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Abstract

Human pluripotent stem cells (PSCs) have become popular tools within the research community to 

study developmental and model diseases. While many induced-PSCs (iPSCs) from various genetic 

background sources are currently available, scientific advancement has been hampered by the 

considerable phenotypic variations observed between different iPSC lines. A recent collaborative 

effort selected a novel iPSC line to address this and encourage the adoption of a standardized 

iPSC line termed KOLF2.1J. Here, leveraging the multiplexing power of isobaric labeling, we 

systematically investigate, at the 10k proteome level, the relative protein abundance profiles of the 

KOLF2.1J reference iPSC line upon two distinct cell state differentiation trajectories. In addition, 

we side-by-side systematically compare this line with the H9 line, an established embryonically 

derived PSC line that we previously characterized. We noticed differences in the basal proteome 

of the two cell lines and highlighted the differentially expressed proteins. While the difference 

between the cell line’s proteome subsisted upon differentiation, the global proteome remodeling 

trajectory was highly similar during the tested differentiation routes. We thus conclude that 

the KOLF2.1J line performs well at the proteome level upon the neuro and cardiomyogenesis 

differentiation protocol used. We believe this dataset will serve as a resource of value for the 

research community.
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1 │ INTRODUCTION

The mammalian biological system is a complex network consisting of a diverse array of 

cellular subtypes. However, human disorders and biological signaling processes are often 

studied using established immortalized cell lines which evade normal cellular senescence 

to pro-liferate indefinitely in vitro. Understanding the molecular mechanisms that direct 

cell type and disease-specific phenotypes is substantially limited when the immortalized 

cell lines are used. Therefore, the introduction of stem cell engineering has increased 

our understanding of biological processes by allowing researchers to generate diverse cell 

types relevant to model diseases. Specifically, advancements in directed differentiation 

of pluripotent stem cells (PSCs) into cell type(s) of interest, such as sub-types of 

neurons, muscle cells, etc., encourages researchers to develop a workflow to study human 

development and cell-type specific diseases.

Researchers have been exploiting mainly two sources of human stem cells: embryonic stem 

cell (ESC) lines and induced pluripotent stem cell (iPSC) lines. Human ESC (hESC) lines 

are derived from the inner cell mass of a blastocyst. They have an unlimited capacity for 

self-renewal and are pluripotent; thus, they can differentiate into any somatic cell type. In 

this case, additional genetic engineering is required to reflect the disease-causing mutations 

for specific diseases. On the other hand, human iPSC (hiPSC) lines are derived from skin 

or blood cells reprogrammed back into an embryonic-like pluripotent state. Commonly, 

distinct iPSC lines are derived from patients with either sporadic or familial diseases, and 

the control iPSC lines are derived from age/sex-matched control individuals. The research 

community quickly embraced working with iPSCs because they created the ability to study a 

patient’s disorder in disease-relevant cell types. While appealing at first, the usage of hiPSCs 

has been hampered by the fact that the inter-individual variability at the proteome level is 

considerably more pronounced than the mutation-induced variability when “control” and 

“disease” iPSC cells are compared. This has made the interpretation of a disease-causing 

mutation’s specific role(s) in an observed biological effect extremely challenging.

Advances in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-

mediated gene editing now enable precise mutation, mutation correction, or gene deletion in 

any line of interest, allowing isogenic controls (of the same or of closely similar genotypes) 

to be generated, instead of age/sex-matched controls. Recently, a new stem cell initiative 

from the NIH, the iPSC Neurodegenerative Disease Initiative (iNDI), was created to help 

provide high-quality and standardized iPSC models to the research community [1]. This 

thorough effort resulted in the selection of a novel reference iPSC line called KOLF2.1J, 

which has served as a foundation for ongoing and further large scale systematic gene 

editing to study disease-causing mutations [2]. Here, we aim to characterize the relative 

protein abundance profiles of this new reference hiPSC line side by side with another 

widely established reference line derived from hESC, named H9 (also referred to as WA09 

or WAe009-A) [3]. Characterization and quality control of PSC lines and their respective 

differentiation potentials are most often focused on transcript level measurement combined 

with a handful of pre-defined cell state markers reflecting protein expression. While 

transcript expression profiling is an important part of the process, systematic proteome 

characterization, the end product of transcription and translation, is often overlooked. 
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Notably, accumulating studies indicate that protein and transcript abundances have poor 

correlation (around ∼45% across many studies) [4–10] highlighting the need to also include 

a systematic proteome expression profiling layer, to current characterization workflows.

Using multiplexed proteomics, we performed in-depth quantitative proteome profiling of 

two genetically unmatched reference human iPSC and ESC and assessed (1) their steady 

state proteome differences, (2) their neural progenitor differentiation potential, and (3) 

their temporal cardiomyocyte differentiation potential. While strong differences between the 

two-reference cell lines in the pluripotent state are highlighted, this study also demonstrates 

a very strong correlation in their differentiation capacity based on their respective proteome 

remodeling trajectories upon differentiation into the two cell lineages studied. This dataset 

will serve as a resource for understanding possible differences/similarities at the molecular 

level upon directed differentiation of these two-reference pluripotent stem cell lines and will 

provide a framework to assess cell type specific protein expression throughout two unique 

differentiation routes.

2 │ EXPERIMENTAL SECTION

2.1 │ Materials

Tandem mass tag (TMT)-pro isobaric reagents were from Thermo Fisher Scientific 

(Waltham, MA). Trypsin was purchased from Thermo Fisher Scientific (Waltham, MA). 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 and Roswell Park Memorial Institute 

(RPMI) media were obtained from Life Technologies (Waltham, MA).

2.2 │ Cell differentiation and harvesting

H9 (WiCell, Madison, WI) and KOLF2.1J (The Jackson Laboratory, Bar Harbor, ME) cells 

were maintained in a chemically defined in-house Essential 8 (E8) medium on Matrigel-

coated (BD Bioscience) plates at 37 °C with 5% (v/v) CO2 and O2.

For differentiation of H9 and KOLF2.1J cells to cardiomyocytes, a chemically defined 

monolayer method described in a previous study was used [11]. Briefly, ∼90% confluent 

stem cells were incubated in RPMI-1640 with B-27 supplement (without insulin, Life 

Technologies) supplemented with CHIR99021 for 72 h. After that, cells were treated in 

insulin-minus RPMI-B27 with IWR-1, for 48 h. At day 7, the beating cardiomyocytes were 

observed, and media was replaced to RPMI-1640 with B27 supplement (With insulin, Life 

Technologies). At day 9, PSC-CM monolayers were purified for 2 days using RPMI-1640 

without glucose and with B-27 supplement (Life Technologies). After purification, cells 

were maintained in RPMI-1640 with B-27 supplement.

For neuronal differentiation of H9 and KOLF2.1J cells, we followed another previously 

established protocol [12]. Briefly, the day before the start of the differentiation, stem cells 

were detached with 0.5 mM EDTA and seeded at high density. The neuronal induction 

with neural maintenance medium, 1 μM dorsomorphin (Peprotech), and 10 μM SB431542 

(Peprotech) was started when the cells reached 100% confluence (day 0). The neural 

induction medium was changed daily for 8 days. The neural maintenance medium (1 

L) consisted of 500 mL DMEM/F12 (Thermo Fisher Scientific), 0.25 mL Insulin (10 
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mg/mL, Life Technologies), 3.5 μL β-mercaptoethanol (14.26 M, Alfa Aesar), 5 mL 

non-essential amino acids (100×, Thermo Fischer Scientific), 5 mL sodium pyruvate (100 

mM, Life Technologies), 2.5 mL Pens/Strep (10,000 U/μL, Life Technologies), 5 mL N2 

(Life Technologies), 10 mL B27 (Life Technologies), 11.25 mL glutamax (100×, Life 

Technologies), and 500 mL Neurobasal Plus (Life Technologies) medium.

2.3 │ Cell lysis and protein digestion

Cells were washed with ice cold PBS twice and lysed in RIPA lysis buffer (50 mM 

Tris/HCl pH 7.5, 150 mM NaCl, 1% sodium deoxycholate, 0.1% SDS, 10 mM sodium 

pyrophosphate, 10 mM β-glycerol phosphate, 1% (v/v) NP-40, 0.5 mM TCEP, proteases 

inhibitor cocktail, phosphatases inhibitor cocktail) to produce whole cell extracts. Whole cell 

extracts were sonicated and clarified by centrifugation (16,000 × g for 10 min at 4°C) and 

protein concentrations were determined by Bradford assay.

Protein digestion for proteomics was performed as described in our previous study [13]. 

Protein extracts (100 μg) were subjected to disulfide bond reduction with 5 mM TCEP 

(25°C, 10 min) and alkylated with 20 mM 2-chloroacetamide (25°C, 20 min). Next, we 

performed methanol–chloroform precipitation to extract protein before trypsin digestion. To 

each sample four parts of neat methanol were added and vortexed, one part chloroform was 

then added and vortexed, and finally, three parts water was added and sample vortexed. 

Samples were centrifuged at 10,000 rpm for 5 min (room temperature) and washed with 

100% methanol twice. Samples were resuspended in 100 mM EPPS pH 8.5 containing 

0.1% RapiGest and digested overnight at 37°C with 1 μg of MS grade trypsin, after which 

digestion efficiency of a small aliquot was tested prior to labeling.

2.4 │ Tandem mass tag labeling

Trypsin digested samples (50 μg peptide input) were Tandem Mass Tag (TMT)pro labeled 

by adding 10 μL of 10 ng/μL of TMTpro reagent with acetonitrile to make a final 

acetonitrile concentration of about 30% (v/v) at room temperature (1 h). Labeling efficiency 

of a small aliquot was tested after incubation at room temperature for 1 h, and the reaction 

was then quenched with hydroxylamine to a final concentration of 0.5% (v/v) for 15 min. 

The TMTpro-labeled samples were combined together at a 1:1 ratio. The sample was 

acidified with formic acid, centrifuged at 10,000 × g for 5 min at room temperature and 

subjected to C18 solid-phase extraction (SPE) (50 mg, Sep-Pak, Waters).

2.5 │ Fe3+-NTA phospho-peptide enrichment

For phospho-peptide enrichment, a Fe3+-NTA phosphopeptide enrichment kit (Thermo, 

A32992) was used according to the manufacturer’s recommendations. In brief, dried 

peptides were enriched for phosphopeptides and eluted into a tube containing 25 μL of 10% 

formic acid (FA) to neutralize the pH of the elution buffer, then dried down. The unbound 

peptides (flow through) and washes were combined and saved for total proteome analysis.

2.6 │ Off-line basic Ph reversed-phase fractionation

Dried TMTpro-labeled sample was resuspended in 100 μl of 10 mM NH4HCO3 (pH 8.0) 

and fractionated using basic pH reversed-phase HPLC [14]. Briefly, samples were offline 
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fractionated over a 90 min run, into 96 fractions by basic pH reverse-phase HPLC (Agilent 

LC1260) through an Aeris peptide xb-c18 column (Phenomenex; 250 mm × 3.6 mm), with 

mobile phase A containing 5% acetonitrile and 10 mM NH4HCO3 in LC-MS grade H2O, 

and mobile phase B containing 90% acetonitrile and 10 mM NH4HCO3 in LC-MS grade 

H2O (both pH 8.0). Next, the collected fractions were combined in a non-continuous manner 

into 24 fractions (as outlined in fig. S5 of [15]) and used for subsequent mass spectrometry 

analysis after desalting via C18 StageTip.

For Phospho-peptides, dried peptides were fractionated according to manufacturer’s 

instructions using a Basic pH reversed-phase peptide fractionation kit (Thermo Fisher 

Scientific, San Jose, CA) for a final six fractions and subjected to C18 StageTip desalting 

prior to MS analysis.

2.7 │ Liquid chromatography and tandem mass spectrometry – Proteome analysis

Mass spectrometry data were acquired using an Orbitrap Eclipse Tribrid mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) connected to an UltiMate 3000 RSLCnano system 

liquid chromatography (LC) pump (Thermo Fisher Scientific, San Jose, CA). Peptides were 

separated on a 100 μm inner diameter microcapillary column packed in-house with ∼30 

cm of HALO Peptide ES-C18 resin (2.7 μm, 160 Å, Advanced Materials Technology, 

Wilmington, DE) with a gradient consisting of 5%–23% (0–75 min), 23–40% (75–110 

min) (ACN, 0.1% FA) over a 120 min run at ∼500 nL/min. 3/10 of each fraction was 

loaded onto the column for analysis. Proteome analysis used Multi-Notch MS3-based TMT 

quantification [16], combined with Real Time Search analysis software [17, 18], and the 

FAIMS Pro Interface (using previously optimized 3 CV parameters [19]), to reduce ion 

interference. The scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 

120,000 at 200 Th; mass range 400–1500 m/z; maximum injection time 50 ms; automatic 

gain control (AGC) target 4×105). For MS2 analysis precursors were selected based on a 

cycle time of 1.25 s/CV method (FAIMS CV = −40/−60/−80). MS2 analysis consisted of 

collision-induced dissociation (quadrupole ion trap analysis; rapid scan rate; AGC 1.0 × 104; 

isolation window 0.5 Th; normalized collision energy (NCE) 35; maximum injection time 

35 ms). Monoisotopic peak assignment was used, and previously interrogated precursors 

were excluded using a dynamic window (180 s ± 10 ppm). Following acquisition of each 

MS2 spectrum, a synchronous-precursor-selection (SPS) API-MS3 scan was collected on 

the top 10 most intense ions b or y-ions matched by the online search algorithm in 

the associated MS2 spectrum [17, 18]. MS3 precursors were fragmented by high energy 

collision-induced dissociation (HCD) and analyzed using the Orbitrap (NCE 45; AGC 

2.5×105; maximum injection time 200 ms, resolution was 50,000 at 200 Th). Closeout was 

set at two peptides per protein per fraction, so that MS3s were no longer collected for 

proteins having two peptide-spectrum matches (PSMs) that passed quality filters [18].

2.8 │ Liquid chromatography and tandem mass spectrometry – Phospho-peptide 
analysis

Mass spectrometry data were acquired using an Orbitrap Eclipse Tribrid mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) connected to an UltiMate 3000 RSLCnano system 

liquid chromatography (LC) pump (Thermo Fisher Scientific). Peptides were separated on 
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a 100 μm inner diameter microcapillary column packed in-house with ∼30 cm of HALO 

Peptide ES-C18 resin (2.7 μm, 160 Å, Advanced Materials Technology, Wilmington, DE) 

with a gradient consisting of 3%–20% (0–90 min), 20%–35% (90–160 min) (ACN, 0.1% 

FA) over a 170 min run at ∼500 nL/min. For analysis, we loaded half of each fraction 

onto the column. Each analysis used the FAIMS Pro Interface, using previously optimized 

3 CV parameters for TMT-labeled phosphopeptides [20] to reduce ion interference. The 

scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 120,000 at 200 

Th; maximum injection time 50 ms; mass range 350–1500 m/z; automatic gain control 

(AGC) target 4 × 105). For MS2 analysis, precursors were selected using a cycle time 

of 1.25 s/CV method (FAIMS CV = −40/−60/−80). MS2 analysis consisted of high 

energy collision-induced dissociation (HCD) (Orbitrap analysis; resolution 50,000 at 200 

Th; isolation window 0.5 Th; normalized collision energy (NCE) 38; AGC 2 × 105; 

maximum injection time 172 ms). Monoisotopic peak assignment was used, and previously 

interrogated precursors were excluded using a dynamic window (120 s ± 10 ppm).

2.9 │ Data analysis

Mass spectra were processed using a Comet-based (2019.01 rev. 5) software pipeline [21, 

22]. Spectra were first converted to mzXML and monoisotopic peaks were re-assigned using 

Monocle software [23]. MS2 spectra were matched with peptide sequences with a composite 

sequence database including the Human Reference Proteome (2020–01 - SwissProt entries 

only) UniProt database, as well as sequences of common contaminants. This database was 

concatenated with one composed of all protein sequences in the reversed order. Analysis was 

performed using a 50 ppm precursor ion tolerance. Static modifications included, TMTpro 

tags on lysine residues and peptide N termini (+304.207 Da) and carbamidomethylation 

of cysteine residues (+57.021 Da). Oxidation of methionine residues (+15.995 Da) was set 

as a variable modification. For phosphorylation dataset search, phosphorylation (+79.966 

Da) on serine, threonine or tyrosine and deamidation (+0.984 Da) on Asparagine or 

Glutamine were set as additional variable modifications. Peptide-spectrum matches (PSMs) 

were adjusted to a 1% false discovery rate (FDR) [24]. PSM filtering was performed using 

a linear discriminant analysis, [25], while considering the following parameters: XCorr, 

ΔCn, charge state, missed cleavages, precursor mass accuracy and peptide length. For 

protein-level comparisons, PSMs were identified, quantified, and collapsed to a 1% peptide 

false discovery rate (FDR) and then collapsed further to a final protein-level FDR of 1% 

[26]. TO generate the smallest set of proteins required to account for all observed peptides, 

the principles of parsimony were applied. For TMT-based reporter ion quantitation, summed 

signal-to-noise (S:N) ratio for each TMT channel was first extracted based on the closest 

matching centroid to the expected mass of the TMT reporter ion (integration tolerance of 

0.003 Da). Isotopic impurities of the different TMT reagents provided by the manufacturer 

specifications, were used to adjust reporter ion intensities. Proteins were quantified by 

summing reporter ion signal-to-noise measurements across all matching PSMs, resulting in 

a “summed signal-to-noise” measurement. For total proteome, PSMs with poor quality, MS3 

spectra with 7 (Figure 1), 14 (Figure 3) or more TMT reporter ion channels missing, or 

isolation specificity less than 0.75, or with TMT reporter summed signal-to-noise ratio that 

were less than 160 or had no MS3 spectra were excluded from quantification. For phospho 

proteome, PSMs with poor quality, MS2 spectra with 13 (Figure 2) or more TMT reporter 
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ion channels missing, or isolation specificity less than 0.8, or with TMT reporter summed 

signal-to-noise ratio that were less than 160 were excluded from quantification. The AScore 

algorithm was used to determine the localization of phosphorylation sites [27]. AScore is 

a probability-based approach for high-throughput protein phosphorylation site localization. 

Precisely, a threshold of 13 relates to a 95% confidence in site localization.

Protein or phospho-peptide quantification values were exported for further analysis in 

Microsoft Excel, R package (clusterProfiler 4.0 [28], pheatmap), Kinase Enrichment 

Analysis 3 (KEA3) [29] and Perseus [30]. Each reporter ion channel was summed across all 

quantified proteins and normalized assuming equal protein loading of all samples. Phospho-

peptides were normalized to the corresponding protein abundance value (when available and 

indicated in supplementary tables). Maximum and minimum TMT ratio quantifiable were 

capped to 100-fold. Organellar protein marker annotations were compiled using the proteins 

which had scored with confidence “very high” or “high” from a previously published 

HeLa dataset [31] and additional entries from manually curated literature. Transcription 

factor annotation list was assembled from previously published database [32] and only 

transcription factors marked as “curated” were used.

Supplemental data tables list all quantified proteins and phospho-peptides as well as 

associated TMT reporter ratio to control channels used for quantitative analysis.

3 │ RESULTS AND DISCUSSION

Recent efforts from the iNDI [1] have led to the generation and selection of the KOLF2.1J 

cell line to be adopted by the research community as a novel common reference iPSC line 

[2]. This line underwent extensive quality control focused on morphology, proliferation, 

pluripotency, gene editing efficiency, in-depth RNA sequencing, as well as whole-genome 

sequencing. In addition, differentiation potential into different cell types was examined 

using single-cell RNA-sequencing. We have previously reported a proteomics workflow 

to characterize the temporal proteome remodeling of hESCs into NGN2-induced neurons 

(iNeurons) [13], using the established H9 (or WA09) reference hESC line. This resource 

detailed changes in protein abundance throughout differentiation from ESCs to neurons 

and provided critical insight into some of the molecular rewiring happening upon cell 

state differentiation. Here, we adapted a similar quantitative workflow to directly compare 

side by side the proteome’s developmental differentiation trajectories of the established H9 

reference line with the novel KOLF2.1J reference line and thus provide additional resources 

to be used by the research community.

3.1 │ Global proteome variation between H9 and KOLF2.1J at PSC level

In an effort to further characterize constitutive expression differences at the protein level 

and to better understand how the proteome is remodeled upon neuronal state transition, we 

performed quantitative proteomics on both the H9 and the KOLF2.1J lines (Figure 1A). 

KOLF2.1J lines show a distinct morphology of undifferentiated status growing in the form 

of colony with large nucleus and scant cytoplasm similar to H9 (Figure 1A). Cells at PSC 

state were differentiated into Neural Stem Cell (NSC) using a previously established dual 

inhibition protocol [12] (Figure 1B). Total-cell extracts of cells at PSC (day 0) or NSC state 
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(day 8) were collected in biological quadruplicates and subjected to 16plex TMTpro analysis 

[33] (Figure 1B). Principal component analysis revealed highly reproducible replicate data, 

with 81.4% of the variance being driven by differentiation and 10.5% driven by cell line 

background (Figure 1C), while the coefficient of variation across biological replicate was 

∼5% for both cell line (Figure S1G). In total, we quantified 10,627 unique proteins across 

both cell lines and cell states (Table S1). As anticipated, we found profound inter-cell 

line variability at steady state (PSC – day 0) with ∼11.4% of the quantified proteome 

significantly different, of which 168 and 229 proteins were, respectively, upregulated or 

downregulated by more than two-fold (Figure S1A). Post-NSC differentiation (day 8) 

showed lower inter-cell line variability with ∼6.7% of the quantified proteome significantly 

different, of which 96 and 172 proteins were, respectively, upregulated or downregulated 

by more than two-fold (Figure S1B). Overall, about a dozen transcription factors were 

strongly differentially expressed between both cell lines. Of which several are linked to 

various aspect of embryonic development, such as members of the Paired box (PAX) [34], 

Iroquois homeobox factors (IRX) [35], and sine oculis (SIX) [36] family of transcription 

factors. Of note, the KOLF2.1J line is of male genotype, while the H9 line is of female 

genotype which could account for portion of the variability observed. We could quantify 

six Y-chromosome linked proteins (highlighted in green in Figure S1A–C) all virtually only 

expressed in KOLF2.1J and their level of expression was not affected by cell state transition 

based on a correlation plot (Figure S1C). A correlation plot of the two reference cell lines at 

both cell states displayed little correlation for both Pearson (0.4) and R squared correlation 

(0.16), indicating that the portion of the proteome that is differentially expressed between 

both lines is largely dissimilar (Figure S1C).

3.2 │ Quantifying proteome remodeling during conversion of hPSCs to neural stem cells

We next focused on quantifying how the proteome of each cell line remodeled upon 

differentiation into NSCs. From the more than 10,000 proteins quantified, we observed 

the predictable loss of pluripotency factors and increase in neurogenesis proteins, indicating 

that both H9 and KOLF2.1J cells underwent the expected differentiation program (Figure 

S1D). Three factors out of the 19 highlighted here showed a pattern affected by the cell 

line, namely IRX2, SATB2 and JUN (Figure S1D). Globally, for the H9 cell line ∼50.4% 

of the proteome was statistically different post-NSC differentiation (of which 1084 and 

1240 proteins were, respectively, upregulated or downregulated by more than two-fold) 

(Figure 1D). While for the KOLF2.1J cell line, post-NSC differentiation, ∼70.8% of 

proteome was significantly different (of which 1356 and 1505 proteins were, respectively, 

upregulated or downregulated by more than two-fold) (Figure 1F). We next examined 

the behavior of ∼785 highly curated transcription factors upon cell state change. As 

previously reported for iNeuron differentiation [13], while the abundance of most of the 

transcriptional regulators quantified was largely unchanged in both cell lines, a cohort of 

factors linked with maintenance of pluripotency (e.g., OCT4, NANOG) was dramatically 

downregulated (log2(NSC/PSC) <−2.0) to similar levels in both cell lines (Figures 1D,F). On 

the other hand, the hPSC-to-hNSC transition in both cell lines is associated with a strong 

increase (log2(NSC/PSC) > 2.0) in the abundance of numerous proteins linked to nervous 

system development (e.g., MAP2, ZEB1/2, POU3F2) (Figures 1D,F). Next, to address what 

proteins might have their expression solely affected by the cell line backgrounds upon NSC 
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differentiation, we plotted the remodeling fold change ratio (NSC/PSC) of the KOLF2.1J 

line versus the H9 line on a volcano plot (Figures S1E). This indicated that ∼11.8% of the 

remodeled proteome trajectory was significantly affected by the cell line backgrounds (of 

which 35 and 40 proteins were, respectively, upregulated or downregulated by more than 

four-fold (log2 ± 2.0)). These included transcript factors like UTF1, SP8, SATB2, SIX6/3 

and PAX5 and PAX3 (Figures S1E). PAX5, associated with brain development and autism 

spectrum disorder (ASD) [37], and UTF1, which controls pluripotency and self-renewal in 

ESCs [38], are significantly decreased in H9 (NSC/PSC) but not in KOLF2.1J. SP8, which 

promotes the premature differentiation of NSC is increased in KOLF2.1J (NSC/PSC) [39]. 

KOLF2.1J was generated by correcting a mutation present in one copy of ARID2 in the 

parental KOLF2_C1 line [2]. Our quantitative analysis showed no significant differnces 

between the level of expression of ARID2 between H9 and KOLF2.1J at either cell 

state (Figure S1A,B,F). To get a broader view of the two reference cell lines’ proteome 

trajectories upon NSC transitioning from their respective PSC states, we used a correlation 

plot. Correlation plot metrics showed a very strong correlation for Pearson (0.9), R squared 

(0.81) and Spearman rank (0.88) correlations, indicating that, excepting minor outliers, the 

proteome remodeling trajectories of both reference lines are highly similar (Figure 1G).

3.3 │ Phospho-proteome remodeling analysis upon neural stem cell differentiation

In parallel, while quantifying the total proteome (Figure 1A), we also examined global 

phosphorylation using the previously established streamlined tandem mass tag workflow 

[20, 40], prior to proteome fractionation. In line with the total proteome, principal-

component analysis revealed reproducible replicate data, with 73.6% of the variance being 

driven by differentiation and 9.7% driven by cell line background (Figure 2A). In total, we 

quantified 21,349 unique phospho-sites, in 5,181 proteins across both cell lines and cell 

states (Table S2). Of these, 17,440 sites were phosphorylated at a single site, 20,795 sites 

were normalized to their protein abundance and 18,524 sites were considered localized by 

having an AScore ≥ 13 (95% confidence in site localization) [27]. Globally, for the H9 

cell line, ∼22% of the phospho-proteome was statistically different post-NSC differentiation 

(of which 288 and 214 sites were upregulated or downregulated, respectively, by more 

than four-fold (log2 ± 2.0) (Figure 2B). For the KOLF2.1J cell line, ∼44.3% of the 

phospho-proteome was statistically different post-NSC differentiation (of which 360 and 

299 sites were upregulated or downregulated, respectively, by more than four-fold (log2 

± 2.0) (Figure 2D). A gene ontology analysis of the upregulated sites (log2 ratio > 1.0 

and p < 0.01) for either cell line indicated enrichment in mRNA processing, chromosome 

remodeling and histone modification terms (Figure 2C,E). To confirm the upstream kinases 

of changed phospho-peptide (log2 ratio > 1.0 and p < 0.01) upon NSC differentiation, we 

used the Kinase Enrichment Analysis 3 (KEA3). This suggested that phosphorylation of 

ATM, CDK2, CDK9, and SRPK1/2 target proteins is elevated in NSC of either cell lines 

(Figure 2F,G). The activation of SRPK1/2, known to control of pre-mRNA splicing [41], and 

ATM & CDK2, regulator of DNA damage [42], is consistent with GO analysis. Including 

Akt substrates, which are inactivated by dorsomorphin treatment, phosphorylation of PLK1, 

CDK1/2 and AURKB substrates is commonly decreased during NSC differentiation (Figure 

S2A,B). Similar to our total proteome analysis, we used a correlation plot to gain a broader 

view of the two reference cell lines’ phospho-proteome trajectories upon NSC transition 
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from their respective PSC states. Correlation plot metrics showed a very strong correlation 

for Pearson (0.87), R squared (0.76) and Spearman rank (0.87) correlations, indicating that, 

excepting a few outliers, the phospho-proteome remodeling trajectory of both reference line 

is highly similar (Figure 2H). Our data suggest that similar kinase pathway is regulated upon 

NSC differentiation of H9 and KOLF2.1J.

3.4 │ Global proteome remodeling analysis upon cardiomyogenesis differentiation

Having defined the overall broad similarities between the two reference PSC lines upon 

NPC differentiation, we next sought to further characterize them by subjecting them 

to a second, unrelated differentiation scheme. To our knowledge, an in-depth kinetic 

and quantitative analysis of changes in the proteome during conversion of hPSCs to 

cardiomyocytes has not been performed. We chose to benchmark the two reference lines 

upon cardiomyogenesis differentiation and include an additional temporal component (total 

of three time points) into our workflow to gain further statistical insight. We performed 

quantitative proteomics on whole-cell extracts of both H9 and KOLF2.1J lines subjected 

to a chemically defined monolayer differentiation method [11] (Figure 3A). Upon final 

differentiation (day 13), both cell lines differentiated into cardiomyocytes displaying 

pacemaker activity (Figure 3B, Video S1, S2). Total-cell extracts at PSC state (day 0), 

cardiac progenitor (CPs) state (day 5), and after final differentiation into cardiomyocytes 

(CMs) (day 13), all in biological quadruplicate where subjected to 18plex TMTpro analysis 

[43]. In total, we quantified 10,254 unique proteins across both cell lines and all three 

cell states (Table S3). Global principal-component analysis revealed highly reproducible 

replicate data, with 65.2% of the variance being driven by differentiation and 25% driven by 

cell line background (Figure S3A). In addition, for the H9 cell line we overlaid the loading 

plot to the score plot, resulting in a protein-level PCA map, displaying a clear clockwise 

temporal separation driven by differentiation (Figure 3C). Additionally, k-means clustering 

analysis performed at the cell line level, revealed eight shared discrete trajectory patterns 

(Figures 3C,D and Table S3). Then, we represented the time course “trajectories” of all the 

quantified proteins in Figure 3E. These trajectories are based on the Hotelling T-squared 

distribution (T2), a generalization of Student’s t distribution for multivariate hypothesis 

testing [44], in which each dot represents the statistical distribution for the changes in 

abundance of an individual protein over the 3-day time course [45]. Finally, we overlaid the 

k-means clustering analysis onto the Hotelling T2 scatter plot for easier global representation 

(Figure 3E). For example, we can clearly visualize that clusters 8 and 3 represent proteins 

for which the abundance decreased rapidly upon differentiation (Figure 3D,E). In contrast, 

clusters 1 and 5 correspond to numerous proteins upregulated 10- to 20-fold throughout 

cardiac differentiation (Figure 3D,E). Clusters centered within log2 (day 13/day 0) from −1 

to +1 and within the bottom half of the y-axis involved proteins whose abundance is mostly 

unaffected (e.g., clusters 2, 4 and 7), while finally, those within the top half of the y-axis 

included proteins whose profile transiently increased (cluster 6) mid-differentiation (day 5) 

(Figure 3D,E). Thus, our deep profiling dataset during cardiomyogenesis provides a resource 

for uncovering factors important for this process.
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3.5 │ Quantifying H9 and KOLF2.1J cardiomyogenesis differentiation potential

We next focused on quantifying how the proteome of each cell line remodeled upon 

differentiation into cardiomyocytes. From the more than 10,000 proteins quantified, we 

observed the expected temporal loss in pluripotency factors followed by the accumulation 

of cardiomyocyte proteins, indicating that both H9 and KOLF2.1J cells underwent the 

anticipated directed-differentiation program (Figure S3C). Of the 15 factors highlighted 

here, all of them display similar pattern across both cell lines. Next, based on the T2 

hotelling scatter plot, we visualized the whole proteome of both reference lines as well as 

the mentioned developmental and cardiomyocyte markers and transcription factors (Figure 

4A,B). We next examined the behavior of ∼550 quantified transcription factors upon cell 

state change. While the abundance of most of the transcriptional regulators quantified was 

largely downregulated by ∼50% in both cell lines (see violin plot insert - Figure 4A,B), a 

cohort of factors linked with maintenance of pluripotency (e.g., OCT4, NANOG) was more 

dramatically downregulated (log2(day 13/day 0) < −2.0) to similar levels in both cell lines 

(Figure 4A,B). On the other hand, the hPSC-to-CM transition in both cell lines is associated 

with a strong increase (log2(day 13/day 0) > 2.0) in the abundance of numerous proteins 

linked to cardiac muscle development (e.g., TBX5, GATA6, MEF2C) (Figures 4A,B).

To gain further insight into this unique programmed remodeling, we performed gene 

ontology analysis on the three clusters capturing the main temporal steps of the proteome 

remodeling (clusters 1, 6 and 8). Analysis revealed near perfect overlapping terms across 

both cell lines, with cluster 8 (enriched in PSC state (day 0)) showing enrichment for 

terms linked to cell division, mitosis and chromosomal regulation (Figure S4A,B). Cluster 2 

(increasing temporarily at CPs stage only (day 5)) analysis revealed terms linked to skeletal 

system development and other extracellular organization processes (Figure S4C,D). Finally, 

cluster 1 (increasing strongly in CMs (day 13)) was enriched for terms related to muscle 

architecture, development, and contraction (Figure S4E,F). Next, we isolated the proteins 

linked to two GO terms of interest in clusters 6 and 1 in both H9 and KOLF2.1J cells. The 

skeletal system development term (GO:0001501), enriched in cluster 6 contained 30 unique 

proteins temporarily highly enriched at the cardiac progenitor state, in both cell lines (Figure 

4C). These included, for example, the transcription factor HAND1/2, which is known to 

mark cardiac progenitor cells and to regulate their proliferation [46], and the tyrosine 

kinase receptor PDGFRα (Platelet-derived growth factor receptor) which is essential for 

the migration of myocardial precursors [47, 48]. The heart contraction term (GO:0060047), 

enriched in cluster 1, was composed of 44 unique proteins (Figure 4D). These included 

various myosin heavy and light chains (MYH6, MYH7, MYL2, MYL3 and MYL4), and 

RING finger protein RNF207, which is a regulator of cardiac excitation [49].

Having explored the nature of the proteome remodeling with this additional differentiation 

scheme, we turned to a correlation plot to measure how the two reference cell lines 

performed upon CMs transitioning from their respective PSC states. Correlation plot metrics 

showed an excellent correlation for Pearson (0.95), R squared (0.89) and Spearman rank 

(0.94) correlations, indicating that, excepting minor outliers, the proteome remodeling 

trajectory of both reference lines is similar (Figure 4E).
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3.6 │ Concluding remarks

The present study surveyed the relative 10k proteome abundance profiles of two reference 

human pluripotent stem cell lines upon cell state remodeling. We employed a TMTpro-based 

multiplexing strategy along with FAIMS and real-time database search for quantitative 

accuracy and data completeness. Initially, we observed profound differences in the steady 

state proteome of each cell line at both pluripotent and differentiated cell states. These 

differences can be derived from the source of the reference lines and the inter-individual 

variability. Notably, however, the differentiation potential of both cell lines showed a 

remarkably high similarity based on their proteome remodeling trajectory during NSC or 

CM transition. These datasets can serve as a resource for further signaling analysis and assist 

molecular mechanistic studies involving directed differentiation of these two pluripotent 

stem cell lines.
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Significance Statement

The absence of a broadly adopted reference induced-pluripotent stem cell (iPSC) has 

complicated various efforts in the research community to interpret or reproduce specific 

observations made across various cell line settings. One primary explanation is thought 

to be the inherent inter-variability coming from different cell line background. To address 

this, following an extensive characterization KOLF2.1J, a human iPSC line, was recently 

offered to the research community as a reference iPSC line for future studies. Here we 

complement this characterization process by providing in depth unbiased quantitative 

protein abundance measurement in undifferentiated and differentiated cell-states. In 

parallel, we performed similar measures on a second line, termed H9 (WA09). We 

profiled the relative protein abundance of these two cell lines using a set of isobaric 

Tandem Mass Tag reagent (TMT) pro-based multiplexing approach combined with 

real-time database searching technologies for enhanced quantitative accuracy and data 

completeness. We highlight differences in the steady state proteome of each cell line 

and classify the proteins which were markedly regulated in each cell line. By providing 

comprehensive protein abundance measurements, our dataset can serve as a starting point 

to understand how signaling mechanisms or specific protein interactions are influenced in 

these two distinct cell lines.
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FIGURE 1. 
Quantitative comparison of H9 and KOLF2.1 proteome remodeling upon Neural Stem 

Cell differentiation. (A) The information of H9 and KOLF2.1J reference cell lines 

(upper). Bright-field microscope images of H9 and KOLF2.1J cell lines (lower). (B) 

Workflow for neural stem cell differentiation from pluripotent stem cell and TMTpro based 

proteomics. 16plex proteomics was performed with biological quadruplicates per condition. 

(C) Principal component analysis (PCA) of proteomics data obtained from 16plex TMTpro 

based analysis. The inset indicates color coding for individual cells (Pluripotent Stem cell 
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(PSC), Neural Stem Cell (NSC). (D) Volcano plot shows the H9 cell line -log10-transformed 

p-value versus the log2-transformed ratio of Neural Stem cells/ Pluripotent Stem cells for 

quantification. p-values were calculated by two-sided Welch’s t-test (adjusted with 1% false 

discovery rate (FDR) for multiple comparisons); for parameters, individual p-values and 

q-values, see Table S1. Individual proteins are shown in gray open circles, significantly 

changed protein: filled gray circle, transcription factors (TFs): filled blue circles, and 

developmental & neuronal markers: red open circles; 10627 proteins were quantified). 

(E) The enriched gene ontology (GO) terms for proteins whose abundance is significantly 

increased in H9 NSC compared to H9 PSC. (F) Volcano plot shows the KOLF2.1J cell 

line -log10-transformed p-value versus the log2-transformed ratio of Neural Stem cells/ 

Pluripotent Stem cells for quantification. p-values were calculated by two-sided Welch’s 

t-test (adjusted with 1% FDR for multiple comparisons); for parameters, individual p-values 

and q-values, see Table S1. Individual proteins are shown in gray open circles, significantly 

changed protein: filled gray circle, transcription factors (TFs): filled blue circles, and 

developmental and neuronal markers: red open circles, 10627 proteins were quantified). 

(G) The enriched gene ontology (GO) terms for proteins whose abundance is significantly 

increased in KOLF2.1J NSC compared to KOLF2.1J PSC. (H) Proteome level correlation 

plot of log2(NSC/PSC) from KOLF2.1J cell line (y axis) or H9 cell line (x axis) upon 

differentiation. The calculated correlation factors (Pearson, R squared, and Spearman rank) 

are indicated

Ki Hong and Alban Page 19

Proteomics. Author manuscript; available in PMC 2023 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Quantitative phosphoproteome analysis of H9 and KOLF2.1 upon neural stem cell 

differentiation. (A) Principal component analysis (PCA) of phospho-proteomics data 

obtained from 16plex TMTpro based analysis. The inset indicates color coding for 

individual cells (Pluripotent Stem cell (PSC), Neural Stem Cell (NSC). (B) Volcano plot 

shows the H9 cell line -log10-transformed p-value versus the log2-transformed ratio of 

Neural Stem cells/Pluripotent Stem cells for quantification. p-values were calculated by 

two-sided Welch’s t-test (adjusted with 1% FDR for multiple comparisons); for parameters, 
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individual p-values and q-values, see Table S2. Individual proteins are shown in gray open 

circles, significantly changed protein: filled gray circle, transcription factors: filled blue 

circles, and developmental & neuronal markers: red open circles; 21,349 phospho-sites were 

quantified). (C) The enriched gene ontology (GO) terms for proteins whose abundance 

is significantly increased in H9 NSC compared to H9 PSC. (D) Volcano plot shows 

the KOLF2.1J cell line -log10-transformed p-value versus the log2-transformed ratio of 

neural stem cells/ pluripotent stem cells for quantification. p-values were calculated by 

two-sided Welch’s t-test (adjusted for multiple comparisons); for parameters, individual 

p-values and q-values, see Table S2. Individual proteins are shown in gray open circles, 

significantly changed protein: filled gray circle, transcription factors: filled blue circles, 

and developmental and neuronal markers: red open circles; 21349 phospho-sites were 

quantified). (E) The enriched gene ontology (GO) terms for proteins whose abundance 

is significantly increased in KOLF2.1J NSC compared to KOLF2.1J PSC. (F) MeanRank 

score from kinase enrichment analysis for H9 up-phosphorylated proteins in NSC to PSC 

comparison (Log2 > 1, p-value < 0.01). (G) MeanRank score from kinase enrichment 

analysis for KOLF2.1J up-phosphorylated proteins in NSC to PSC comparison (Log2 > 

1, p-value < 0.01). (H) Phospho-proteome level correlation plot of log2(NSC/PSC) from 

KOLF2.1J cell line (y axis) or H9 cell line (x axis) upon differentiation. The calculated 

correlation factors (Pearson, R squared, and Spearman rank) are indicated
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FIGURE 3. 
Quantitative proteome remodeling analysis upon cardiomyogenesis. (A) Workflow for 

cardiac differentiation from pluripotent stem cell and TMTpro-based proteomics. 18plex 

proteomics was performed with biological triplicated per conditions. (B) Bright-field 

microscope images of H9 and KOLF2.1J cardiomyocytes (day 13). (C) H9 protein level 

principal component analysis of proteomics data obtained from 18plex TMTpro based 

analysis. The inset specifies the color coding used for each cluster. (D) A total of eight 

cluster profiles were isolated by k-means clustering analysis of the H9 cell data and the 

Ki Hong and Alban Page 22

Proteomics. Author manuscript; available in PMC 2023 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of proteins per cluster is specified. For KOLF2.1J similar analysis was performed 

and available in Table S3. (E) Multivariate empirical Bayes analysis of the total proteome 

data of H9-derived PSC, CPs and CMs over the 13-day timespan. Plot shows log10(time 

course T2 statistic) versus log2(ratio day 13/day 0). Each dot illustrates the trajectory of 

changes in abundance for each individual quantified proteins during cardiac differentiation 

of H9 cells on the basis of nine independent abundance determinations. The eight individual 

clusters from (D) are also represented. Similar analysis was performed for KOLF2.1J and 

data are available in Table S3
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FIGURE 4. 
Quantitative comparison of H9 and KOLF2.1J proteome remodeling upon 

cardiomyogenesis. (A) Multivariate empirical Bayes analysis of the total proteome data 

of H9 differentiation across the 13-day timespan. The plot displays log10((time course T2 

statistics) versus log2(day 13/day 0). Individual proteins are displayed in gray open circles. 

Significantly changed protein: filled gray circle. Transcription factors: filled blue circles. 

Developmental & cardiac markers: red open circles. 10254 proteins were quantified. (B) 

Similar to (A) for KOLF2.1J dataset. (C) Heatmap of relative abundance with proteins in 
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cluster 6 (CPs specific (day 5)) associated with the gene ontology term skeletal system 

development (GO: 0001501). (D) Heatmap of relative abundance with proteins in cluster 

1 (CMs specific (day 13)) associated with the gene ontology term heart contraction (GO: 

0060047). (E) Proteome level correlation plot for H9 (x axis) and KOLF2.1J (y axis) cells 

upon differentiation as determined by log2[ratio] in abundance comparing PSC versus CMs. 

The calculated correlation factors (Pearson, R squared, and Spearman rank) are indicated
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