific
weighting will be needed. In the following, we will address these two cases separately.

2.2.1. Stratum specific weighting
Suppose that the target population consists of S strata with proportions w1, . . . ,wS−1,
and wS. Also suppose that the underlying disease prevalence in each of the S strata is
π1, . . . ,πS−1, and πS. The parameter of interest is the overall disease prevalence in the
target population:

πw =
S∑

s=1
wsπs.

Let the number of tests conducted in these strata be D1, . . . ,DS−1, and DS, respectively.
The number of positive tests in stratum s follows a Poisson distribution:

ds ∼ Pois(Dsrs),

which can be approximated byN(Dsrs,Dsrs), where rs = πsp0 + (1 − πs)(1 − q0). Conse-
quently,

dw =
S∑

s=1
w̃sds ∼ N (Drw, λ0Drw) ,

where D = ∑S
s=1 Ds, w̃s = ws/(Ds/D), rw = ∑S

s=1 wsrs, and

λ0 =
∑S

s=1 w̃swsrs
rw

is the variance inflation factor. Noting that πw = f (rw, p0, q0), we can estimate πw based
on dw by

π̂w = f (r̂w, p̂, q̂),

where r̂w = dw/D. Define the test statistic

T̂w(π) = π̂w − πw

σ̂w
,

where

σ̂ 2
w = λ̂r̂w

D(p̂ + q̂ − 1)2
+ π̂2

wp̂(1 − p̂)
M(p̂ + q̂ − 1)2

+ (r̂w − p̂)2q̂(1 − q̂)
N(p̂ + q̂ − 1)4

,

λ̂ = r̂−1
w

{ S∑
s=1

w̃swsr̂s

}
,

and r̂s = ds/Ds.
To calculate the exact p-value for testingH0 : πw = π , we only need to modify the steps

(1), (4) and (5) of the algorithm in Section 2.1.
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(1) Construct 99.9% confidence intervals for rw denoted by Ir assuming λ0 = λ̂.
(4) For each (rk, pk, qk) from the net for �π , we simulate

r∗wb ∼ N(Drk, λ̂Drk)/D

and let π∗
wb = f (r∗wb, p

∗
b , q

∗
b) and

σ ∗2
wb = λ̂r∗wb

D(p∗
b + q∗

b − 1)2
+ π∗

wb
2p∗

b(1 − p∗
b)

M(p∗
b + q∗

b − 1)2
+ (r∗wb − p∗

b)
2q∗

b(1 − q∗
b)

N(p∗
b + q∗

b − 1)4

for b = 1, . . . ,B. The exact p-value for testing H0 : (rw, p0, q0) = (rk, pk, qk) can be
estimated by

p̂w(rk, pk, qk) = B−1
B∑

b=1

I
(∣∣∣∣π∗

wb − π

σ ∗
wb

∣∣∣∣ ≥ |T̂w(π)|
)
.

(5) The exact p-value for testing H0 : πw = π can be approximated by

p̂w(π) = max
k=1,...,K

p̂w(rk, pk, qk).

The 95% confidence interval for πw thus consists of all values of π such that the exact
p-value for testing H0 : πw = π is greater than 0.05−0.003. The validity of the resulting
confidence interval requires the following assumptions:

• Assumption 1: ds ∼ Pois(Dsrs), which can be approximated by the Gaussian
N(Dsrs,Dsrs). To ensure a good normal approximation to the Poisson distribution, rs
needs to be small and Dsrs needs to be reasonably big, e.g. ≥10.

• Assumption 2: λ̂ is a good approximation for λ0.

2.2.2. Individual specific weighting
With a slight abuse of notation, now suppose that the ith subject has a test result, denoted by
a Bernoulli random variable di ∼ Ber(ri), and aweightwi, where ri = πip0 + (1 − πi)(1 −
q0), πi is the probability that the subject has the antibody, and

∑D
i=1 wi = D. Our goal is

again to estimate the weighted prevalence

πw = 1
D

D∑
i=1

wiπi.

Since di ∼ Ber(ri), as D grows large, by central limit theorem, we can approximate

1
D

D∑
i=1

widi ∼ N

(
1
D

D∑
i=1

wiri,
1
D2

D∑
i=1

w2
i ri(1 − ri)

)
= N

(
rw,

1
D2

D∑
i=1

w2
i ri(1 − ri)

)
,

under the Lindeberg condition that

lim
D→∞

1
s2n

D∑
k=1

E[w2
k(dk − rk)2I {wk|dk − rk| > εsn}] → 0
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for any ε > 0, where rw = D−1 ∑D
i=1 wiri and sn = ∑D

k=1 w
2
krk(1 − rk). A sufficient con-

dition for the aforementioned convergence is

lim
D→+∞

max1≤j≤D wj∑D
j=1 w

2
j rj(1 − rj)

→ 0.

This holds, for example, whenwi are uniformly bounded above and below by positive con-
stants and ri are uniformly bounded away from 0 and 1. Since it is difficult to estimate∑D

i=1 w
2
i ri(1 − ri), we make the further approximation

λ0 =
∑D

i=1 w
2
i ri(1 − ri)

Drw(1 − rw)
≈

∑D
i=1 w

2
i ri

Drw
≈

∑D
i=1 w

2
i di∑D

i=1 widi
= λ̂, (4)

and

dw =
D∑
i=1

widi ∼ N
(
Drw, λ̂Drw(1 − rw)

)
.

Then we can repeat the steps above to construct the confidence interval, noting that πw =
f (rw, p0, q0). We let the test statistic be

T̂w(π) = π̂w − πw

σ̂w
,

where r̂w = dw/D, π̂w = f (r̂w, p̂, q̂), and

σ̂ 2
w = λ̂r̂w(1 − r̂w)

D(p̂ + q̂ − 1)2
+ π̂2

wp̂(1 − p̂)
M(p̂ + q̂ − 1)2

+ (r̂w − p̂)2q̂(1 − q̂)
N(p̂ + q̂ − 1)4

,

To calculate the exact p-value for testing H0 : πw = π , we only need to modify step (4) of
the algorithm in Section 2.1.

(4) For each (rk, pk, qk) from the net, we simulate

r∗wb ∼ N
(
Drk, λ̂Drk(1 − rk)

)
/D

and let π∗
wb = f (r∗wb, p

∗
b , q

∗
b) and

σ ∗2
wb = λ̂r∗wb(1 − r∗wb)

D(p∗
b + q∗

b − 1)2
+ π∗

wb
2p∗

b(1 − p∗
b)

M(p∗
b + q∗

b − 1)2
+ (r∗wb − p∗

b)
2q∗

b(1 − q∗
b)

N(p∗
b + q∗

b − 1)4

for b = 1, . . . ,B.

For the proposed inference to be valid, we require the following assumptions:

• Assumption 1: limD→+∞
max1≤j≤D wj∑D
j=1 w

2
j rj(1−rj)

→ 0, which is needed for the Central Limit

Theorem to hold.
• Assumption 2: λ̂ is a good approximation for λ0.

The hybrid bootstrap method, while not exact, is in general more robust than large
sample approximation-based methods in finite samples.
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3. Simulation

In this section, we have conducted extensive simulation studies to investigate the oper-
ational characteristics of the proposed method and compare it with existing methods in
finite samples.

3.1. Unweighted inference

In this simulation study, we mimic the Santa-Clara study by considering the following
settings:

(1) the sensitivity p0 = 83%; sample sizeM = 157;
(2) the specificity q0 ∈ {97%, 98%, 98.4%, 98.6%, 98.8%, 99%, 99.2%, 99.4%, 99.8%,

99.9%, 100%}; sample size N = 371; and separately for N = 3324;
(3) the true prevalence π0 ∈ {0.4%, 1.2%, 5%, 10%}; sample size D = 3330.

For each setting, we have generated 2000 sets of data and constructed the 95% con-
fidence interval using the proposed exact method, the delta method, nonparametric
bootstrap, and hybrid bootstraps where we have fixed the proportion of positive tests (r0),
sensitivity (p0), or both. In these simulations, we set B = 1000. Throughout our testing,
we have found that setting B>1000 does not significantly change the resulting confidence
interval. However, in practice, there is only one set of data and so we can take B to be much
larger; the intervals in Section 4 were computed with B = 3000. Table 1 summarizes the
average length and the empirical coverage level of constructed 95% confidence intervals
for π0 = 1.2% and for N = 317 only.

The exact method always has a coverage of about 95% or above as anticipated. The delta
method and nonparametric bootstrap may result in non-trivial under-coverage when the
specificity q0 is high. In addition, two hybrid bootstrapmethods that fix r alsomay produce
confidence intervals that are too narrow. One explanation of the failure of these hybrid

Table 1. The empirical coverage probability and average length of 95% confidence interval ofπ0 based
on exact method, delta method, nonparametric bootstrap, and hybrid bootstraps; π = 1.2%,N = 371.

Hybrid bootstrap

p0 = p̂ r0 = r̂ (p0, r0) = (p̂, r̂)

q0
Exact method
Cov (Length)

Delta method
Cov (Length)

Bootstrap
Cov (Length) Cov (Length) Cov (Length) Cov (Length)

97.0 0.974 (0.033) 0.939 (0.033) 0.942 (0.047) 0.965 (0.032) 0.957 (0.028) 0.951 (0.030)
98.0 0.973 (0.029) 0.932 (0.029) 0.933 (0.038) 0.973 (0.028) 0.954 (0.024) 0.943 (0.027)
98.4 0.973 (0.027) 0.932 (0.026) 0.935 (0.034) 0.965 (0.026) 0.951 (0.023) 0.949 (0.024)
98.6 0.978 (0.027) 0.924 (0.025) 0.933 (0.032) 0.966 (0.025) 0.949 (0.022) 0.942 (0.023)
98.8 0.976 (0.026) 0.926 (0.024) 0.933 (0.029) 0.970 (0.025) 0.944 (0.021) 0.943 (0.022)
99.0 0.966 (0.025) 0.927 (0.022) 0.924 (0.027) 0.957 (0.024) 0.945 (0.020) 0.946 (0.021)
99.2 0.968 (0.024) 0.920 (0.021) 0.928 (0.024) 0.958 (0.023) 0.943 (0.019) 0.939 (0.019)
99.4 0.975 (0.022) 0.904 (0.019) 0.897 (0.021) 0.963 (0.021) 0.952 (0.017) 0.953 (0.016)
99.6 0.990 (0.021) 0.887 (0.016) 0.869 (0.018) 0.983 (0.019) 0.968 (0.015) 0.939 (0.014)
99.8 0.999 (0.018) 0.933 (0.013) 0.911 (0.014) 0.993 (0.017) 0.918 (0.012) 0.768 (0.011)
99.9 0.994 (0.017) 0.955 (0.011) 0.938 (0.011) 0.991 (0.016) 0.834 (0.011) 0.563 (0.010)
100.0 0.970 (0.015) 0.941 (0.008) 0.947 (0.008) 0.958 (0.014) 0.652 (0.010) 0.367 (0.009)



JOURNAL OF APPLIED STATISTICS 2609

Table 2. The empirical coverage probability and average length of 95% confidence interval ofπ0 based
on exact method, delta method, nonparametric bootstrap, and hybrid bootstrap; N = 3324.

H Bootstrap
p0 = p̂

π0 q0
Exact method
CovP (Length)

Delta method
CovP (Length)

Bootstrap
CovP (Length) CovP (Length)

1.2 97.0 0.969 (0.022) 0.956 (0.020) 0.953 (0.022) 0.969 (0.021)
1.2 98.0 0.971 (0.020) 0.956 (0.018) 0.955 (0.019) 0.954 (0.019)
1.2 98.4 0.967 (0.018) 0.952 (0.017) 0.952 (0.017) 0.953 (0.017)
1.2 98.6 0.965 (0.017) 0.950 (0.016) 0.948 (0.016) 0.952 (0.017)
1.2 98.8 0.964 (0.017) 0.954 (0.015) 0.952 (0.015) 0.956 (0.016)
1.2 99.0 0.959 (0.016) 0.947 (0.014) 0.945 (0.014) 0.953 (0.015)
1.2 99.2 0.960 (0.015) 0.950 (0.013) 0.948 (0.013) 0.946 (0.014)
1.2 99.4 0.962 (0.013) 0.952 (0.012) 0.951 (0.012) 0.938 (0.013)
1.2 99.6 0.963 (0.012) 0.953 (0.011) 0.951 (0.011) 0.943 (0.011)
1.2 99.8 0.965 (0.011) 0.957 (0.010) 0.955 (0.010) 0.939 (0.010)
1.2 99.9 0.955 (0.010) 0.948 (0.009) 0.952 (0.009) 0.945 (0.009)
1.2 100.0 0.943 (0.009) 0.943 (0.008) 0.945 (0.008) 0.923 (0.008)

bootstraps is that when fixing r0 at r̂, the sensitivity level implied by the true prevalence π0,

r̂ − (1 − q)(1 − π0)

π0
> 1,

for all qs close to q0, excluding the true prevalence π0 from the confidence interval. On the
other hand, the hybrid bootstrap that only fixes p0 = p̂ has coverage of at least 95% for all
values of q0. The same pattern repeats in other simulation settings reported in the supple-
mentary materials as well (see Figures A1 and A2 of the appendix), so moving forward we
focus on the exact method and the hybrid bootstrap that fixes p0 = p̂.

We also repeated the simulation with N = 3324, the reported sample size in the Santa
Clara study after pooling data from multiple sources. The results are summarized in
Table 2. In this case, where the sample size used to estimate sensitivity is large, these four
methods all give reasonable coverage for tested values of q0. Not that in this case, the exact
method is not much more conservative than other methods.

Lastly, we’ve included simulations with reduced numbers of referencematerials for esti-
mating the sensitivity and specificity. In this scenario,M = N = 100. We see from Table 3
that the 95% confidence interval based on the delta method can have very poor coverage.
For example, when q0 = 99%, the empirical coverage level is only 62.8%. The bootstrap-
based confidence interval also performed poorly with a coverage level of 62.5%. On the
other hand, the proposed exact confidence interval has a coverage level of 98.7%. The
proposed hybrid bootstrap confidence interval also performs satisfactorily. Even in set-
tings with larger values of M and N, the 95% confidence intervals based on the delta
method or bootstrap often have a coverage level below 90%,whichmay result inmisleading
conclusions in low prevalence settings.

3.2. Stratum-specific weighted inference

In this case, the sensitivity and specificity are chosen as in Section 4.1:

(1) the sensitivity is 83%; sample sizeM = 157;
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Table 3. The empirical coverage probability and average length of 95% confidence interval ofπ0 based
on exact method, delta method, nonparametric bootstrap, and hybrid bootstraps; π = 1.2%,M = N =
100.

H Bootstrap
p0 = p̂

q0
Exact method
CovP (Length)

Delta method
CovP (Length)

Bootstrap
CovP (Length) CovP (Length)

97.0 0.985 (0.050) 0.884 (0.050) 0.924 (0.083) 0.975 (0.047)
98.0 0.981 (0.044) 0.868 (0.040) 0.863 (0.065) 0.981 (0.041)
98.4 0.984 (0.041) 0.807 (0.036) 0.803 (0.057) 0.984 (0.038)
98.6 0.985 (0.040) 0.748 (0.033) 0.744 (0.051) 0.977 (0.035)
98.8 0.989 (0.038) 0.702 (0.030) 0.700 (0.046) 0.984 (0.034)
99.0 0.987 (0.035) 0.628 (0.027) 0.625 (0.041) 0.982 (0.031)
99.2 0.990 (0.032) 0.552 (0.023) 0.544 (0.035) 0.983 (0.029)
99.4 0.991 (0.029) 0.573 (0.020) 0.552 (0.030) 0.986 (0.026)
99.6 0.994 (0.025) 0.716 (0.016) 0.674 (0.024) 0.993 (0.023)
99.8 0.998 (0.021) 0.906 (0.012) 0.878 (0.016) 0.997 (0.020)
99.9 0.994 (0.019) 0.952 (0.010) 0.942 (0.012) 0.988 (0.018)
100.0 0.972 (0.017) 0.944 (0.009) 0.949 (0.009) 0.954 (0.016)

Table 4. Simulation setting for stratified inference.

Strata 1 Strata 2 Strata 3 Strata 4 Strata 5 Strata 6

Weights (ws) 0.05 0.07 0.08 0.15 0.25 0.40
Prevalence (πs) 0.03% 0.70% 0.07% 0.07% 0.77% 2.33%
Number of tests (Ds) 500 700 300 800 230 800

(2) the specificity ∈ {97%, 98%, 98.4%, 98.6%, 98.8%, 99%, 99.2%, 99.4%, 99.8%, 99.9%,
100%}; sample size N = 371; and separately for N = 3324.

The true prevalence is stratum-specific andwe have considered six strata summarized in
Table 4. The true prevalence for the target population is

∑6
s=1 wsπs = 1.2%. For compari-

son purposes, we constructed the 95% confidence interval using nonparametric bootstrap,
delta method, proposed hybrid bootstrap fixing λ0 = λ̂, and faster hybrid bootstrap fixing
(λ0, p0) = (λ̂, p̂). Table 5 summarizes the simulation results. The empirical coverage level
of the nonparametric bootstrap-based confidence intervals was below the required nomi-
nal level in general and sometimes substantially so. The delta method is slightly better than
the nonparametric bootstrap but still results in undercoverage for q0 very close to 1. On
the other hand, the two proposed hybrid bootstrap methods perform satisfactorily. When
all four methods yielded confidence intervals with good coverage, the average length of the
confidence interval from the proposed hybrid bootstrap method was not much longer and
sometimes even shorter than those based on delta method or nonparametric bootstrap,
which suggests that there is at most a limited loss in precision in exchange for a higher
coverage level.

3.3. Individual-specific weighted inference

For cases needing individual-specific weighting, we adopted similar simulation settings for
sensitivity and specificity in Section 3.2. The same individual weights in [2] were used as
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Table 5. The empirical coverage probability and average length of 95% confidence interval of π0
based on delta method, nonparametric bootstrap, and hybrid bootstrap for stratum-specific weighted
inference.

Bootstrap Delta method H Bootstrap H Bootstrap
λ0 = λ̂ (λ0, p0) = (λ̂, p̂)

π0 q0 CovP (Length) CovP (Length) CovP (Length) CovP (Length)

1.2 97.0 0.938 (0.046) 0.952 (0.034) 0.964 (0.034) 0.963 (0.033)
1.2 98.0 0.934 (0.038) 0.954 (0.030) 0.962 (0.030) 0.958 (0.030)
1.2 98.4 0.922 (0.034) 0.938 (0.028) 0.964 (0.029) 0.955 (0.029)
1.2 98.6 0.920 (0.031) 0.940 (0.027) 0.968 (0.029) 0.962 (0.028)
1.2 98.8 0.902 (0.029) 0.926 (0.025) 0.962 (0.028) 0.956 (0.027)
1.2 99.0 0.918 (0.027) 0.938 (0.024) 0.978 (0.026) 0.952 (0.026)
1.2 99.2 0.902 (0.024) 0.930 (0.022) 0.972 (0.026) 0.965 (0.025)
1.2 99.4 0.882 (0.021) 0.930 (0.020) 0.970 (0.025) 0.969 (0.024)
1.2 99.6 0.858 (0.017) 0.946 (0.018) 0.986 (0.023) 0.984 (0.022)
1.2 99.8 0.836 (0.013) 0.960 (0.015) 0.996 (0.020) 0.991 (0.019)
1.2 99.9 0.844 (0.012) 0.940 (0.014) 0.984 (0.019) 0.986 (0.018)
1.2 100.0 0.802 (0.008) 0.922 (0.011) 0.970 (0.017) 0.952 (0.016)

Figure 1. The distribution of individual weights in the Santa Clara study.

weights, whose distribution is shown in Figure 1. The median weight is 0.48 with an inter-
quartile range of [0.22, 1.11]. To specify, πi, the probability of the ith individual having the
disease or antibody, we let

πi = exp(−4.40 + 0.17wi)

1 + exp(−4.40 + 0.17wi)
, i = 1, . . . ,D = 3330,

based on the fitted logistic regression to the observed data in the Santa Clara study, where
the intercept is adjusted so that the weighted prevalence D−1 ∑D

i=1 wiπi = 1.2%. This
model suggests a higher individual-specific weight wi was associated with a higher prob-
ability πi. Again, we compared nonparametric bootstrap, delta method, proposed hybrid
bootstrap fixing λ0 = λ̂ and faster hybrid bootstrap fixing (λ0, p0) = (λ̂, p̂). The simula-
tion results can be found in Table 6. The nonparametric bootstrap performs poorly for
most values of q0. The delta method performs reasonably well until q0 is near 1, where the
normality of q̂ breaks down and coverage starts to decrease drastically. On the other hand,
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Table 6. The empirical coverage probability and average length of 95% confidence interval of π0
based on deltamethod, nonparametric bootstrap, and hybrid bootstrap for individual-specificweighted
inference.

Bootstrap Delta method H Bootstrap H Bootstrap
λ0 = λ̂ (λ0, p0) = (λ̂, p̂)

π0 q0 CovP (Length) CovP (Length) CovP (Length) CovP (Length)

1.2 97.0 0.862 (0.046) 0.964 (0.043) 0.974 (0.049) 0.967 (0.049)
1.2 98.0 0.823 (0.037) 0.960 (0.038) 0.968 (0.047) 0.947 (0.044)
1.2 98.4 0.834 (0.034) 0.956 (0.036) 0.958 (0.043) 0.946 (0.043)
1.2 98.6 0.822 (0.031) 0.970 (0.034) 0.942 (0.042) 0.958 (0.041)
1.2 98.8 0.809 (0.029) 0.954 (0.033) 0.962 (0.043) 0.953 (0.039)
1.2 99.0 0.779 (0.027) 0.955 (0.032) 0.954 (0.039) 0.965 (0.037)
1.2 99.2 0.764 (0.024) 0.949 (0.030) 0.968 (0.038) 0.964 (0.036)
1.2 99.4 0.730 (0.021) 0.940 (0.028) 0.968 (0.036) 0.952 (0.035)
1.2 99.6 0.705 (0.017) 0.911 (0.026) 0.960 (0.034) 0.954 (0.032)
1.2 99.8 0.605 (0.013) 0.894 (0.024) 0.938 (0.031) 0.925 (0.029)
1.2 99.9 0.543 (0.011) 0.854 (0.022) 0.926 (0.029) 0.889 (0.027)
1.2 100.0 0.499 (0.008) 0.780 (0.020) 0.860 (0.027) 0.864 (0.026)

the performance of the hybrid bootstrapmethod fixing λ0 is fairly robust in terms ofmain-
taining the appropriate coverage level except when q0 = 100%. The hybrid method fixing
both λ0 and p0 performs similarly well. In this case, the average length of the proposed con-
fidence interval could be substantially longer in comparison with the bootstrap and delta
methods. For example, when q0 = 98%, the delta-method-based confidence interval had
a coverage of 96% and an average length of 0.038. The confidence interval based on hybrid
bootstrap fixing λ0 had a slightly higher coverage, 96.8%, but the corresponding average
length increased 24%.

In summary, the proposed methods had substantially more robust performance than
traditional approaches in all three settings investigated above. For some specific combina-
tions of the true parameters, the nonparametric bootstrap method or delta method may
also produce confidence intervals with sufficient coverage levels. However, their perfor-
mance was very sensitive to some true parameter values, such as the true test specificity q0.
In most practical applications, there is not enough information to differentiate, for exam-
ple, between q0 = 98.5% vs. q0 = 99%, and thus, it was impossible to know if a confidence
interval based on traditional methods had proper coverage, a priori. The simulation results
also demonstrated that in contrast to common belief, the nonparametric bootstrapmethod
does not automatically fix the problem in general. The proposed method, on the other
hand, achieved a nominal coverage level in almost all cases, and oftentimes without sub-
stantially increasing the average length of the resulting confidence interval. Therefore, the
proposed exact method and its variations can be viewed as good insurance while incurring
relatively little cost.

4. Examples

We first applied our method to analyzing data gathered in [2]. Some of the numbers below
are taken from an initial preprint .1 The objective of this study was to estimate the COVID-
19 antibody prevalence in Santa Clara County, California, 2 April 2020. The data included
D = 3330 volunteers tested for antibody presence. Among them, therewere 50 positive test
results. Without considering the measurement error, the crude prevalence is 1.5% with an
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exact 95% confidence interval of [1.11, 1.97]%. To account for the test performance, the
reported sensitivity of 130/157 and specificity of 368/371 based onM = 157 true positive
samples andN = 371 true negative samples, respectively, were used to adjust the antibody
prevalence estimate in the initial preprint version of the study. In the meantime, far more
extensive additional data on test performancewere being collected and verified.We present
the corresponding result later. For now,

r̂ = 50
3330

, p̂ = 130
157

, q̂ = 368
371

, D = 3330, M = 157, N = 371.

With the delta method (with the range preserved logit transformation), the resulting 95%
confidence interval is [0.20, 3.50]%. The nonparametric bootstrap method yields a similar
interval, i.e. [0.00, 1.93]%. Then, we applied our methods with B = 3000 and a dense net
consisting of 30 evenly spaced points in each 99.9% confidence interval for r0, p0 and q0
to construct the 95% exact confidence interval and the hybrid confidence interval fixing
p0 = p̂. Figure 2 plots the estimated exact p-value p̂(π), and the corresponding asymp-
totic p-value based on delta-method, nonparametric bootstrap, and hybrid bootstrap fixing

Figure 2. Plot of p-values for various values of π according to different methods. (a) N = 371 and (b) N
= 3324.
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Table 7. The point estimators and 95% confidence intervals for the weighted and unweighted preva-
lence in the Santa Clara study.

N = 371

π̂a Delta methodb Bootstrap Exact H Bootstrap (p0)

Unweighted (%) 0.85 (0.20, 3.50) (0.00, 1.93) (0.00, 2.06) (0.00, 2.06)
Weighted (%) 2.80 (1.18, 3.78) (1.10, 3.72) (0.29, 5.17) (0.29, 5.07)

N = 3324
Unweighted (%) 1.24 (0.77, 1.98) (0.66, 1.84) (0.68, 1.87) (0.68, 1.77)
Weighted (%) 2.87 (2.10, 3.6) (2.12, 3.66) (1.39, 5.28) (1.49, 5.08)
aAdjusted for test sensitivity and specificity.
bNormal logit method.

p0 = p̂. It is clear that p̂(π) is higher than its asymptotic counterparts, resulting in a wider
confidence interval. The produced confidence intervals can be found in Table 7. All confi-
dence intervals except that fromdeltamethodwith logit transformation included 0, andwe
were unable tomake strong conclusions about the lower bound of the prevalence with only
a sample size of N = 371 for estimating the specificity. Since the resulting study cohort
may not be randomly sampled from the Santa-Clara population, weighted analysis with
individual-specific weighting to reflect the demographic makeup of the target population
was also conducted. The resulting 95% confidence interval was [1.18, 3.78]% and [1.10,
3.69]% based on the deltamethod and nonparametric bootstrap, respectively.We also con-
structed the confidence interval based on proposed hybrid bootstrap fixing λ0 = λ̂ and
(λ0, p0) = (λ̂, p̂), respectively. The lower ends of the hybrid bootstrap confidence intervals
were closer to 0 than that from the delta method or nonparametric bootstrap, also suggest-
ing the uncertainty about the lower bound of the prevalence. The basic dilemma was that
we cannot reliably differentiate true positives from false positives, since we can’t estimate
the specificity level with adequate precision.

To address this difficulty, the study team assembled additional results about the speci-
ficity based on 2953 more measurements, bringing the total number of true negative
samples used to estimate the specificity to N = 3324. We had used different meta-analytic
methods to combine data across subsets of control samples accounting for potential
between-datasets heterogeneity and the results were reasonably ably robust (not shown
here). For illustrative purposes, we ignored the potential heterogeneity and assumed sim-
ply pooling data in this applicationwas appropriate.With a larger sample size for estimating
specificity (q̂ = 3308/3324, N = 3324 ), we repeated the construction of 95% confidence
intervals for the unweighted and weighted prevalence (Table 7). These resulting estimates
were fairly consistent with those presented in [2]. The unweighted results from different
methods were very similar, while the weighted results tended to havemodestly wider confi-
dence intervals with the ‘exact’ method and hybrid bootstrap. Figure 2 shows that the exact
and asymptotic p-valueswere close to each other based on the increased sample size, imply-
ing that the distribution of π̂ − π can be approximated well byN(0, σ̂ 2). The lower bound
of the confidence interval based on the deltamethod and bootstrap forweighted prevalence
was slightly higher possibly due to the under-coverage tendency of the bootstrap method
at high specificity as our simulation study demonstrated (Section 4).

In order to examine the performance of different methods and the prevailing prac-
tices for adjusting for test performances across seroprevalence studies that find low
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Table 8. Thepoint estimators and95%confidence intervals for the seroprevalence in studies fromBrazil,
USA, Denmark, and the Faroe Islands.

π̂ Delta method Bootstrap Exact H Bootstrap (p0)

Brazil

Male (%) 0.64 (0.10, 3.52) (0.00, 1.55) (0.00, 1.48) (0.00, 1.38)
Female (%) 0.41 (0.02, 6.30) (0.00, 1.30) (0.00, 1.15) (0.00, 1.15)

USA

Washington Male (%) 1.41 (0.67, 2.95) (0.33, 2.42) (0.10, 2.66) (0.10, 2.56)
Washington Female (%) 1.71 (0.96, 3.03) (0.70, 2.64) (0.39, 2.84) (0.49, 2.74)
New York Male (%) 5.94 (4.50, 7.80) (4.33, 7.59) (4.17, 7.74) (4.27, 7.64)
New York Female (%) 5.66 (4.33, 7.38) (4.15, 7.23) (3.98, 7.35) (4.08, 7.25)

Denmark

Capital (%) 3.23 (2.49, 4.17) (2.36, 4.06) (2.13, 4.11) (2.23, 4.11)
Total (%) 1.87 (1.30, 2.68) (1.13, 2.48) (0.78, 2.55) (0.88, 2.45)

Faroe Islands

Total (%) 0.59 (0.27, 1.31) (0.19, 1.10) (0.00, 1.26) (0.00, 1.16)
Male (%) 0.59 (0.19, 1.82) (0.00, 1.37) (0.00, 1.67) (0.00, 1.57)
Female (%) 0.59 (0.19, 1.82) (0.00, 1.37) (0.00, 1.67) (0.00, 1.57)

seroprevalence estimates in the tested population, we used a recently published overview of
seroprevalence studies [14]. In four studies, crude, unadjusted seroprevalencewas reported
to not exceed 10% and the authors had tried to adjust for test performance. While three
studies fromDenmark, the Faroe Islands, and the USA [8,12,17] used the simple bootstrap
method to make the statistical inference, the study from Brazil [11] implemented a slightly
different resampling method. In all four studies, the adjustment for the test performance
changed the seroprevalence point estimate by a small amount reflecting the high precision
of the test being used. The analysis results using our proposed methods are summarized in
Table 8. The resulting exact 95% confidence intervals were wider than those based on the
delta method and bootstrap. When the number of negative samples used to estimate the
specificity was small such as the study from the Faroe Islands, the difference became big-
ger reflecting the effect of unknown specificity. On the other hand, when the sample sizes
used to estimate sensitivity and specificity were adequate and the observed prevalence was
not low as in the study in New York, the exact confidence intervals were only slightly wider
than those based on simple bootstrap. The data based onwhich the analysis was conducted
can be found in the appendix in Table A1 and some of them were reconstructed from the
results in the published papers [8,11,12,17].

In designing a study, one may select the sample size by targeting a desired precision
level based on our proposed method. For example, if investigators want to construct 95%
confidence intervals of length less than 2%, they can select a combination of (D,M,N), sim-
ulate data with assumed prevalence/sensitivity/specificity values, and construct the 95%
exact confidence interval using the proposed method to measure the length of the result-
ing interval. Specifically, if we assume a prevalence of 2.0%, a true sensitivity of 80% and
a true specificity of 99%, then based on 250 simulations, the average length of the 95%
confidence interval for various (D,M,N) are
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• 2.01% for (D,M,N) = (7000000, 500, 500)
• 1.97% for (D,M,N) = (25000, 500, 750)
• 1.98% for (D,M,N) = (7500, 500, 1000)
• 1.95% for (D,M,N) = (3000, 500, 2000)
• 2.07% for (D,M,N) = (2000, 500, 5000)
• 2.08% for (D,M,N) = (1800, 500, 10000)

Therefore, the investigator may sample D = 3000 subjects from the target population
and estimate the sensitivity and specificity based on 500 reference positive samples and
2000 reference negative samples, respectively. This combination of D, M and N is not
unique. For example, the average length of the confidence interval is also about 2.0% if
(D,M,N) = (7500, 500, 1000), which requires fewer negative samples but substantially
larger D. One may consider the availability of reference materials and the cost of enrolling
participants from the target population in selecting the final sample sizes.

5. Discussion

In order to estimate the prevalence of a disease using imperfect tests, we developed a
method that provides confidence intervals with the appropriate coverage. This is impor-
tant because in many scenarios there is not enough data for large sample approximations
to be accurate, especially when the sensitivity p0 or specificity q0 is very close to 1, which
can cause the naive bootstrap confidence intervals to be too narrow. However, our method
is computationally more expensive than the bootstrap method by several orders of mag-
nitude, which translates to about half a minute to compute a single confidence interval on
a PC with a Ryzen 3900X CPU. In practice, we don’t believe this will impose too large a
burden, as typically there is no need to compute a confidence interval many times.

In addition, only the proposed method for unweighted inference is truly exact; in
two weighted cases, we still make some approximations for the distribution of rw. Such
an approximation is unavoidable due to the fact that the variance inflation factor λ0 is
unknown and may not be estimated well empirically. Also, we note that the performance
of the simple bootstrap becomes better as the sample size for estimating specificityN rises.
Therefore, while the sample size for estimating prevalence D is important, the size of the
confidence interval also heavily depends on the sample size for estimating sensitivity and
specificity, and especially the latter. Even as D grows, the length of the confidence inter-
val will not shrink to zero, since the uncertainty of the sensitivity and specificity affects
the estimation of the true prevalence. For experiments aiming to estimate prevalence in
settings where low values are expected, it is worth the effort to accurately estimate the sen-
sitivity and specificity. This prerequisite is no longer a serious issue when the prevalence is
sufficiently high.

The proposed exact method has very few model assumptions. One key assumption is
that the sensitivity and specificity based on reference materials will not change when the
test is applied to the real population. This may not be necessarily true considering the fact
that sensitivity and specificity of the test depend on many factors which may not be the
same between testing reference materials and actual participants samples. For example,
the positive reference sample typically includes people with clear symptoms and/or more
severe disease and these people may be more likely to have readily detectable antibody
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titers than the average person infected in the community. Therefore, the sensitivity in the
real population may be lower than what is suggested by the positive reference sample.

Our review of the literature of COVID-19 seroprevalence studies [3,6,13,21] shows that
many studies that estimate low crude prevalence do not even try to adjust for test perfor-
mance. Some of them may try to validate the positive samples using a different laboratory
assay [16]. Many others may assume that specificity is perfect. For well-validated assays,
this assumption may be approximately correct. For example, in the case of the assay used
in the Santa Clara study, the specificity was 99.5 –99.8% depending on how pooling or
meta-analysis of control datasets would be performed. Moreover, among the few control
samples coined as ‘false positives’, the majority were probably true positives that had been
mischaracterized, as these control samples came from data collected during the COVID-
19 pandemic, where a negative RT-PCR result cannot rule out the possibility that a person
had already been infected in the past. Most of the remaining ‘false positives’ that came
from pre-COVID samples were atypical cases (e.g. from people with extremely high titers
of rheumatoid factor) that are rarely encountered in the general population. This means
the true specificity of the test used in the Santa Clara study may be even higher. However,
our simulation study shows that the simple bootstrap or delta method may still yield sub-
optimal coverage even with a perfect specificity and the method that we propose may have
value in such a setting.

Another strategy to alleviate the false positive issue would be via study design: to re-
test all patients whose results are positive [19]. An important reason why it is difficult to
estimate the prevalence is because that the false positive rate can be relatively high, and the
estimated prevalence is very sensitive to the false positive rate. The re-test may or may not
have the same sensitivity and specificity as the original test. Testing results from two tests
on the same sample may be correlated as well. If one considers a sample being positive if
results from the test and re-test are both positive, the specificity of such a test strategy is
often substantially higher than that of a single test. If one wants to boost the sensitivity,
one may consider a sample being positive if the result from either the original test or re-
test is positive. In practice, one always can design a test strategy combining information
frommultiple tests and estimate the sensitivity and specificity of the strategy by examining
testing results frompositive reference samples and negative reference samples, respectively.

Note

1. Can be found at https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v1.
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Appendix

A.1 Delta method derivation

TheoremA.1: Suppose that as Sn = Dn + Mn + Nn → ∞,Dn/Sn → πD ∈ (0, 1),Mn/Sn → πM ∈
(0, 1), and Nn/Sn → πN ∈ (0, 1). d ∼ Bin(Dn, r0), m ∼ Bin(Mn, p0) and n ∼ Bin(Nn, q0) are three
independent binomial random variables. Then π̂ and π0 defined by (2) and (1) satisfies√

Sn(π̂n − π0)
d−→ N(0, σ 2

0 )

in distribution, where

σ 2
0 = r0(1 − r0)

πD(p0 + q0 − 1)2
+ π2

0 p0(1 − p0)
πM(p0 + q0 − 1)2

+ (r0 − p0)2q0(1 − q0)
πN(p0 + q0 − 1)4

.

Proof: Note that for f (r, p, q) = (r + q − 1)/(p + q − 1),

∂f
∂r

= 1
p + q − 1

,

∂f
∂p

= − r + q − 1
(p + q − 1)2

= − π

p + q − 1
,

∂f
∂q

= 1
p + q − 1

− r + q − 1
(p + q − 1)2

= p − r
(p + q − 1)2

.

It follows from the central limit theorem for binomial proportions,

√
Sn

⎡
⎣ r̂Dn − r0
p̂Mn − p0
q̂Nn − q0

⎤
⎦ d−→ N

⎛
⎜⎝
⎡
⎣00
0

⎤
⎦ ,

⎡
⎢⎣

r0(1−r0)
πD

0 0
0 p0(1−p0)

πM
0

0 0 q0(1−q0)
πN

⎤
⎥⎦
⎞
⎟⎠ .
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We can apply the delta method to see that√
Sn(π̂n − π0) =

√
Sn

{
f (r̂Dn , p̂Mn , q̂Nn) − f (r0, p0, q0)

}
converges in distribution to a Gaussian with mean 0 and variance

[
1

p+q−1 ,− π
p+q−1 ,

p−r
(p+q−1)2

]⎡⎢⎣
r0(1−r0)

πD
0 0

0 p0(1−p0)
πM

0
0 0 q0(1−q0)

πN

⎤
⎥⎦
⎡
⎢⎣

1
p+q−1

− π
p+q−1
p−r

(p+q−1)2

⎤
⎥⎦ ,

which can be consistently estimated by

r̂(1 − r̂)Sn
Dn(p̂ + q̂ − 1)2

+ π̂2p̂(1 − p̂)Sn
Mn(p̂ + q̂ − 1)2

+ (r̂ − p̂)2q̂(1 − q̂)Sn
Nn(p̂ + q̂ − 1)4

.

�

A.2 Additional simulation results and data used for the seroprevalence in
studies from Brazil, USA, Denmark, and the Faroe Islands

In Figure A1, we plot the empirical coverage levels of various confidence intervals assuming different
true prevalence level, i.e. π0 ∈ {0.4%, 5%, 10%}. While most confidence intervals retain appropriate
coverage level when π0 = 10%, only the proposed exact method and hybrid bootstrap fixing p0 at p̂
perform satisfactorily when the prevalence π0 = 0.4%. Specifically, even when the prevalence is 5%,
the 95% confidence interval based on nonparametric bootstrap may still too liberal with a coverage
level approximately 90% for some specificity values. Figure A2 plots the average length of the 95%
confidence intervals. Note that the average length of the proposal exact confidence interval is not
substantially longer than alternatives.

Table A1 includes the data used for the analysis of the seroprevalence in studies from Brazil,
USA, Denmark and the Faroe Islands. Note that some studies only reported the confidence intervals
for the test sensitivity and specificity and the corresponding data were reconstructed based on the
confidence interval, which may be slightly different from the actual data.
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Figure A1. Plot of coverages for varying values of specificity q for N = 371 under π = 0.4, 5.0, 10.0.
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Figure A2. Plot of confidence interval lengths for varying values of specificity q forN = 371 underπ =
0.4, 5.0, 10.0.
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Table A1. Data used for the seroprevalence in studies from Brazil, USA, Denmark, and the Faroe Islands.

r (%) p (%) q (%) d/D m/M n/N

Brazil

Male 1.50 84.79 99.03 158/10531 446/526 513/518
Female 1.31 84.79 99.03 189/14464 446/526 513/518

USA

Washington Male 1.95 96.00 99.40 26/1334 96/100 497/500
Washington Female 2.23 96.00 99.40 43/1930 96/100 497/500
New York Male 6.27 96.00 99.40 72/1149 96/100 497/500
New York Female 6.00 96.00 99.40 80/1333 96/100 497/500

Denmark

Capital 3.11 82.58 99.54 203/6528 128/155 648/651
Total 2.00 82.58 99.54 412/20640 128/155 648/651

Faroe Islands

Total 0.56 94.44 100.00 6/1075 238/252 308/308
Male 0.56 94.44 100.00 3/538 238/252 308/308
Female 0.56 94.44 100.00 3/537 238/252 308/308
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