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Although measles virus is an antigenically monotypic virus, nucleotide sequence analysis of the hemagglu-
tinin and nucleoprotein genes has permitted the differentiation of a number of genotypes. In contrast, the
fusion (F) protein is highly conserved; only three amino acid changes have been reported over a 40-year period.
We have isolated a measles virus strain which did not react with an anti-F monoclonal antibody (MAb) which
we had previously shown to be directed against a dominant antigenic site. This virus strain, Lys-1, had seven
amino acid changes compared with the Edmonston strain. We have shown that a single amino acid at position
73 is responsible for its nonreactivity with the anti-F MAb. With the same MAb, antibody-resistant mutants
were prepared from the vaccine strain. A single amino acid change at position 73 (R3W) was observed. The
possibility of selecting measles virus variants in vaccinated populations is discussed.

In vivo, mutation rates for RNA viruses are on the order of
1023 to 1024 (15). Certain viruses such as measles are anti-
genically stable, whereas others readily give rise to antigenic
variants. Serologically, measles virus (MV) is a monotypic vi-
rus, as a single infection gives lifelong immunity. Sequence
studies on its two most variable proteins, the hemagglutinin
(H) and the nucleoprotein (NP), have enabled measles virus
strains to be classified into at least eight genotypes (1, 12, 13,
16). Sequence data obtained by analyzing strains isolated over
the last 40 years have shown that there is an accumulation of
mutations in the circulating viruses (13). As measles vaccina-
tion was initiated during the 1960s, this accumulation may
correspond to immune selection pressure by the vaccine virus,
or it may simply reflect a natural phenomenon. Despite these
noted differences, the wild-type strains isolated over this pe-
riod are all neutralized in vitro with a polyclonal serum to the
vaccine virus strain, although less efficiently (2).

MV contains two glycoproteins, the H and the fusion (F)
protein. The former is responsible for the attachment of the
virus to the host-cell receptor, and the F protein brings about
the fusion of the host cell and viral membranes (19, 20). Mu-
rine monoclonal antibodies (MAbs) to either of these antigens
can neutralize virus infectivity in vitro and passively protect in
vivo (7, 8). Similarly, serum from convalescent patients has
activities directed against both antigens which are neutralizing
(14). Thus, to escape immunological elimination, the virus
would have to mutate in both antigens. We were therefore
surprised when we found that a wild-type isolate did not react
with an anti-F MAb which had been previously shown to be a
dominant epitope, inducing neutralizing antibodies. In the
present study, we have cloned and analyzed the sequence of
the cDNA coding for the F protein of this strain of MV and
shown that among the seven amino acids which differ from the
vaccine strain, a single one (amino acid 73) is responsible for
the loss of the antigenic activity. Further, mutation of this

amino acid to that found in the vaccine strain reconstituted the
vaccine antigenic site.

Characterization of the Lys-1 MV strain. The Lys-1 strain of
MV was isolated from a measles patient in France who had
recently returned from West Africa. Peripheral blood lympho-
cytes from this patient were stimulated with phytohemaggluti-
nin and cocultured with B95-8 cells. The virus was subse-
quently passaged on B95a cells. The antigenic epitopes of this
isolate were compared with other MV strains with a bank of
MAbs specific for the H and F proteins (Table 1). Although
positive for all the other MAbs in the panel, the Lys-1 strain
was negative for the anti-MV F MAb F 186. This result was
surprising, as our previous studies showed that this MAb iden-
tified an epitope defining a major dominant antigenic site in-
ducing neutralizing antibodies (8).

To identify the changes in the F protein responsible for the
altered antigenicity of Lys-1, the F gene was cloned from
mRNA, and the cDNA was subsequently sequenced. In the
predicted amino acid sequence (Table 2), seven differences
(four in the F2 and three in the F1) were observed compared
to the amino acid sequence of the vaccine strain Edmonston.
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TABLE 1. Reactivity of anti-MV H and F MAbs with MV isolatesa

Isolate (location and yr of
isolation)

Reactivity of MAb

Virus genotype H 55 F 263 F 186

Hallé (laboratory strain) A 1 1 1
Y14 (Cameroon, 1983) B1 1 1 1
R 96 (Gabon, 1984) B2 1 1 1
R113 (Gabon, 1984) B2 1 1 1
Joint (France, 1974) ?b 1 1 1
Loss (Russia, 1988) ? 1 1 1
MVO (England, 1974) D1 1 1 1
Mad93a (Spain, 1993) D6 1 1 1
Lys-1 (France, 1996) ? 1 1 2

a Vero or B95a (Mad93a, Lys-1) cells were infected (0.1 to 0.01 PFU/cell) with
the different MV isolates. When 20 to 30% of the cells were involved in syncytia,
they were fixed with acetone and examined by immunofluorescence with MAbs
anti-H (6) and anti-F 263 and 186 (8) as primary antibody and a fluorescein
isothiocyanate-conjugated goat anti-mouse immunoglobulin (Dako).

b ?, not determined.
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FIG. 1. FACScan analysis of MV-infected BJAB/P3 cells. Cells were infected with the MV strain Hallé or Lys-1 (a) or mar (b) (multiplicity of infection 5 0.1
PFU/cell), and 3 days later the surface expression of the H and F MV glycoproteins was examined by FACScan analysis. The MAbs used were 55 (H), 186 (F antigenic
site group 1), and 263 (F antigenic site group 2).
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mar. To locate the amino acid(s) responsible for the loss of
reactivity with the anti-F 186 MAb, we prepared MAb-resis-
tant (mar) escape mutants from our laboratory strain, Hallé
(amino acid sequence identical to that of Edmonston) (3), by
growing the virus in the presence of MAb F 186. The selection
of virus mutants which resist neutralization by MAbs has been
used to map epitopes in a number of viral systems. The Hallé
mar mutants produced in this way were negative by immuno-
fluorescence and FACScan analysis with F 186 but retained
their reactivity with an anti-F MAb of group 2 (MAb F 263),
which reacts with a second epitope implicated in neutralization
(8) (Fig. 1). In order to identify mutations in the Hallé F
responsible for the loss of activity with MAb F 186, we ex-
tracted RNA from cells infected with one of the mar mutants,
made cDNA copies, and then sequenced the one correspond-
ing to the MV F (Table 2). Compared to the parental strain,
there was a single amino acid substitution at position 73. Ar-
ginine had been replaced by tryptophan. In the Lys-1 F primary
sequence, there is a lysine at this position rather than an
arginine.

Amino acid 73 plays a role in the dominant antigenic site of
F. As reactivity to MAb 186 was lost when the arginine mu-
tated to a tryptophan in the mar mutant, we investigated
whether the lysine in the Lys-1 strain at this position was solely
responsible for its loss of reactivity with F 186. Site-directed
mutagenesis was used to mutate lysine-73 of Lys-1 to arginine
(the amino acid found in the Hallé strain). The corresponding
cDNA was then expressed in HeLa cells. The K73R Lys-1 F
protein mutant was recognized by MAb F 186 (Table 3). To
confirm the importance of the amino acid at position 73, argi-
nine-73 of the Hallé strain was mutated to lysine (the amino
acid found in Lys-1), and the cDNA was expressed and exam-
ined by immunofluorescence with MAb F 186 activity. This
mutation completely destroyed recognition by this antibody.
The MV F was also coexpressed with the MV H gene so we
could monitor for fusion activity. None of the mutations which
played a positive or negative role in the constitution of this
antigenic site had an effect on the functional role of the mol-
ecule (fusion) (Table 3).

Arginine-73 (R73) is located in the F2 subunit of the MV F
just two amino acids C-terminal to the subunit’s single cysteine
residue (C71), which forms a disulfide bond with the F1 sub-
unit. Interestingly, a single substitution, R73K, of the F protein
of human parainfluenza virus type 3 (PIV-3), which is also

adjacent to the F2 cysteine, confers resistance to anti-PIV-3
neutralizing MAbs (17). We suggest that antigenically different
strains may arise by immune selection during replication in
partially immune children. Immune selection of neutralization-
resistant variants is the mechanism that drives antigenic drift of
influenza A virus in the human population, and this can be
mimicked in vitro by the selection of antigenic variants with
neutralizing anti-H MAbs (18).

Analyses of the MV genes of a large number of strains have
established that the F gene is among the most stable; only
three amino acid changes were noted between the Edmonston
strain and viruses isolated up to 1989 (10a, 11). In contrast,
evolutionary changes in the H and NP genes have been re-
ported, although the rate of change is of a lower order of
magnitude than for influenza virus (11). However, it was re-
ported that the mutation rate for the period from 1977 to 1989
was twice that for the period from 1954 to 1989 (11). It has
been speculated that this might be due to the influence of
vaccination, especially as it has been reported that MV can
circulate in vaccinated populations (5, 9). The MV H is re-
sponsible for host cell attachment and so will be the primary
antigen to be subjected to immunomodulation; however, there
could also be immunoselective pressure to favor the emer-
gence of viruses mutated in F which permit virus entry in the
presence of vaccine-induced antibody. The wild-type virus we
have studied, Lys-1, was isolated from a patient in France who
developed measles upon his return from West Africa. It will be
interesting to examine other isolates from this and other re-
gions to determine whether such strains are widespread and
whether they represent antigenic drift induced by vaccine an-
tibodies.
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Hallé 1 1 1 1
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