
A parametrized computational framework for description and 
design of genetic circuits of morphogenesis based on contact-
dependent signaling and changes in cell-cell adhesion

Calvin Lam1,2,†,*, Sajeev Saluja1,3,†, George Courcoubetis4,5,†, Dottie Yu1, Christian 
Chung1, Josquin Courte1, Leonardo Morsut1,6,*,#

1Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative 
Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 
90033-9080, USA

2Present address: College of Medicine, University of Nebraska Medical Center, Omaha NE, 
68198-0001, USA

3Present address: Verily Life Sciences; 269 East Grand Avenue; South San Francisco, CA 94080

4Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 
90089-0484, USA

5Present address: Convergent Science Institute in Cancer, Michelson Center for Convergent 
Bioscience, University of Southern California, Los Angeles, CA 90089, USA

6Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern 
California, Los Angeles, CA 90089-1111, USA

Abstract

Synthetic development is a nascent field of research that uses the tools of synthetic biology to 

design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic 

cells, such as mammalian cells. One specific example of such synthetic genetic programs was 

based on cell-cell contact-dependent signaling using synthetic Notch pathways and was shown 
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to drive formation of multilayered spheroids by modulating cell-cell adhesion via differential 

expression of cadherin-family proteins, in a mouse fibroblast cell line (L929). The design method 

for these genetic programs relied on trial and error, which limited the number of possible circuits 

and parameter ranges that could be explored. Here we build a parametrized computational 

framework that, given a cell-cell communication network driving changes in cell adhesion 

and initial conditions as inputs, predicts developmental trajectories. We first built a general 

computational framework where contact-dependent cell-cell signaling networks and changes in 

cell-cell adhesion could be designed in a modular fashion. We then used a set of available in vitro 
results (that we call the “training set” in analogy to similar pipelines in the machine learning field) 

to parametrize the computational model with values for adhesion and signaling. We then show 

that this parametrized model can qualitatively predict experimental results from a “testing set” of 

available in vitro data that varied the genetic network in terms of adhesion combinations, initial 

number of cells and even changes to the network architecture. Finally, this parametrized model 

is used to recommend novel network implementation for the formation of a 4-layered structure 

that has not been reported previously. The framework that we develop here could function as a 

testing ground to identify the reachable space of morphologies that can be obtained by controlling 

contact-dependent cell-cell communications and adhesion with these molecular tools and in this 

cellular system. Additionally, we discuss how the model could be expanded to include other forms 

of communication or effectors for the computational design of the next generation of synthetic 

developmental trajectories.
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INTRODUCTION

Multicellular mammalian systems display a remarkable capacity for self-organization into 

a myriad of different shapes and forms, from branching lung epithelia, to elongating tail 

bud mesenchyme. These phenomena of self-organization in mammalian morphogenetic 

systems are not yet completely understood, and are being investigated intensively, for 

example via analysis, perturbation and modeling of model organisms1–9. From these studies, 

several factors that seem to be important for self-organization are being recognized, among 

them chemical, epigenetic, bioelectrical, morphogen, mechanical, cell-cell communication 

signals10–12. The identification and characterization of these factors will ultimately allow 

implementation in simplified “toy models” (i.e. minimal models akin to the pendulum for 

physics13) of synthetic development both in silico and in vitro13–20.

One paradigmatic example of morphogenetic systems are the mechanochemical systems, 

which are composed of cell-cell signaling and changes in cellular or tissue mechanics. 

These systems have been shown to be at play in a number of natural systems21,22, and 

computational models have been developed to capture both signaling and mechanical 

changes in integrated models23.
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Among mechanical effectors, cell-cell adhesion has been recognized as an important 

effector of multicellular morphogenesis. In its simplest form, differential adhesion between 

cells can favor cell rearrangements that bring cells with high cell-cell adhesion closer 

together. This “differential adhesion” hypothesis has been studied in cellular systems where 

adhesion levels were changed via constitutive adhesion protein overexpression24; and also 

via computational systems where adhesion levels can be decided by the user (including 

CompuCell3D25).

Contact-dependent cell-cell communication networks have also been recognized as powerful 

sources for multicellular patterning in vivo26–29, and computational models have been 

developed and used to show the patterning potential of contact-dependent networks26,30,31. 

Recently, synthetic variants of cell-cell contact-dependent signaling have been developed 

named synthetic Notch or synNotch. SynNotch is based on the native Notch receptor which 

relies on contact-dependent, or juxtacrine, signaling32. SynNotch has been engineered such 

that it can respond to synthetic ligands, such as green fluorescence protein (GFP), with 

user-defined outputs. If a cell expressing GFP-ligand (sender cell) is in contact with a cell 

expressing anti-GFP receptor (receiver cell), then the receiver cell will start to produce user-

defined target genes. SynNotch pathways allow the user to define the input and the output 

of communication channels that are orthogonal to endogenous signaling. This synthetic 

cell-cell contact signaling system alone has been used to drive patterning in 2D in epithelial 

cells33.

A first example of a synthetic artificial genetic networks for mechanochemical-driven 

morphogenesis was recently described by combining cell-cell adhesion and cell-cell contact 

mediated communication by Toda et al19. In this system, artificial genetic networks 

intertwine two morphogenetic factors: cell-cell contact-dependent signaling and concomitant 

changes in cell-cell adhesion. Changes of cell-cell adhesion are initiated via synNotch 

cell-cell communication pathways, leading to dynamic and localized changes in cell-

cell adhesion strengths. With these networks, mouse fibroblast cells can be designed 

such that they follow user-defined morphogenetic trajectories to generate multilayered 

spheroids starting from random mixture of 1 or 2 genetically different cell types. That 

work demonstrated that simple networks of cell-cell communications with changes in 

cell adhesion can drive developmental trajectories that have features commonly found in 

developing morphogenetic systems.

One limitation of synthetic development studies lies in the design phase which relies heavily 

on lengthy trial-and-error iterations. As the range of parameters and designs that can be 

tested is limited to scientists’ best guesses, a systematic analysis of design space is not 

possible and interesting solutions may be overlooked. In other areas of synthetic biology 

this initial phase of intuitive design has been followed by a phase of computational systems 

development. These computational systems are used initially for the description and then 

the design of the systems in a way that can lead to implementation34–36. One remarkable 

example is the decade-long development of Cello, a computational framework for design 

and implementation of bacterial unicellular gene regulatory networks37. In Cello, users can 

give design specifications in silico of combinatorial logic, and the computational system 

converts them into complete DNA sequences encoding transcriptional logic circuits that 
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can be executed in bacterial cells. Similar efforts in mammalian cells are happening with a 

lag, beginning with intracellular circuits38. Computational efforts for helping the design of 

user-defined structures in multicellular systems have been initiated, for example the design 

of structure obtained by sculpting of muscle and epithelial cells in “xenobots”39,40, or the 

design of culture and initial conditions for aggregates of human stem cells to control their 

organization41. Until recently, no example of a computational system for description at 

the level of genetic circuits of morphogenesis was available for assisting with design. The 

in vitro system in Toda seems perfectly placed to provide a case study as it has all the 

features of a minimal “toy model” of synthetic circuit-guided morphogenesis (and it has 

attracted efforts from other groups as well42,43): it uses mammalian cells (mouse fibroblast 

line L929), it has logically minimal circuits, shows the genotype-to-phenotype relationships, 

and has explored the phenotypic consequences of changes in either cell-cell adhesion and/or 

network topologies.

Here we describe how we have built a computational framework for the description and 

design of genetic circuits of morphogenesis based on contact-dependent signaling and 

changes in cell-cell adhesion. This computational system can take, as input, an artificial 

genetic circuit of cell-cell communication, changes in cell adhesion (a “synthetic genome”) 

and initial conditions (e.g. number of cells of each type), and produce, as output, the 

developmental trajectory (Fig. 1A–B). The computational system is based on a stochastic 

cellular Potts environment implemented in CompuCell3D, which allows the simulation of 

adhesion-based rearrangements, cell movement and cell division25. We overlaid custom 

code to model cell-cell-contact dependent signaling by defining cell types and encoding 

information about cell-cell contact. We then proceed to parametrize the system with 

specific parameter values that model the cellular type at hand (mouse fibroblast line 

L929), the communication system (synNotch-based contact-dependent signaling), and the 

morphogenetic effectors (adhesion molecules). To do so, we split the available in vitro 
dataset into a “training set” and a “testing set” (Fig. 1C), following a framework for model 

identification common in machine learning. We use the “training set” to identify parameters 

for the in silico model. The synthetic genomes of the training set are chosen such that they 

would contain all the basic primitives of signaling and adhesion interactions that are found 

in the in vitro implementations: adhesion strengths, cell movement and proliferation, and 

signaling. Subsequently, we use the testing set to test if the parametrization can capture 

features of the systems outside the ones used for parametrization. Finally, we identify a 

synthetic genome in silico that can generate novel 4-layer structures (not present in the in 
vitro dataset) and provide a recommendation for the synthetic genome that could implement 

it in vitro in the mouse fibroblast cell line L929, with a combination of available parts (Fig. 

1D). Figures 2–4 describe the model parametrization based on in vitro data. Figures 5–8 

show examples of the capacity of the parametrized computational system to quantitatively 

reproduce emergent properties not used in parameterization (Fig. 5) and qualitatively predict 

developmental trajectories from the testing set that have different adhesion (Fig. 6), different 

initial number of cells (Fig. 7), or changes to the genetic network (Fig. 8). Figure 9 shows 

the recommendation for the synthetic genome for the 4-layered structure in vitro with a 

combination of available parts.
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This example of the development of a computational pipeline is among the first examples 

of computational systems developed and used for description and design of genetic circuits 

for synthetic morphogenesis based on synNotch and changes in adhesion in mouse fibroblast 

cells. We think it represents an example that can be built upon in the future in the 

field either expanding the analysis of the reachable structures with these parts, or by 

extending it with other parts. The description here of how we went about the computational 

system parametrization with the available parts (synNotch signaling and cadherin-based 

adhesion in L929 cells) could serve as a template for the expansion to other cell types, 

signaling currencies and morphogenetic effectors (e.g. soluble ligand based, bioelectricity, 

cytoskeletal, etc.). We think that our work provides a first necessary step towards the 

development of complete pipelines with computational design and in vitro implementation 

of synthetic developmental trajectories in multicellular systems.

RESULTS

Framework for modeling of cell-cell contact signaling and cell state changes in 
CompuCell3D (complete details in Methods)

We first built a computational framework that could simulate development of multicellular 

spheroids informed by a “synthetic genome” that controls their cell-cell communication, 

adhesion, movement. The CompuCell3D platform can simulate adhesion, movement, 

division and presence of different cell “types”, we added new code for contact-dependent 

signaling mediated change of cell type.

Briefly, in CompuCell3D25, each cell σ i  is defined as comprising a user-defined number 

of atomic pixels, whose position in space can change over time with a stochastic algorithm. 

The probability that a pixel will move is calculated by CompuCell3D for each attempt of 

movement at each time interval (known as Monte Carlo step (mcs)) with the following 

equation:

P = E−ΔH /T (1)

Where ΔH is the difference in “entropy energy” between the configurations before the 

change versus after the change, and T is a “temperature” parameter of the cell that is 

attempting the change which can be interpreted as cell motility. Governed by this equation, 

a system will dynamically change configuration over time towards configurations that 

minimize entropy energy (H). Entropy energy for a given a configuration of cells is 

calculated based on cell-cell contact and cell shape as follows:

H = ∑i, j Jσ i , σ j 1 − δσ i , σ j + + ∑σ
(λ σ Sur σ − SurTar σ 2 + λ σ

V ol σ − V olTar σ 2)
(2)

The first term of this equation deals with how cell-cell contacts contribute to H. Whether 

two cells are in contact is encoded in a Kronecker delta δσ i , σ j  that is 0 if cells i and j are 

neighbors, and 1 otherwise and can be thought of as an adjacency matrix. If two cells are 
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in contact, they will contribute proportionally to H the number of pixels that are in contact 

weighted by the adhesion matrix J. The adhesion matrix Jσ i , σ j  defines an adhesion weight 

between cell i and j. Higher adhesion values in the adhesion matrix correspond to increased 

entropy, less “stable” conformations, and hence a lower likelihood that neighboring cells 

will remain close. Consequently, higher adhesion values in the model correspond to a lower 

likelihood of cells sticking together and can therefore be interpreted as corresponding to 

lower adhesion strength.

The second line of equation (2) deals with how cell shape contributes to H. Cell shape 

contributions are defined as the sum of all deviations of current volume of each cell from 

target volume (VolTar) and surface (SurTar), weighted with a “deformability” parameter λ. 

As cells deform and stray further from their target volume or surface, entropy energy (H) 

increases. The amount that the deformation is penalized is weighted via λ, with lower values 

of λ allowing larger deformations.

In this context, cell types can be defined as subsets of the total set of cells that share certain 

features (e.g. adhesion, motility, deformability, or other). Upon cell division, daughter cells 

inherit the features of the parent cell. One special “cell type” indication is given to the 

medium, such that cell-medium adhesion parameters can be defined.

In this framework, we introduced the capacity for cells to be able to influence the behavior 

of their neighbors, so that a contact-dependent cell-cell communication system could be 

implemented. The abstract features of the synNotch communications that we want to capture 

are: (i) signaling that is proportional to amount of shared cell-cell contact surface between 

sender and receiver cells that express cognate ligand/receptor pairs, (ii) signaling that is 

capable of affecting changes in protein production, (iii) that when protein production rises 

sufficiently, the receiver cell can change from a basal to an activated state, and (iv) that the 

activated cell can acquire new behaviors such as altered adhesiveness, or the capacity to 

send a new signal (Fig. 2A,D). To model these synNotch communications, we conceptually 

separated the modeling into two parts: signaling-dependent continuous changes in target 

protein production in receiver cells (Fig. 2B–C), and protein-dependent discrete changes in 

cell behavior (Fig. 2E–F). The two parts of the model, continuous signaling and discrete 

response, are highly modular and can be designed and tested independently of one another.

For modeling contact-surface dependent, continuous changes in target protein production, 

we introduce a new feature of in silico cells, their repertoire of ligands and receptors. Each 

cell σ i  can be equipped with ligand_A through _Z, and with receptor_A through _Z. If a 

cell is equipped with receptor_X, it can start to accumulate target protein production points 

if it is in contact with a cell that is expressing the cognate ligand_X. Cell contact information 

is encoded in the adjacency matrix (see above) and the response is calculated via differential 

equations to model input-dependent response as follows:

dR
dt = 1

1 + e− S − β
ε

− R
κ (3.1)
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here R is the response (target protein production); S is the signal, or input coming from 

neighbors; β, is a constant that controls signaling delay; ε is a constant that affects the 

strength, steepness and overall geometry of this differential equation; κ is the degradation 

constant. Signal (S) can depend on several factors: the number of sender cells contacting 

the receiver cell, the number of ligands on each sender cell, the number of receptors on 

the receiver cell, and the amount of contact between sender(s) and receiver. In a simplified 

two-cell case with sender cell A and receiver cell B, if the receptors on B are in excess, 

signaling depends primarily on the amount of ligand on cell A and the fraction of A’s 

surface contacting B. If we define L as the number of ligands on cell A’s surface and Φ as 

the fraction of A’s surface in contact with B’s surface, we can then define the signal (S) that 

cell B receives as S=Φ*L (Fig. 2B).

dR
dt = 1

1 + e− Φ*L − β
ε

− R
κ (3.2)

The target protein production for each cell is calculated by numerically solving (3.2) via the 

forward Euler method. With these definitions, we have cellular signaling that depends on the 

amount of contacted ligand and obtain a stronger response as the fraction of shared surface 

or ligand produced per unit area are increased, as in the case of synNotch signaling33,44 (Fig. 

2C). This part of the model accounts for the continuous changes in protein production 

in receiver cells. For a more detailed explanation, please see the “CompuCell3D and 

the cellular Potts Formalism” and the “Generalized Juxtacrine Signaling Model (GJSM)” 

section of the Methods.

To model target protein-dependent change in cell behavior, we define thresholds of protein 

production that induce transition from a basal cell state to an activated state and vice versa. 

In the example above, if receiver cell B receives sufficient signal to produce a level of 

protein passing the activation threshold, the cell will become activated, denoted as B’ (Fig. 

2E). Thresholds for state transitions from basal to active and from active to basal can be 

different in general, but in the current work are kept at the same value. The state machine 

schematic for this type of network is in Fig. 2F. The features of an activated cell’s adhesion 

and signaling can be different from its basal state. For example, B’ cells can be more 

adhesive than B cells to other B’ cells. In this way, behavioral transitions are linked to 

the protein production changes via a threshold, which captures the discrete change in cell 

behavior observed in cell biology and used in other modeling efforts3,4,45. Additionally, or 

alternatively, cell B’ can also gain a communication capacity that was absent in cell B, for 

example the capacity to produce a synthetic ligand for communication. The model itself is 

general and any features of B’ cells can be different compared to B cells, e.g. proliferation, 

motility, division rate, etc. We note here that the cellular protein production and interactions 

are chosen to model contact-dependent signaling (also known as juxtacrine). Other signaling 

mechanisms, such as diffusion mediated patterning, can be implemented by choosing the 

appropriate differential equations.

Within this framework, cell rearrangements are non-linearly dependent on cell-cell signaling 

networks, adhesion preferences of the cells in the different states, and initial conditions. The 
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number and amount of cell-cell contacts in fact changes over time as the systems restructure 

towards a stable configuration, which depends on pattern of cell adhesion preferences; but 

the stability of a given configuration also changes when the cell-cell adhesion properties 

of the cells change over time as a consequence of cell-cell signaling. This gives rise to a 

non-linear system that cannot be treated completely analytically.

Parametrization of the model

With the computational system at hand, we wanted to see if we could parametrize it 

such that it could describe mouse fibroblast cell line L929 engineered with the synthetic 

morphogenetic networks based on synNotch and changes in cell adhesion described in19. 

As detailed below, we first made decisions on basic parameters such as cell size and 

adhesion range with in vitro data from L929 cells, biological considerations, and feasibility 

constraints in execution time, then the rest of the more specific parameters were tuned 

by parameter scans and comparison with in vitro L929 cells. In this way we identified a 

coherent ensemble of parameters that faithfully reproduce in vitro results. We note here that 

several different sets of numerical values for the parameters could give rise to the same 

cellular structures in CompuCell3D. For example, we chose 52 as cell-medium adhesion, 

which restricts the value of adhesion for more adherent cells in the 0–51 range; if we picked 

a different value for cell-medium adhesion, the precise numerical value for adhesion of the 

different adhesion molecule would be different.

Further details on the algorithm and parameters can be found in Methods, “In Silico L929 

Cell Line Properties” and “CompuCell3D and the cellular Potts Formalism” and full lists of 

simulation parameters can be found in Table S1 for signaling and simulation and Table S2 

for adhesion.

Baseline adhesion, cell size, deformability, and motility—Cells in the in vitro 
reference experiment are L929 murine fibroblasts; to create an in silico version, ISL929, 

we needed to identify a parameter set that would produce biologically plausible cellular 

structures. The parameters that needed to be identified are highlighted in yellow in the 

CompuCell3D equations:

H = ∑i, j Jσ i , σ j 1 − δσ i , σ j + ∑σ (λ σ Sur σ − SurTar σ 2 + λ σ V ol σ − V olTar σ 2)

P = E−ΔH /T

For the parameters for cell size and cell shape, we first chose the target surface (SurTar) and 

volume (VolTar) of the cell to correspond to that of a sphere, as the cells are spherical before 

aggregating in vitro. If a cell is too small, then its movement is very volatile due to the small 

number of pixels that constitute it. On the other hand, a very large cell is slow and requires 

many MonteCarlo steps (mcs) to move, making it computationally demanding. With this 

motivation in mind, we set the cells to have a preferred radius of 3 pixels, corresponding to 
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target volume and surface (VolTar and SurTar) of 113 pixels. Furthermore, we set the basal 

energy cost of deforming away from the target volume and area to be λ=2.2.

With these fixed parameter choices, we moved to identify parameters for temperature (T), 

which can be interpreted as a motility parameter25,46, and basal cell-cell and cell-medium 

adhesion via parameter screening. These parameters are crucial to define a multicellular 

system’s basal “mixability”, i.e. capacity of cells to rearrange in a spheroid. To parametrize 

T and baseline cell-cell and cell-medium adhesion, we first picked an arbitrary value for 

cell-medium adhesion, 52. The parameter choice for cell-medium adhesion sets the scale for 

the remaining model parameters, as cells that are not in contact with other cells are always 

in contact with medium, and they, for example, favor cell-cell only if the cell-cell adhesion 

is lower than the cell-medium. In this system, adhesion between cells contributes positively 

to the effective energy and, since the stochastic dynamics favor pixel re-arrangements that 

lower the effective energy, higher adhesion magnitudes correspond to a lower adhesion 

strength.

Then, we compared the behavior of an aggregate of 100 L929 cells in vitro with a similar 

aggregate of ISL929 cells in silico where parameter values of T and cell-cell adhesion 

were varied within a specified range (Fig. 3A–B). As visible from Fig. 3A, wild-type L929 

cells weakly aggregate to a pseudo-spherical structure with “rough” edges, biologically 

indicative of weak cell-cell adhesion. In silico, a range of motility between 10 and 1000 

and of cell-cell adhesion between 20 and 70 were tested. As shown in Fig. 3B, within 

10,000 simulation steps (mcs), T=10 does not allow cells to move for any of the adhesion 

parameters. When T=1000, spheroid formation occurred only for cell-cell adhesion values of 

20, whereas higher values for cell-cell adhesion (corresponding to lower adhesion strength) 

resulted in cells disintegrating from the spheroid, which is not observed in vitro. Moreover, 

with T=1000, cell shape was extremely distorted. At T=100, we obtained a spheroid with 

rough edges for cell-cell adhesion stronger than cell-medium (49 for cell-cell adhesion vs 

52 of cell-medium adhesion – reminder that these values are inversely proportional to the 

strength of adhesion), similar to the in vitro phenotypes. These observations prompted us to 

use values of T=100 for basic temperature, 52 for cell-medium adhesion and 49 for cell-cell 

adhesion of cells. These values were used throughout the rest of the simulations presented in 

this paper.

When doing the adhesion parameter scan, we noticed that lower cell-cell adhesion values 

(higher adhesion strengths) resulted in larger aggregates, which was not consistent with 

previous observations in vitro that higher cell-cell adhesion results in more compact 

aggregates. To further investigate this, we cultivated aggregates of 100 L929 parental cells 

in U-bottom wells and compared their dimension to aggregates made of 100 L929 cells 

overexpressing E-cadherin protein, which leads to increased cell-cell adhesion strengths. 

We observed that the E-cadherin aggregates were indeed smaller than the parental ones 

in vitro (Fig. 3C). To recapitulate this behavior in silico, we did a parameter scan of the 

deformability parameter lambda over two adhesion values. As visible from Fig. 3D, a λ=5 

does not allow cells to change shape at all, while λ=1 allows more highly adhesive cells 

(below 40) to form a compacted spheroid. When set at a value of 2.2, cells with adhesion 

above 40 formed larger aggregates, as seen in vitro. Based on this analysis, we chose to keep 
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λ at 2.2 for parental cells, but to lower it to 1 for cells with adhesion below 40, such that 

they would mimic in vitro behavior and form smaller aggregates.

synNotch signaling for “2-layer” networks—To identify numerical values for the 

signaling equation (3.1), we use experimental data from a simple in vitro experiment 

presented in19. A population of receiver cells engineered with the synNotch receptor 

that activates a GFP target protein were set in contact with a population of sender cells 

expressing a cognate ligand. Then, fluorescent protein production is tracked over time (Fig 

3E). The time-dependence of the normalized fluorescence provides the time scale of contact-

dependent signaling. To mimic the signal induction dynamics in receiver cells in silico, a 

simulation was set up to track normalized protein production over time. Equal amounts of 

sender A and receiver B cells were seeded in two box-shaped sheets, with uniform contact 

between the two types. Levels of reporter gene in receivers were tracked over time for a 

total of 24,000 mcs. The signaling parameters β,κ,ε were heuristically adjusted (not shown) 

such that the simulation matched the experimental normalized fluorescence (shown in Fig. 

3E) (numerical values for β, κ, ε can be found in Table S1). These parameters capture 

dynamics specific to synNotch signaling in L929 cells and we used them as our baseline for 

all subsequent signaling interactions. Given the temporal dimension of the in vitro results, 

this also gave us a temporal translation between simulation time and real time of 1000mcs = 

1h.

Adhesion in 2-layer networks—We then moved to identify numerical values for the 

adhesion weights (matrix J) of different adhesion molecules. In the in vitro experiments, 

different levels of E-cadherin (E-cad), N-cadherin (N-cad) and P-cadherin (P-cad) are used 

to modulate cell-cell adhesion. We first developed an initial relative hierarchy of adhesion 

strength based on available studies in the literature that pointed to differences in adhesion 

strength produced between cells expressing different adhesion molecules, or even different 

amounts of the same adhesion molecule24. In particular, E-cad, N-cad and P-cad are 

preferentially homotypical, but E-cad is stronger, and more promiscuous towards N- and 

P-cad whereas P- and N-cad are weaker and more selectively homotypical47. From this, 

we generated an adhesion hierarchy where, at similar levels of expression, E-cad produces 

greater adhesion strength between cells than either N- or P-cad; heterotypic E-cad:P-cad and 

E-cad:N-cad pairings are more favored than the N-cad:P-cad; and for any given cadherin 

molecule, low levels of expression produce less adhesion strength than higher levels of 

expression. With this general hierarchy of the relative strengths of different adhesion pairs 

we performed the following parameter screens to identify specific numerical values for 

adhesion strength parameters.

We started with identifying parameters for E-cad. To do so, we used experimental data 

from a training set structure that we call “2-layer network”: here, sender A cells activate 

receiver B cells to generate B’ cells that produce E-cad adhesion molecule. We knew from 

the in vitro data that if we started with 100 A cells and 100 B cells randomly mixed, in 

24 hours we would obtain a 2-layered spheroid with activated B’ cells in the innermost 

layer, and A cells on the outside (Fig. 3F). In silico, we set up a simulation to mirror the 

in vitro experiment (Fig. 3G). Approximately 100 A cells expressing ligand_A were mixed 
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with 100 B cells expressing receptor_A; when B cells acquire target protein units above the 

activation threshold (set at 5,263) they convert to B’ (Fig. 3H). We then ran 10 simulations 

for each value of B’-B’ adhesion between 25 and 50, and recorded screenshots of the 

resulting structure at 24,000mcs. The goal in the parameter screen is to identify parameters 

that achieve the maximal similarity to the in vitro picture, where activated, green B’ cells 

are found in the inner layer and A cells in the outer layer. As shown in Fig. 3H, for values 

of B’-B’ adhesion of 35 or higher, the sorting was either incomplete or the two types were 

randomly mixed. To get a quantitative measure of sorting, we also followed homogeneity 

index for both type A and B cells (Fig. 3I). We calculated a homogeneity index measure 

inspired from10,48,49, and defined in Eq S8 (Methods “Simulation quantifications” section) 

as the average fraction of surface area that cells of type X share with cells of the same type 

X over their total surface. The measure scores higher if the cells are uniformly contacting 

cells of the same kind, and lower if it has neighbors of a different kind. Given geometrical 

constraints, the highest value is around 0.8 for our cell numbers (as with a finite number of 

cells there will always be cells that do not have all their surface in contact with neighbors 

at all). Following this measure confirmed the impression from the visual inspection that: for 

values of B’-B’ adhesion higher than 35, the homogeneity of B/B’ cells was low, contrary 

to what is observed in vitro where B/B’ have highest homogeneity (Fig. 3I). These results 

constrained the value of adhesion of B’-B’ when they express E-cad to <35 and we picked 

the adhesion value for induced E-cad at 25 moving forward.

So far, we kept all the other adhesion values to the parental level of 49, but wanted to see 

if this was appropriate. To do so, we performed a similar screen for B-B adhesion values 

spanning between 25 and 50. In this case, if B-B adhesion is under 40, the sorting of the B 

cells precedes activation, and only B cells at the interface between B and A cells activate. 

This leaves the inner core of the B cells to the inactivated state, which is not what is 

observed in the in vitro counterpart. Therefore, B-B adhesion needs to be higher than 40, and 

we picked 47. We finally performed a screen for A-A adhesion values; this showed that low 

values of A-A adhesion results in formation of a blue core, and green poles at the periphery, 

which is not what is observed in vitro. Therefore, A-A adhesion values were constrained to 

>45 and we picked 49. With these parameters and starting with a mixture of approximately 

100 A and 100 B cells, we consistently obtained 2-layer structures qualitatively similar to 

that of the in vitro results (Fig. 3J and see Fig. S1A for quantifications and more replicates, 

and MOVIE 1).

Collectively then, this screening allowed the identification of a set of adhesion values of B’-

B’=25, B-B=47, A-A=49 (reminder that in CompuCell3D lower adhesion values correspond 

to higher adhesion strengths), that was able to recapitulate the fully sorted, 2-layer spheroid 

as in the in vitro experiment. The choice of the parameters is not univocal, any choice of 

the parameters in those ranges would have resulted in a 2-layer phenotype. We used these 

values for the rest of the papers for E-cad activation: induced E-cad – induced Ecad = 25; 

basal E-cad – basal-Ecad= 47, which is consistent with in vitro cells in a basal state having 

a leakiness of E-cad expression even in absence of activation19; this minimal difference 

between basal and parental (47 vs 49) is not sufficient to induce sorting (not shown here, but 

see fig. S2B.2 for an example where cells with 49 vs cells with 45 of adhesion do not sort).
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Next, we used the parameter scan approach to parametrize cell type adhesion for N-cad 

and P-cad adhesion molecules. For induced N- and P-cadherin, we compared the parameter 

scan with the in vitro phenotype of a 2-layer network where B cells induce N-cad instead 

of E-cad. The phenotype in vitro is a less well-sorted 2-layer (Fig. S1B), which is similar 

to what is obtained in silico with values of B’-B’ of around 35. With this parameter, in 

fact, homogeneity of B/B’ is still higher than homogeneity of A cells, but lower than it was 

for E-cad expressing cells (compare Fig. S1A B/B’ green line with same line in S1B.4). 

Hence, for induced N-cad we chose 35 as adhesion value, and the same was then fixed for 

induced P-cad (given they are reported to have similar adhesion strengths47). Finally, another 

2-layer structure from the training set allowed parametrization of heterotypic N- and P-cad 

adhesion, as well as constitutively-expressed P-cad. In this circuit, A cells constitutively 

express low levels of P-cad, whereas B cells are induced to express N-cad (fig. S1C). The 

resulting phenotype in vitro is that of a spheroid where A cells and B’ cells cluster together 

at different poles. Given the parameter scan in Fig. 3H–I, we thought we that, using A-A 

adhesion values in the range of 35–45 would allow us to achieve that; indeed, when we did 

simulations with A-A adhesion set to 43, we obtained in silico structures similar to the in 
vitro ones, where both A cells and B/B’ cells show similar homogeneity index values (Fig. 

S1C). This screening allowed us to identify parameters for adhesion values for E-, N- and P- 

cadherin.

Adhesion and signaling in 3-layer networks—More complex 3-layer structures can 

be generated in vitro with a more complex signaling network (Fig. 4A). In this network 

architecture, the B cells, when they receive the signal from A, transition to a B’ state that 

is able to communicate back to the A cells that can become activated to A’ cells. In this 

case, A, A’ and B’ cells have both the capacity to receive and to send a signal, a feature 

known as “transceiver” (Fig. 4C). This signaling logic is also called ‘back-and-forth’. This 

network was used in vitro19 to generate both central-symmetric 3-layered structures and also 

non-central symmetric structures, based on the choice of adhesion molecule. We chose to 

use the central symmetric three-layered structure as a training structure for parametrization 

in silico, and leave the non-central-symmetric structures for the test set.

The central symmetric 3-layer structure in vitro is generated as follows: A and B cell types 

have basal adhesion deriving from small amount of leakiness19, whereas A’ expresses low 

levels of E-cad (Ecad.Lo) and B’ expresses high levels of E-cad (Ecad.Hi). As shown in 

Fig. 4B, when approximately 200 A cells are mixed with approximately 40 B cells in vitro, 

A cells signal to B cells to induce Ecad.Hi, turn on reporter GFP, and form the center of 

the spheroid. Subsequently, surrounding blue A cells expressing blue fluorescence protein 

(BFP), are activated to A’ cells that turn on a red reporter (mCherry) and Ecad.Lo positive 

via signaling coming from activated B’ cells, resulting in a 3-layered structure with B’ cells 

in the center followed by A’ and then A cells at the outside.

To implement this in silico, A cells have ligand_A (filled circle) and can respond to 

ligand_B (green square) thanks to expression of receptor_B (squared). B cells have 

receptor_A (rounded) to respond to ligand_A, and in the B’ state can gain the capacity 

to send ligand_B (Fig. 4C). To parametrize the signaling for A and B cells, we proceeded 

as for signaling parametrization in the simper networks described earlier by comparing 
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activation measures in vitro and in silico. For this more complex network architecture, the 

activation indices are defined based on cell type conversion from A to A’ and B to B’ as 

follows: in vitro, activation index is the normalized amount of GFP fluorescence (green) for 

signaling in cell B, and of mCherry fluorescence (red) for signaling in cell A (see methods 

“Simulation Quantifications”). In silico, activation index is the normalized ratio of activated 

cells over the total number of cells of the same type (See Methods, “Video analysis”). 

With these definitions we were able to compare in vitro and in silico signaling and identify 

parameters for signaling constants as described previously (numerical values for signaling 

parameters are in Table S1) (Fig. 4D). We notice that the signaling parameters are that 

allow for recapitulation of in vitro dataset are (slightly) different for cells A and B, even 

though they have a similar genetic network; we speculate that this could be due, in vitro, to 

different level of expression of the receptor or the transgene that makes signaling dynamics 

different in different cell types, hence parametrization of different cell types could require 

parametrization of signaling each time a new circuit is built. We used the identified signaling 

parameters for all subsequent simulations involving this kind of signaling.

For the adhesion values, the central symmetric 3-layer structure involves different expression 

levels of E-cad protein in different cells, e.g. low levels in A’ cells, and high levels in 

B’ cells. For the parametrization, based on previous work that established that changes in 

the expression levels of cadherins change adhesion strength24,47, we derived a hierarchy as 

in Fig. 4E. Based on this hierarchy, and starting from the previously identified value for 

Ecad-Ecad of 25, we chose to use Ecad.Lo-Ecad.Lo=40 and Ecad.Hi-Ecad.Hi = 20 (Fig. 

4F).

With these parameters for signaling and adhesion, we then simulated the development of a 

system comprising around 200 A and 50 B initial cells. We observed that there was first 

induction of B to B’ cells, which then formed a green core. Then the B’ cells started to 

signal to the A cells to turn red (Fig. 4G, Fig. S2A and MOVIE 2). At the corresponding 

timepoints, we observed structures similar to that of the in vitro results (Fig. 4B), a 3-layer 

structure consisting of a green B’ cells core surrounded by concentric shells of red A’ cells, 

then blue A cells (Fig. 4G).

We wondered if, in the signaling scheme, reversion back to basal state played a role in this 

trajectory. To test this, we designed networks where there is no reversion, meaning that, once 

induced, cells cannot revert to basal state. Qualitatively and via homogeneity index, these 

two scenarios are not distinguishable in our setup (compare fig. S2A with S2C), suggesting 

that, in silico, the reversion might not play a big role for this specific trajectory.

Finally, we showed that signaling is necessary for 3-layer formation in the in silico model, 

similar to what was shown for the in vitro model. In the absence of signaling, there is no 

activation to B’ and A’, no formation of core(s), and no sorting occurring either qualitatively 

or quantitatively in silico (Fig. S2B).

This parametrization allowed us to identify values for all the target parameters that remain 

unchanged for the rest of the simulations. We then moved to test the quantitative capacity of 

the newly parametrized model to capture emergent properties of the system.
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Testing of predictive capacity of the model in the testing set.

Parametrized model correctly captures emergent properties of in vitro 
developmental trajectories—With the model parametrized to capture the morphologies 

and activation dynamics, we wondered if the parametrized model would also reproduce 

other properties of the in vitro systems that were not used to calibrate the model parameters.

As a first example, we focused on the robustness of obtaining the target structures, focusing 

on the central symmetric 3-layer structure. Both the in vitro and the in silico systems have 

stochastic components. In vitro, the system forms a similar structure with one core 57% 

of the time experiments were performed (n=28 experiments19). In the in silico system, the 

stochasticity comes from the core algorithm in CompuCell3D, as the transition from one 

stage to the next is shaped by a probability distribution (Eq. 1). We quantified in silico 
the number of cores formed over repeated simulations of our parametrized model of the 

central symmetric 3-layer structure (n=30). The majority of the simulations yielded a 1-core 

structure (47%), some a 2-core (30%), and a minority a non-core structure (23%) (Fig. 5A). 

We compared this distribution to the distribution of morphologies reported for the biological 

system19, and found them similar (Pearson χ2=4.75, d.f.=2, P>0.09).

As a second example, we focused on changes in the quantitative metric of morphology, 

and in particular the sphericity of the assembly. In vitro, we noticed that circularity of the 

structures evolves over time to reach a steady state by the end of the experiment, both for 

the overall structure and for the cadherin-expressing cells. To quantify these features, we 

used a standard circularity index in 2D that increases when the structure is more circular (see 

methods, “Quantification and statistical analyses”, Equation S9), and quantified it over time; 

results are in Figure 5B, blue and beige solid lines. To compare it with the in silico system, 

we defined a sphericity index in silico (eq. S7), and measured it over time. We plotted it 

together with the in vitro results and found that they generated qualitatively similar temporal 

evolution (Fig. 5B).

These data collectively show that the parametrized in silico system can recapitulate emergent 

properties of robustness and morphology evolution of the in vitro cellular system, properties 

that have not been used for the identification of the parameters.

Parametrized model predicts developmental trajectories with reshuffled 
adhesion—We now set out to test the predictive power of the parametrized model for 

multicellular circuits in the testing set. We start by considering circuits that contain a 

different combination of adhesion proteins compared to the training set. To do so, with the 

identified parameters, we ran simulations to see what the model predicts for the behaviors of 

multicellular systems with genomes that are obtained by changing adhesion values.

In a first example (Fig. 6A–C), following the logic of one of the synthetic genomes in the in 
vitro test set, the in silico implementation had 2 cell types, A and B, and a back-and-forth 

signaling logic where A activates B to B’ and B’ activates A to A’. The adhesion features 

of the cells are basal for cells A and B, whereas A’ gains P-cad and B’ gains N-cad (Fig. 

6A). We implemented this program in silico by giving A’ cells the value of adhesion that 

we identified previously for P-cad and similarly with B’ cells for the value of adhesion for 
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N-cad. We then ran simulations with ~30 A cells and 30 B cells for 50,000mcs equivalent to 

50hr of in vitro experiment. This gave rise to predicted structures that fell in two categories: 

one with one green B’ pole (90% of the runs), one with two red A’ poles (10% of the runs) 

(Fig. 6B, see also Fig. S3A for adhesion matrix, other sample structures and sorting index 

dynamics, and MOVIES 3 and 4 for runs with the 2 different phenotypes). When compared 

to the in vitro system, these structures display similar classes of morphology (Fig. 6C), with 

the one pole observed more frequently19.

We proceeded similarly for a second system (Fig. 6D), where the signaling logic is the same 

back-and-forth signaling between A and B cells, but now P-cad is constitutively expressed 

in A cells from the beginning, and signaling from B’ only changes color from blue to red. 

When we mixed approximately 160 A and 80 B cells for the equivalent of 34h, we obtained 

a structure with B’ green cells forming aggregates at polar positions in the spheroid, and the 

B’ aggregates are lined internally by A’ red cells; the inactive A cells stay in the center of 

the aggregate, since they express adhesion molecules from the beginning of the experiment 

(Fig. 6E, MOVIE 5 and Fig. S3B). The in vitro results obtained with engineered cells with 

similar genome resulted in a similar architecture (Fig. 6F).

These results show that our parametrized model can predict outside of the training set into 

new genomes obtained by changing the adhesion molecules produced by different cells in 

the system.

Model predicts in vitro structures when initial number of cells are changed—
We next explored the computational models’ capacity to predict final structures when initial 

conditions were changed. We ran simulations starting from different amounts of A and B 

cells for three different systems.

For the first one, using the same underlying genetic architecture as in 6A-C, we increased 

the initial number of cells to around 90 for both A and B. In silico, increasing cell number 

resulted in bigger B’ green core, and formation of 2 red poles more systematically (Fig. 

7B and S4A for homogeneity index and more replicates and MOVIE 6). In the in vitro 
experiment, it was noted that when more cells were used, the 2-pole phenotype occurred 

with higher frequency and the B’ green core was bigger (Fig. 7C) similar to what we 

obtained in silico.

For the second one, we returned to the genetic architecture underlying the central symmetric 

structure used to parametrize back-and-forth signaling (Fig. 7D). Instead of using the initial 

conditions from the training set (200A and 40B), we ran simulations with 160A and 90B. 

We obtained a thicker B’ central core and a thinner outer blue layer (Fig. 7E, Fig. S4B 

and MOVIE 7). When we looked at the in vitro data, it was noted that this initial cell 

combination led to a thicker B’ core as well (Fig. 7F).

For the third one, using the same underlying genetic architecture as in Fig. 6D–F, we 

decreased the initial number of cells to approximately 130A and 45B. In silico, the result of 

decreasing number cells resulted in formation of 2 green cores more systematically (Fig. 7H 

and S4C for homogeneity index and more replicates and MOVIE 9). In the corresponding 
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test set in vitro experiment, a 2-pole phenotype is obtained (Fig. 7I) similar to what we 

obtained in silico.

These results show that our parametrized model can predict changes to the developmental 

trajectories when the initial number of cells is changed.

The Model Recapitulates Synthetic Structures Generated by Lateral Inhibition 
Circuits Starting from Genetically Uniform Cell Populations—Having tested 

prediction capacity for changes in adhesion and changes in initial conditions, we wondered 

if the system could be predictive when the network itself was changed. To do so, we 

turned to another test set genome that involved a lateral-inhibition signaling network. Lateral 

inhibition networks are deployed during multicellular development, for example in the inner 

ear28, and entail a Notch receptor whose activation results in repression of its cognate 

ligand, Delta, in the same cell. This system has been modeled and studied extensively in 
silico, in vivo and in vitro. When deployed in architectures in 2D cellular lattices, lateral 

inhibition networks bifurcate to produce distinctive checkerboard patterning7,30,31,50–53. 

In our computational system, thus far, we had parametrized signaling only for positive 

activations. Given that in the molecular logic, to obtain inhibitory signaling there is a swap 

of an inhibitory transcription factor in place of an activatory one, we hypothesized that 

our computational model could recapitulate inhibitory signaling by simply modifying our 

signaling equations (Equation 3) such that, S → - S (S is signal) and β → - β (threshold 

of signaling). This would yield an inverse relationship between signaling and reporter 

production whereby low signaling receiver cells have high reporter production. We tested the 

inhibition version of the model on lateral inhibition by generating the following network in a 

monolayer sheet of cells: red A cell send and receive inhibition signals to/from neighboring 

A cells (Fig. S5A). In this setup, receptor activation decreases reporter level, so cell state 

A has target protein level above the activation threshold (we start from 7000), and can 

transition to A’ if its reporter inhibition is strong enough to make its reporter points fall 

below the threshold. In the A’ state the cells become green and loses capacity to signal. 

When we simulated development starting from red A cells in a single-layer sheet, we 

obtained the classic checkerboard pattern of lateral inhibition both when cells are regular 

(cells are not allowed to move, grow or divide) or irregular (cells are allowed to move but 

not grow or divide) (Fig. S5B). Importantly, since this was achieved keeping all the rest of 

the signaling parameters the same as for the other simulations described so far (adhesions 

are set at the parental level of 49 for all the cells), this shows that our parametrization can be 

extrapolated to simulate other known network contexts.

We then moved to see if this implementation of the lateral inhibition network could be 

used to predict the behaviors of spheroid morphogenesis based on lateral-inhibition and 

changes in cell adhesion. In the in vitro implementation, the logic of the signaling is that of 

lateral inhibition, but the adhesions are changed: A’ fate (green) increases E-cad expression, 

whereas A cells have basal adhesion capacity (Fig. 8C). When we computationally modeled 

this signaling logic (Fig. 8A) starting from approximately 100 A cells, initially some of 

the red cells become green, and then the green cells met each-other in the center of the 

aggregate. After 50h of simulated time, this results in a spheroid with both A and A’ cells, 

with the A’ green cells forming more preferentially the inside of the aggregate and never 
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the outer layer, which was instead populated by inactivated red A cells (Fig. 8B and S8C 

for robustness and homogeneity index, and MOVIE 8). This phenotype is qualitatively 

consistent with the observation of the in vitro system, where a 2-layered structure is 

observed with green cells that adhere to other green cells, thereby forming a two-layer 

structure with a shell of red cells surrounding a green core19 (Fig. 8C).

Collectively these results show that our parametrized model’s predictive capacity can be 

extended to different network architectures.

Model-based recommendation for genome for new structures

Finally, we asked if we could identify a network in silico that can give rise to a new structure 

not yet shown in vitro, a 4-layer central symmetric structure (Fig. 9A). We started from the 

observation that increasing the adhesive strength of the gray B cells in the two-layer model 

resulted in a homogeneous gray core with a thin layer of activated B’ cells on the edges 

(see Fig. 3H, middle row, left most structure). This resembled a 3-layer structure but done 

with only a forward signaling between A and B cells. Thus, we hypothesized that if the 

B-B homotypic adhesion were increased to the inferred B Ecad.Hi adhesive strength, and 

if the inner B’ cells were allowed to activate the outer A cells, we might be able to create 

a 4-layered structure simply by reconfiguring the same synNotch circuits used in previous 

structures (Fig. 9B and Fig. S6A). This circuit configuration was tested with different initial 

conditions consisting of 2:1 mixed A and B cells at different numbers of cells, and allowed 

to run for 24,000mcs (equivalent to 24h in vitro) (Fig. 9C and Fig. S6B for more replicates). 

If the initial number of A cells is around 110 and B cells of around 70, there are not enough 

B cells to sustain the innermost layer, resulting in loss of the innermost layer, and forming 

a 3-layer-like structure at the end of the trajectory. If the initial number of A cells is around 

1220 and B cells of around 620, however, there are too many cells impeding the formation 

of the homogenous inner core of (B/B’) cells, resulting in premature activation of (B/B’) 

cells. In this case, the final structure is composed of multiple, deformed inner cores, each 

surrounded by a homogenous layer of A cells. These results indicate that different initial 

number of cells, with the same circuit, could lead to different morphological outcomes. For 

the goal of a 4-layered structure with a single core, there exists a tradeoff between the initial 

number of cells and the resulting homogeneity of the layers in the desired structure. Our 

in silico experiments indicated that an optimal initial number of cells would be around 310 

A cells and 170 B cells (Fig 9C and S6B). The recommended circuit would be as depicted 

in Fig. 9D, where A cells have ligand_A, and receptor_B that activates red and Lo.Ecad 

expression; whereas B cells have constitutive expression of Hi.Ecad, and receptor_A that 

activates ligand_B expression.

This shows that our computational system can generate recommendations for in vitro 
implementation of circuits for structures that have not been implemented yet.

DISCUSSION

A computational framework for the design of genetic networks for synthetic development 

would allow testing of the reachable morphogenetic space and allow identification of 

networks for user-defined trajectories and structures that optimize a certain parameter (e.g. 
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burden on cellular machinery, number of cell-cell communication channels, number of 

cell types, etc.). This pre-implementation optimization would provide access to a larger 

parameter space, allow identification of less intuitive solutions, and ultimately move the 

field towards the design phase. Here we provide a first step in that direction, by focusing 

on a paradigmatic example of synthetic developmental systems, where contact dependent 

signaling is paired with changes in cell adhesion in mouse fibroblast cells spheroids.

Networks where cell-cell signaling changes mechanical properties of cells are a recurrent 

feature of multicellular development. The combination of signaling and morphological 

effectors has been shown to be at the core of complex developmental transitions: tissues are 

a complex system where cell-cell signaling affects morphogenesis, and then morphogenesis 

feeds-back to influence signaling, to robustly generate complex multicellular structures54. 

In fact, the combination of signaling and morphological effectors has been incorporated in 

several computational models and shown to be able to replicate complex morphogenesis 

of embryonic transitions1,9,23. Given that the synthetic morphogenesis described in19 is 

one of the first synthetic systems that couples chemical and mechanical signaling for 

synthetic developmental trajectories in mammalian cells, it has attracted other computational 

description recently42,55, with different computational systems or objectives compared to 

ours. The system in42 describes a similar system in a cellular Potts model, with more 

focus on the underlying design principles and what can be learned about the logic of 

these kinds of networks. The system in55 is developed with predictive capacity and with 

some novel calibration structures, and relies on a new computational model for modeling 

cell movements that is distinct from cellular Potts. We think these efforts will collectively 

bring the field closer to the goal of rationally designing genetic networks for synthetic 

developmental trajectories.

Here we pursued one way to go about developing a computational system for design of 

genetic circuits of morphogenesis, using an available dataset to train and test our model 

for cell-cell contact signaling and changes in cell adhesion. The computational system 

is designed so that it is general in its conception, so that it could be parametrized 

for different cellular systems, different effectors, different communication systems etc. 

In this paper, we show how we parameterized this general computational system to 

correspond to the synNotch receptor-based communication networks that was previously 

developed in vitro19. The modeling framework itself uses an available open-source platform, 

CompuCell3D, a cellular Potts based formalism that allows to model basic cell behaviors 

like proliferation, movement, and adhesion-based sorting25. Given that this computational 

system natively retains cell-cell neighboring relationship, which was originally used to 

compute the “entropy” of a multicellular system, we were able to use it to implement 

signaling that is dependent on how much contact there is between “sender” cells and 

“receiver” cell types. Signaling, in turn, is linked with activation in receiver cells to a 

different cell type that can be given different capacity for signaling and/or different levels of 

adhesion. This allowed us to create a modular backbone for implementing genetic networks 

based on contact-dependent signaling and changes in cell adhesion, which then generate 

synthetic developmental trajectories in cells. It would be possible to expand the current 

system with long-range signaling systems for example, since these effectors are available in 

CompuCell3D.
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We parametrized the model with in vitro data, using a subset of the complete in vitro dataset, 

what we call the training set. In particular, we parametrized signaling parameters for cell-

cell contact dependent synNotch signaling, and adhesion values for adhesion molecules of 

the cadherin family, using simple experimental setups. For the signaling, senders-receivers 

coculture experiments were used. For the adhesion parameters, simple, single-link networks 

were used, where signaling from A to B induces B to become B’, and where the different 

cell types can have different adhesion molecules. This setup allowed us to explore a 

parameter space and identify the in silico parameters that most closely mimicked the in 
vitro structures. The capacity of our system to match experimental results shows that the 

computational system can be tuned to represent synthetic developmental trajectories. Finally, 

the signaling for a more complex back-and-forth signaling network was parametrized with 

a simple example of that type of network in vitro. We used the simplest experiments 

to parametrize the model, mimicking a future pipeline where simple experiments would 

provide the baseline parametrization for predictive models that could identify potential 

circuit architectures for more complex implementations in cells.

Others have done parametrization in different ways: heuristic parametric tuning42 or 

machine-learning55. Our method was to design screenings of parameters in meaningful 

ranges, motivated by the biology and by computational considerations. It allowed us 

flexibility and exploration of a meaningful parameter space and was able to provide 

parameters with qualitative and quantitative matching. For more automated processes and 

extensions, the machine learning parameter estimation is an appealing future direction.

In showing the steps that we took for parametrization, we are also showing how this could 

be done for different effectors. For example, if one were to be interested in predicting 

a system where some cells change their proliferation, one would need to parametrize 

proliferation. To do so, in vitro experiments where proliferation is quantitatively measured 

in baseline as well as perturbed conditions would be setup; parameters tuning would then 

be performed in silico to identify the proliferation parameters that achieve in silico results 

similar to the in vitro. This pipeline is showed for cell motility, deformation, synNotch 

signaling dynamic, cadherin adhesion in Fig.3.

We then showed that the parametrized model can perform qualitatively accurate predictions 

of in vitro networks from a different subset of the in vitro dataset, what we call the test set. 

The test set had either adhesion molecules combination, initial number of cells, or network 

architecture that were different compared to the parametrization set. The capacity of our 

model to generalize outside the parametrization set suggest that our parametrization is a 

valid pipeline, at least for network designs with the same basic building blocks of signaling 

and effectors. Capacity to predict different initial conditions is shown also by42. These 

efforts pave the way towards computational design of developmental trajectories.

One interesting aspect of our computational system is that it captures some of the robustness 

features of the in vitro system, for example in the formation of 1, 2 or multiple cores in 

the central three-layer structures. Noise and robustness are features of biological systems in 

general, and in particular for developmental systems56,57. Given our computational system is 

able to capture this important component, it seems it could be a useful resource to approach 
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questions regarding whether certain network architectures are more conducive for buffering 

noise while still delivering the user-intended structures.

This system can be used to explore the reachable space of morphogenesis with these 

effectors. An exhaustive characterization of the morphospace has not been attempted here 

but we think it would be an interesting avenue to pursue.

Finally, we showed how one can go about making a recommendation of a biological network 

for a user-identified phenotype. The fact that we have a parametrized model and know 

realistically implementable parameters, allowed us to do educated searches in a space that 

is smaller than the entire parameter space. These constrained searches could be helpful 

when trying to generate user-defined patterns or shapes starting with a limited toolkit of 

signaling and effector genes. Recent computational research showed that having access 

to a limited set of primitives is generative of a large number of shapes and patterns if 

you are allowing free parameter variations58. It will be interesting to see if this holds 

true in parametrized synthetic systems in silico, where you have access to the subset 

of parameters that are implementable. This would go in parallel with works where un-

constrained approaches are taken59, which are helpful to identify needs for novel tools, like 

recombinases in the example. It will also be interesting to see how many of the structures 

obtained with the multi-recombinase approach can be deconstructed and re-implemented in 

our system with restriction to an implementable toolkit. Ultimately, the test to this kind of 

use of the modeling framework will come from works where the prediction is followed by 

implementation to close the cycle.

Our basic framework was built with the goal of designing artificial genetic circuits 

that would control synthetic developmental trajectories. Given this goal, we focused on 

“implementable” solutions, i.e. solutions that can be implemented with available genetic 

tools. To achieve this, our model modularly exploits the concept of cell types to signify 

cell transitions based on signaling. These transitions model acquisition of novel properties 

following cell-cell signaling events. In the work presented here, cell type transitions include 

changes in adhesion or signaling capacity. It would be rather straightforward in our model 

to extend to have the change in cell types signify changes in proliferation, motility, etc. This 

expansion would require initial parametrization experiments in simple setup, so that the user 

would know the parameters to use, for example, for the proliferation changes that can be 

executed with genetic controls.

Another interesting expansion for our system would be inclusion of other modalities of 

signaling such as signaling dependent on soluble ligands, bioelectrical signaling, as well as 

ECM mechanical and chemical signaling. Taking inspiration from what we achieved here 

with contact-dependent signaling, existing computational solvers for these other types of 

signaling could be incorporated to add or subtract points to cell type transition likelihood. 

This would be particularly interesting for soluble signaling, as morphogenetic signaling 

is another family of signaling that is predicated to underlie developmental transitions54 

for which synNotch-based implementation has also been recently reported60. Modeling 

platforms exists to model changes of other morphogenetic currencies, like ECM-based, or 

bioelectrical in a tissue61, and one could imagine extension of our system to calculate cell 
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type transition based not only on cell-cell contact signaling, but also on input from other 

computational engines.

Future directions for these computational efforts could be combination with artificial 

intelligence-based optimization either through evolutionary algorithms or machine learning. 

It has been recently shown that these could be used to generate morphologies that can then 

be recapitulated in vitro62,63. Algorithms could not only be trained to optimize parameters 

such as cell line, signaling network, and behavioral response, but could also incorporate 

subparameters such as: motility, proliferation, differentiability, juxtacrine and soluble 

morphogen signaling, mechanotransduction, adhesion, chemotaxis, and differentiation, to 

list a few. Numerous other recent advances in synthetic biology33,64–71 have made it 

possible to further control this process, facilitating synthetic reconstruction of complex 

native morphogenic processes towards enabling control over custom tissue development.

METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources or code should be directed to and will be 

fulfilled by the Lead Contact, Leonardo Morsut (Leonardo.Morsut@med.usc.edu).

COMPUTATIONAL METHOD DETAILS

CompuCell3D and the cellular Potts Formalism—We implemented our model in 

CompuCell3D (CC3D) v.3.7.8 25, a modeling software that allows simulation of cells and 

their behaviors using the cellular Potts formalism. By itself, CC3D contains numerous 

built-in features for replicating in vitro cell behavior, several of which we utilized either 

directly or adjusted via CC3D Python v.2.7.13 scripting according to manual v3.7.9. In our 

model, we incorporated default features from CC3D such as surface area constraint, volume 

constraint, cell division, adhesion, cell-cell surface contact, and cell types. We implemented 

custom cell motility, cell growth, and cell signaling, as described below and in subsequent 

sections.

We defined cells as multi-pixel entities in 3D that physically act by performing “pixel 

copy attempts” over simulation time steps (monte carlo steps, mcs). Performing “pixel copy 

attempts” effectively moves and changes both cell geometry and position over time. These 

pixel copy attempts succeed probabilistically, determined by the Boltzmann acceptance 

function, P=e-ΔH/T, where P is probability of attempt success, ΔH is change in total effective 

energy of the system from all attempted pixel copy attempts at the mcs t, and T is the cell 

motility25.

Effective energy (H). Because we incorporated surface area constraint, volume constraint, 

and adhesion, our total effective energy H at a given mcs t therefore takes the form,

H = ∑i, j Jσ i , σ j 1 − δσ i , σ j + ∑σ (λSur σ Sur σ − SurTar σ 2 + λV ol σ V ol σ − V olTar σ 2)
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as described in 3. The terms σ(i) and σ(j) denote the identity of the cells occupying pixel 

sites i and j separately, with the Kronecker Delta limiting inclusion to only the cell interface. 

J is a matrix that contains the contact energy between cells of different identity. λSur and 

λVol constrain deviations of a cell from the ideal surface area SurTar and VolTar, hereafter 

referred to as target surface area and target volume, respectively.

The numerical values in J control adhesion in cellular Potts. The values in J represent 

a stability index: lower J makes for a more stable state, which is then how you achieve 

stronger adhesion. Conversely, a higher J leads to weaker adhesion.

Generalized Juxtacrine Signaling Model (GJSM)—Juxtacrine signaling is the 

method employed to achieve the known synthetic structures. For a generic signaling ligand 

whose expression was constitutive, constant, and unaffected by signaling, we describe the 

total ligand level, L, on a cell’s surface by the equation

L = γ
1 + e− t

ξ
(S1)

where t is the given time in mcs, while γ, and ξ are constants. We chose this equation 

because of its simplicity. It could be generalized to represent steady state ligand level 

on a cell’s surface, recovery of surface ligand level from trypsinization, and experimental 

conditions such as ligand induction via tetracycline from a drug-controlled promoter (e.g. 

Tet On).

Then, a receiver cell in contact with the sender cell would change its target protein level, R, 

by the differential equation (3.1 above):

dR
dt = 1

1 + e− S − β
ε

− R
κ

where β, ε, and κ are constants, whereas S is the signal strength. We chose this form 

for several reasons. First, parameters have intuitive interpretations: β controls sensitivity to 

S, ε modulates magnitude of S and β, and κ represents the standard linear protein decay 

rate constant commonly employed in biological models. Secondly, these parameters have 

kinetic/biological interpretations, due to the logistic function’s intrinsic relation to the Hill 

function73. Lastly, this form of the logistic function is easily tunable and well behaved, due 

to its monotonicity from negative infinity to positive infinity and bound between 0 and 1. 

This tunability is not as easily achievable with the Hill function, where odd or fractional Hill 

constants lead to the existence of singularities.

In the case where the target gene is a ligand itself, we use equation (2) to calculate ligand 

levels.

The time-dependent evolution of the reporter, apart from the parameters, depends on signal 

strength S; this reflects the biological fact that the promoter of the target gene is under 

the control of the receptor in juxtacrine signaling. Signal strength is itself affected by: 
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the number of receptors on the receiver cell (Ω), the number of ligands on contacting 

neighboring cells (L), the surface contact area between receiver cell and its neighbors (Φ). 

Because these factors evolve over time, S is therefore a morphological dependent and time 

dependent function that evolves according to structure’s spatial organization.

The following describes how we take into consideration the shared surface area to compute 

S. We consider a single receiver cell σ; first we need to identify which of its neighbors can 

signal with it. The different cells are assigned different types, according to whether they 

can signal (ligand expressing) or can receive (receptor expressing) or both. These cell types 

are indicated as A, A’, B and B’ in the text. For example, we have a cell σ of type A, 

that express receptor rA, that can be activated by ligand lA. This allows us to identify the 

neighbors of sigma, by looking through the list of all neighbors of sigma and identifying the 

ones that are of a type that bear ligand lA.

Then each different ligand/receptor interaction is treated identically regardless of the specific 

mechanism (e.g. if it models anti-GFP/GFP or anti-CD19/CD19).

Receiver cells have receptors on its membrane, quantified by Ωσ. The neighbors have ligands 

on their membrane, quantified by Li. To compute the amount of receptor-ligand interactions 

that can happen when receiver + cognate sender cells are in contact, we need to calculate the 

amount of receptor and ligand that are present on the surface of contact.

To do that we first define the portion of contact surface for sender (SNi) and receiver 

(sigma):

ΦSNi σ = surface area of contact between SNi and sigma
Sur SN (S2a)

Φ σ i = surface area of contact between SNi and sigma
Sur σ (S2b)

These are now multiplied for the total amount of ligand (or receptor), to obtain the amount 

of ligand (or receptor) that is available at the area of contact.

Available ligand = ΦSNi(σ) * Li

Available receptor = Φσ(i) * Ωσ

With these two values we can calculate the value of Sσ as follows:

General: Sσ = ∑i = 1

n Min (ΦSNi σ *Li) , (Φσ i * Ωσ)] (S3)
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where n is the total number of cells that are currently in contact with sigma and that can 

engage in signaling with sigma, i.e. produce the ligand for which cell sigma produces the 

receptor.

This results from assumption of:

a 1–1 stochiometry of 1 ligand activating 1 receptor, given the biochemistry of the signaling;

homogeneity of ligand and receptor on the cell’s surface.

This is in general; in the majority of the simulations that we describe in the results, we 

employed a simplified version where the receptor is considered to be in excess, as we do not 

have evidence to think otherwise. In this case, the only part of (5) that is determining the 

amount of signal S is given by the ligand, so S takes the form of:

Ligand Limiting: Sσ = ∑i
ΦSNi σ * Li (S4)

To implement signaling-inducible behavioral response, we use a state-transition model. 

We borrow notation from physics; cells of each genotype, if excitable, bear a ground 

state and an excited state or even multiple higher order excited states. The transition 

between states is regulated by the target gene activation, which is regulated by the cell-cell 

signaling. Cells in different states can have different properties such as color/state, adhesive 

properties, deformability properties, signaling/reception capacity (Fig. 2F). This quantized 

representation of cell behavior has been applied, though not with this notation, in other 

models3,4,45. In this way, the signaling can induce behavioral changes in the cells that 

receive the signal, generating a highly non-linear system of interacting agents.

Because the reference experiments primarily focus on signaling inducible adhesion with 

reporter, we utilize two states per genotype, ground and excited, in the biological replication 

simulations.

The excited state bears a different color from the ground state, reflecting signaling induced 

reporter expression. Adhesion matrix J can be defined for the different states, to mirror 

changes depending on adhesive strength and binding specificity that the cadherin types in 

the in vitro counterpart express upon sufficient signaling (see Table S1). It is also possible 

for a cell to fall from the excited state to the ground state due to loss of signaling; falling 

under the transition threshold will move an excited state cell to the ground state, reverting 

color and excited properties.

In Silico L929 Cell Line Properties

Cell division.: In silico L929 (ISL929) cells consist of multiple pixels and start with a target 

radius (TR) randomly chosen using a Gaussian distribution (μ=3.0 pixels, σ=0.5 pixels). 

This TR is then used to calculate the target surface area (4πr2) and target volume (4πr3/3) 

for each cell, as in vitro L929 cells adopt a spherical shape at the beginning of experiments 
19. Each cell then undergoes growth by experiencing net positive increase in TR from small 

positively skewed uniformly distributed fluctuations in TR. Target surface area and target 
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volume thus increase slowly over time. Upon reaching a threshold volume, 2*4πμ3/3, the 

cell then undergoes division, resulting in the original cell and a new cell. The original 

cell is subsequently reassigned a new TR from the above Gaussian distribution and both 

target surface area and target volume are recalculated. The new cell is assigned the same 

post-division parameters as the original cell, modelling completely symmetric cell division. 

All the parameters and state variables are inherited by the two daughter cells from the parent 

cell. These choices result in roughly doubling time of 24,000 mcs (equivalent to 24 hours, 

the estimated doubling time of L929 cells 19). For example, this resulted in a ratio of cell 

number at t=24h vs t=0h of

2.07+− 0.10 (n=10) for simulations in Fig. S1A;

2.02 +− 0.08 (n=10) for simulations in Fig. S1B.5;

And ratio between 20h and 0h of:

1.73+−0.08 (n=30) for Fig. 4B

We note that, due to the stochastic nature of growth, cell death is also possible within this 

model.

Cell adhesion.: In vitro L929 mouse fibroblasts weakly adhere to one another under ultra-

low attachment suspension conditions 19 thus we designate our basal, parental ISL929 cells 

to have a relatively high J to one another and a slightly higher J to the medium, resulting in 

the formation of weak aggregates in medium. As a result, these ISL929 cells also bear high 

motility, again similar to in vitro L929 19,74.

Cell deformation.: Cells that express adhesion proteins and adhere to each-other in vitro, 

deform markedly, and lose their rounded morphology 19. In CC3D, a way to change 

deformability of cells is through modulating parameters λ and in Eq (1) for H, with lower 

values corresponding to higher deformability. Cells with an adhesion matrix value of at least 

39 (i.e. 0–39 range) (see Table S1), λ and λ were set to 1.0. Other cells had λ and λ set to 

2.2.

Cell motility.: Cell motility is defined in CC3D via the parameter T. Biologically it is 

known that cell adhesion to environment is complexly linked to cell motility, and adhesion 

effects on motility vary widely between different adhesion proteins and cell types 75–77. In 

general, although clearly not all-encompassing, the adhesion abstraction is that strong cell 

adhesion to environment tends to decrease cell motility 75,77,78.

For our purposes, in the in vitro L929 system, we noticed that the cell motility is rather 

similar across different cell types and different adhesion, with some minor differences 

between adherent cells (slightly lower motility) compared with non-adherent cells (slightly 

higher motility). We therefore defined motility as a sum of a constant T0 plus function 

of a cell’s environment (neighboring cells and medium), so that higher adhesion results in 

lower motility; in this way, different cells can have different motility. Each cell’s individual 

motility Tσ is:
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Tσ = T 0 + ζ ∑σ i i, j Jσ i , σ j 1 − δσ i , σ j

Sur σ (S5)

This formula iterates over each neighboring cell pixel and medium uniquely, and ultimately 

T is determined only by the type of the focal cell, the types of the neighbors, and 

total contact with medium. Categorizing environment by cell types and medium instead, 

accomplished in CC3D via cell-cell surface contact feature and cell type index, we obtained 

a computationally simpler approximate formula, which is the one that we use in our 

simulations:

Tσ = T 0 + ζ∑k

Jtype σ , k * total contact surface area witℎ k
Sur σ (S6)

T0 is a constant representing basal cell motility, ζ a constant representing how effectual 

adhesion is at attenuating motility, and k denotes “cell type” (can be either a cell type or 

medium). This T allows each cell to sense its adhesivity to local environment, decreasing 

motility if adherent to neighbors and restoring motility when exposed to non-adhesive 

conditions.

T0 and is ζ are kept constant throughout after the initial parametrization in main Fig. 3B.

Simulation Lattice—Simulation lattice. At the center of a 100×100×100 lattice, we 

seeded a mixture of (A) and (B) cells as a radially symmetric blob to maintain a consistent 

initial cell aggregate shape while also maintaining a similar cell total and ratio to that of 

the reference experiment. For the setup in “2D” (Fig. S5B) we used a 100×100×5 pixel cell 

monolayer (~400 cells).

QUANTIFICATION AND STATISTICAL ANALYSES

Simulation Quantifications

Sphericity index.: (B’) green cells were visualized in 3D to determine core amounts and 

counted for each simulation at the endpoint. Sphericity was measured over time, both for 

excited states and over all states (Fig. 3d), using the formula 79,80

Spℎericity = π
1
3 6*Structure V olume

2
3

Structure Surface Area
(S7)

We roughly rescaled the sphericity by dividing by 0.48 to compensate for the cubic nature 

of the voxels. We measured activation timescale by measuring the number of (B’) and (A’) 

cells present per timestep and normalized each to 1 maximum.

Homogeneity index.: We were interested in the spatial patterning of different cell types 

in these multicellular structures over time, thus we developed and quantified homogeneity 

index Ψ per cell type X, calculated according to the formula below
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Ψx =
∑i = 1

n surface area of σi tℎat is in contact witℎ cells of type X
Sur σi

n
(S8)

Where the sum is taken only for cells of type X that are in contact with other cells of type X, 

and n is the total number of cells of type X in contact with cells of type X.

This measure ranges from 0 to 1, with 1 indicating maximal homogeneity, and is similar to 

sorting measurements employed in other studies 10,48,49. By focusing only on cells that have 

neighbors of the same kind, this measure focuses on clusters and not on isolated cells.

This measure hence depends also on the number of cells present, given that if you only have 

2 cells for example, even though they are very homogeneous, less than 100% of their surface 

will be occupied by the neighbor.

This measure can be generalized for more than one cell type, by considering for example 

two cell types together. For example, in our simulations, when we have a genotype B that 

gives rise to two cell types (B basal and B’ excited), we may be interested in measuring 

homogeneity index for B and B’ combined. To do so we calculated ΨB,B’ by defining type X 

as {type B or type B’} in the above formula. If desired, this measure can be simply extended 

to the ground and excited states of each genotype as well, ΨA, ΨB, ΨA’, ΨB’, or condensed 

as desired, ΨA,A’,B,B’, making it possible to distinguish the effects of different behaviors on 

morphogenesis. This measure can be applied to many different morphologies, beyond fixed 

lattices 49 and spherical morphologies.

Core Distribution.: We counted the number of cores per structure by visualizing only (B’) 

green cells in 3D at the endpoint of each simulation. To determine whether a core was 

a single core or double core, we visualized the endpoint simulation (B’) green cells from 

multiple perspectives to prevent viewpoint bias. This allowed us to determine whether there 

was truly a single core or multiple cores of similar sizes, with the latter generating 2-cores 

or 3+ cores (counted as “other”in Fig. 5A). Small cell stripe connections between cores were 

negligible and therefore counted based on the cores. Structures that did not appear core-like 

(i.e. large cell stripes) were counted in the “other” category. See Fig. S7 for examples of core 

counting.

Activation index.: the activation index in silico is defined as the normalized ratio of 

activated cells over the total number of cells of the same type, i.e. #(A’) / Maxt[(#(A’)] and 

similarly for (B) and (B’) cells.

Video Analysis—In vitro data was either provided in the reference paper or obtained 

by analyzing the supplementary video for the counterpart structure from the reference 

experiments 19.

Circularity index.: The video was split into constituent frames using Mathematica 

v11.3.0.0, then circularity analyzed by drawing a region of interest around the structure 

using ImageJ v1.52a, both in bright field (all cells) and merged color field (activated cells 
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only), and data collated in Microsoft Excel v1808. Circularity was then calculated using the 

classic equation

Circularity = 4 π Area
Perimeter2 (S9)

This measure ranges between 0 and 1 and the closer to 1 indicates it is closer to a perfect 

circle.

Activation index.: To estimate how fast cells activated over time, we color separated 

the green, red, and black merged image portion of each frame by green and red to 

generate two sets of frames, one for green and one for red, representing respectively the 

activated cells of (B) and (A). We then converted these frames into binary images using 

the MorphologicalBinarize function in Mathematica, replacing pixels with an intensity 

above 0.1 with pixels of intensity 1. This threshold value was minimally low to remove non-

cellular background fluorescence and prevent biasing activated cell detection. Binarization 

additionally facilitated comparison by splitting in vitro cells into discrete states. Totaling 

the pixel intensity for each frame of each set estimates activation per timepoint for (B) and 

(A). Cellular background fluorescence, due to a few cells beginning with some green/red19 

was removed by subtracting the minimum background fluorescence of the time series. Using 

the minimum helped negate cellular background fluorescence with again minimal biasing of 

activated cell detection.

Statistical Analyses—Sample sizes are given in the text and/or figure caption. Statistical 

tests were performed in JMP PRO v14.0.0 with a significance level of 0.05. We performed a 

chi-squared analysis for our core distribution analyses (Fig. 5A and Fig. S2C.4). Appropriate 

test was chosen according to data type and assumptions tested by residuals analysis. We 

report and show mean ±s.d. for all measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The model is developed and tested via a training set/testing set approach to parametrize 
and test generalization capacity
(A) Example of a snapshot of computational model output on the left; highlighted on the 

right is the schematic of the logic that drives the cell dynamics: cell-cell adhesion, and 

cell-cell juxtacrine signaling combined together. Cells can communicate to one another if, 

as in this case of blue type and gray type, have the cognate signal and receptor. Outputs of 

the communication can be a change in fate which can signify: new ligands production 

or changes in cell adhesion. (B) We define input to our computational model as: the 

initial conditions of how many cells of the different types there are, and the “genotype” 

of cells of the different types; the output is a simulation of the developmental trajectory. 

(C) Snapshot of the in vitro structures used in this study to build the computational model. 
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The red background highlights the structures used for the training set; the green background 

highlights the structures for the testing set. For each structure, a microscopy image of 

L929 cells engineered with different networks is shown, as described later in the text, and 

imaged at the indicated timepoint. 2-layer indicates a network of signaling where A→B, 

and 3-layer one where A→B→A (see later for more details). Adhesion molecules are as 

follows: Ecad= E-cadherin; Ncad = N-cadherin; Pcad = P-cadherin. Scale bar is 17.5pixels 

in silico, 100um in vitro. (D) Conceptual diagram of the flow we followed in the entire 

paper: each box represents a conceptual item that we used and combined logically. First, 

we generate a basic GJSM by combining CompuCell3D with custom code for cell-cell 

contact dependent signaling and change in cell types; then we use the training set to identify 

parameters capable of recapitulating in vitro training set behaviors; finally we use that model 

to make prediction, which are tested by comparing them with the testing set, or used to make 

recommendations for novel synthetic genomes. Microscope images with gray background 

are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. 

Programming Self-Organizing Multicellular Structures with Synthetic Cell-Cell Signaling. 

Science 2018, 361 (6398), 156–162. 2018 AAAS. Reprinted with permission from AAAS.
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Fig. 2. Concepts underlying the computational model (See Methods for details and generalized 
model). Schematic description of computational model for contact-dependent cell state changes 
in cell aggregates.
(A) Representation of biological communication between cell pairs A and B. A cells express 

ligand (black circle + stick) and B cell express receptor (black). With contact (pink arrow), 

B cells receive signal (dashed arrow) that triggers expression of the target gene (green). 

In the cells below, the amount of contact surface is lower, hence the signaling (dashed 

arrow) towards the target gene is less intense. (B) The in silico model shows a simplified 

representation of the cell-cell signaling process with parameters: ligand amount (L, purple), 

surface area of contact (Φ, pink), and net signal (white arrow to target gene R). Cells (A) are 

the sender in the communication, cells B are the receiver. In this schematic, in silico cells are 
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objects of 9 pixels. The cell pair at the top has a higher level of signaling compared to the 

upper pair due to a larger surface area of contact (Φ2>Φ1, 2 pixels compared to 1). (C) Time 

evolution of target gene level in the receiving cell B; cells A and B are placed in contact 

at time zero and kept in the same configuration for 100,000 steps of simulation, and then 

moved far apart to stop signaling. Target gene levels is followed over time for two different 

values of shared surface area Φ, with Φ2>Φ1, with all other parameters kept identical. 

(D-F) Model representation of cell behavior state change. (D) Representation of biological 

“effector gene” activation: a sender cell A (blue) activates a receiver cell B (gray) to induce a 

target gene (green) that encodes for an effector protein. Over time, cell B accumulates target 

genes products, and at a certain threshold the effector gene product causes cell behavior to 

change (e.g. stronger adhesion to neighbors) such that cell transition from type B to B’. (E) 
The graph shows the progression of target gene level over time for a B cell that is initially 

in contact with an A cell and is then isolated at 100,000 steps. Threshold for the excited 

state is shown as dotted horizontal line. At the start, the B cell is in the basal state (black 

solid line), but when the target gene level passes the excited state threshold, B cell becomes 

a B’ cell. The B’ cell remains in the active state (green solid line) until target gene levels 

drop below the activation threshold and reverts to B (line goes back to solid black). (F) In 
silico representation of the state transition and communication relationship between cells A, 

B, and B’. Orange curved arrows indicate state transitions. Matching ligand/receptor pairs 

indicate a communication channel from A to B that promotes the state change of B to B’.
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Fig. 3. Model parametrization of signaling and adhesion in A → B networks.
(A) In vitro picture of 100 parental L929 cells grown for 24h in a non-adhesive U-bottom 

well of a 96-well plate. (B) In silico pictures of 100 identical cells grown in a non-adhesive 

virtual medium for 24h; as indicated, cells in different snapshots have different parameters 

for cell movement (x axis) and cell-cell adhesion (y axis). (C) In vitro picture of 100 L929 

cells grown for 24h in a non-adhesive U-bottom well of a 96-well plate, either parental 

(upper picture) or genetically engineered to overexpress E-cadherin (lower picture). (D) In 
silico pictures of 100 identical cells grown in a non-adhesive virtual medium for 24h; as 

indicated, cells in different snapshots have different parameters for cell deformation (x axis) 

and cell-cell adhesion (y axis). (E) Diagram of sender A cells, and receiver B cells that 
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induce GFP downstream of activation of a contact-dependent receptor (left). Below, graph 

of target gene expression over time for B cells for either in silico simulations (red line + 

shadow standard deviation) or in vitro experiments (black line). (F) Diagram of sender A 

cells, and receiver B cells that induce GFP and E-cadherin downstream of activation of a 

contact-dependent receptor (top). On the bottom is a result of an in vitro experiment after 

24h of cultivating approximately 100 A cells with 100 B cells. (G) Depiction of transition 

network between cell states that is implemented in panel (F). (H) Starting from 100 A and 

100B cells where the B’-B’ adhesions where changed (first line), or the A-A (second line) 

or the B-B (third line). Red dotted lines indicate structure that most closely resemble the 

in vitro implementation in panel (F). (I) Sorting index quantification of a 24h timepoint of 

cells A (blue line) or B (green line), for a range of B’-B’ adhesion (first line), A-A adhesions 

(second line) and B-B adhesions (third line). Red dotted lines represent ranges of behavior 

that recapitulate in vitro observations. (J) In silico output of input 94 A cells and 85 B 

cells with the same network as in panel (H), and with the values for adhesion indicated 

on the right. Scale bar is 17.5pixels in silico, 100um in vitro. Microscope images with 

gray background are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; 

Lim, W. A. Programming Self-Organizing Multicellular Structures with Synthetic Cell-Cell 

Signaling. Science 2018, 361 (6398), 156–162. 2018 AAAS. Reprinted with permission 

from AAAS.
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Fig. 4. Parametrization of A → B → A network parameters and E-cadherin levels.
(A) Diagram 2 cells A (blue) and B (gray) and their signaling with the receptor and 

promoter representation: cell A has a CD19 ligand (rounded ligand on stick on cell 

membrane of cell A), which activates (pink arrow) rounded receptor in cell B, which in 

response activates Hi.Ecad (white rectangle) and GFP-ligand (green rectangle); the GFP-lig 

(green square on a stick on the membrane) is then produced (gray arrow) on the membrane, 

which activates the square receptor on cell A that activates intracellularly (white arrows) 

Lo.Ecad (white rectangle) and mCherry (red rectangle). (B) Experimental results of mixing 

approximately 200 A cells and 40 B cells; A cells are blue, B cells are gray, B’ cells are 

green and A’ cells are red. (C) State-machine diagram of the network, with the adhesion 

components. B cell has basal adhesion, and rounded receptor; when it is activated by a 

neighboring rounded receptor it activates to a B’ state where it starts to be adhesive with 

Ecad.Hi parameter, and a square ligand; A cell, blue, has basal adhesion, expresses rounded 

ligand, and a square receptor; the activation of the square receptor activates A cell to A’, 

which is red and acquire adhesion of Ecad.Lo parameter. (D) Graph depicting cell type 

activation index over time, for activation from A → A’ in vitro (dark red line) and in silico 
(light red line and shadowed standard deviation) and from B → B’ in vitro (dark green line) 

and in silico (light green line and shadowed standard deviation). We present mean±s.d. for 

the in silico results (dotted lines with standard deviations in the graph). (n=30 simulations in 
silico, n=1 for in vitro). (E) Hierarchy of adhesion between cells with different levels of E-

cadherin adhesion; notation adhesion.level1 : adhesion.level2 indicates adhesion preference 

between cells that express adhesion level 1 and cell that express adhesion level 2. (F) 
Diagram of the cell-cell adhesion strengths for pair-wise cells of different types; horizontal 
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black lines denote cell-cell adhesion, and more horizontal line denote stronger adhesion. 

(G) Input (198A + 53B cells) and output (developmental trajectory, with snapshots at the 

indicated time frames) of the system with genome as in panel (C). Scale bar is 17.5pixels in 
silico, 100um in vitro. Microscope images with gray background are reproduced from Toda, 

S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing 

Multicellular Structures with Synthetic Cell-Cell Signaling. Science 2018, 361 (6398), 156–

162. 2018 AAAS. Reprinted with permission from AAAS.
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Fig. 5. Emergent properties in vitro are captured by the parametrized system in silico for the 
central symmetric three layers network.
(A) Quantification of the number of cores formed over repeated simulations (n=30 

simulations, n=28 for in vitro). In vitro results data are from19. See Methods, “Quantification 

and Statistical Analyses; Simulation Quantifications”, for more details on cores definitions 

in silico. (B) Quantification of sphericity/circularity indexes over the time development of 

synthetic and in vitro systems. (See methods, Simulation quantifications for in silico, and 

Video Analysis for in vitro details on the indexes). In blue, all the cells are considered; 

in green only the activated (A’) and (B’) cells. Solid line is from in vitro measures; solid 

lines with shaded contours are from in silico measurements and represent mean and standard 

deviation interval respectively. Vertical dashed line indicates time of (B’) cells activation 

(n=30 simulations, n=1 for in vitro).
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Fig. 6. The model correctly predicts behavior of in vitro experiments with different cadherin 
target genes
(A) State-machine diagram of the network, with the adhesion components. B cell has basal 

adhesion, and rounded receptor; when it is activated by a neighboring rounded receptor 

it activates to a B’ state that is adhesive with Ncad parameter, produces a square ligand; 

A cell, blue, has basal adhesion, expresses rounded ligand, and a square receptor; the 

activation of the square receptor activates A cell to A’, which is red and has adhesion of 

Pcad parameter. (B) Representative results of 2 classes of resulting structures at t=50h of 

simulated time of approximately 30A + 30B cells with the genotype as in (A): one class 

(approx. 10% of the simulations) gives 2 red poles, and the other class (approx. 90% of 

the simulations) gives 1 red pole. See Supplem. Fig. S3 for quantification of homogeneity 

index over 10 runs of the simulation with the same parameters and initial conditions. (C) In 
vitro results at t=50h of the 2 categories of structures that are obtained with the genotype 

of cells in A, and with mixing approximately 30A cells and 30B cells. (D) State-machine 

diagram of the network, with the adhesion components. B cell has basal adhesion, and 

rounded receptor; when it is activated by a neighboring rounded receptor it activates to a 

B’ state that is adhesive with Ncad parameter, produces a square ligand; A cell, blue, has 

constitutive Pcad adhesion, expresses rounded ligand, and a square receptor; the activation 

of the square receptor activates A cell to A’, which is red and has continues to have adhesion 

of constitutive Pcad parameter. (E) Representative results of resulting structures at t=34h 

of simulated time of approximately 179A + 72B cells with the genotype as in (D): a core 

of blue inactivated A cells, with multiple poles of green activated B’ green cells, and in 

the between red activated A’ cells. See Supplem. Fig. S3 for quantification of homogeneity 

index over 10 runs of the simulation with the same parameters and initial conditions. (F) In 
vitro results at t=34h of a representative structure that is obtained with the genotype of cells 

in (D), and with mixing approximately 160A cells and 80B cells. Scale bar is 17.5pixels 

=100um. Microscope images with gray background are reproduced from Toda, S.; Blauch, 

L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing Multicellular 

Structures with Synthetic Cell-Cell Signaling. Science 2018, 361 (6398), 156–162. 2018 

AAAS. Reprinted with permission from AAAS.
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Fig. 7. The model correctly predicts behavior of in vitro experiments with different number of 
cells
(A) State-machine diagram of the network, with the adhesion components. B cell has basal 

adhesion, and rounded receptor; when it is activated by a neighboring rounded receptor it 

activates to a B’ state that is adhesive with Ncad parameter, produces a square ligand; A 

cell, blue, has basal adhesion, expresses rounded ligand, and a square receptor; the activation 

of the square receptor activates A cell to A’, which is red and has adhesion of Pcad 

parameter. (B) Representative results of resulting structures at t=50h of simulated time of 

98A + 81B cells with the genotype as in (7A): a core of green activated B’ cells, with two 

poles of red activated A’ cells and external to that blue inactivated A cells. See Supplem. 

Fig. S4 for quantification of homogeneity index over 10 runs of the simulation with the 

same parameters and initial conditions. (C) In vitro results at t=50h of a representative 

structure that is obtained with the genotype of cells in (7A), and with mixing approximately 

100A cells and 100B cells. Scale bar is 17.5pixels =100um. (D) State-machine diagram 

of the network, with the adhesion components. B cell has basal adhesion, and rounded 

receptor; when it is activated by a neighboring rounded receptor it activates to a B’ state 

that is adhesive with Ecad.Hi parameter, produces a square ligand; A cell, blue, has basal 

adhesion, expresses rounded ligand, and a square receptor; the activation of the square 

receptor activates A cell to A’, which is red and has adhesion of Ecad.Lo parameter. (E) 
Representative result of resulting structures at t=24h of simulated time of approx. 179A 

+ 72B cells with the genotype as in (7D): a core of green activated B’ cells, with a 

subsequent layer of red A’ activated cells, surrounded by a layer of inactivated blue A 

cells. See Supplem. Fig. S4 for quantification of homogeneity index over 10 runs of the 

simulation with the same parameters and initial conditions. (F) In vitro results at t=24h of a 

representative structure that is obtained with the genotype of cells in (7D), and with mixing 

approximately 160A cells and 80B cells. Scale bar is 17.5pixels =100um. (G) State-machine 
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diagram of the network, with the adhesion components. B cell has basal adhesion, and 

rounded receptor; when it is activated by a neighboring rounded receptor it activates to a 

B’ state that is adhesive with Ncad parameter, produces a square ligand; A cell, blue, has 

constitutive Pcad adhesion, expresses rounded ligand, and a square receptor; the activation 

of the square receptor activates A cell to A’, which is red and has continues to have 

adhesion of constitutive Pcad parameter. (H) Representative results of resulting structures 

at t=24h of simulated time of 137A + 42B cells with the genotype as in (G): a core of 

blue inactivated A cells, with multiple poles of green activated B’ green cells, and in the 

between red activated A’ cells. See Supplem. Fig. S4 for quantification of homogeneity 

index over 10 runs of the simulation with the same parameters and initial conditions. (I) In 
vitro results at t=24h of a representative structure that is obtained with the genotype of cells 

in (G), and with mixing approximately 150A cells and 50B cells. Scale bar is 17.5pixels 

=100um. Microscope images with gray background are reproduced from Toda, S.; Blauch, 

L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing Multicellular 

Structures with Synthetic Cell-Cell Signaling. Science 2018, 361 (6398), 156–162. 2018 

AAAS. Reprinted with permission from AAAS.
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Fig. 8. The model correctly predicts behavior of in vitro experiments with different network 
wiring
(A) State-machine diagram of the network, with the adhesion components. Cells of type 

A are red and have basal adhesion and express both rounded ligand and receptor; when 

the receptor is activated enough, it can activate A cells to A’ cells, which lose rounded 

signal expression, gain color green and expression of Ecadherin. (B) Representative results 

of resulting structures at the indicated timestamp of developmental trajectory starting from 

93 cells of type A with the genotype as in (8A); some of the red cells turn green and 

gather at the center of the core; at t=50, the external layer is of inactivated A cells, and 

the internal core is a mixture of mainly green cells with interspersed a minority of red 

cells. See Supplem. Fig. S5 for quantification of homogeneity index over 10 runs of the 

simulation with the same parameters and initial conditions. (C) In vitro results at the 

indicated time points of a representative structure that is obtained with the genotype of cells 

in (8A), starting with 100 A cells. Scale bar is 17.5pixels =100um. Microscope images 

are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. 

Programming Self-Organizing Multicellular Structures with Synthetic Cell-Cell Signaling. 

Science 2018, 361 (6398), 156–162. 2018 AAAS. Reprinted with permission from AAAS.
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Fig. 9. In silico recommendation for obtaining a 4-layered structure.
(A) Goal target pattern: 4 layers with gray-green-red-blue cells centrally symmetric. (B) 
State-machine diagram of the network, with the adhesion components. B cell has adhesion 

with Ecad.Hi parameter, and rounded receptor; when it is activated by a neighboring 

rounded receptor it activates to a B’ state that is adhesive with the same Ecad.Hi parameter, 

and produces a square ligand; A cell, blue, has basal adhesion, expresses rounded ligand, 

and a square receptor; the activation of the square receptor activates A cell to A’, which is 

red and has adhesion of Ecad.Lo parameter. (C) Representative results of resulting structures 

at t=24h of simulated time of cells with the genotype as in (9A) and with the ratio and 

numbers as indicated. All structures generate inactive A cells, activated A’ cells, inactive 

B cells and activated B’ cells in different ratios and in different geometrical arrangements. 

See Supplem. Fig. S6 for additional replicates over 10 runs of the simulation with the same 

parameters and initial conditions. (D) Recommended in vitro implementation. Scale bar is 

17.5pixels in silico, equivalent to approx. 100um in vitro.

Lam et al. Page 47

ACS Synth Biol. Author manuscript; available in PMC 2023 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lam et al. Page 48

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

CompuCell3D (CC3D) v3.7.8 25 RRID:SCR_003052

Mathematica v11.3.0.0 Wolfram Research RRID:SCR_014448

ImageJ v1.52a 72 RRID:SCR_003070

JMP Pro v14.0.0 SAS Institute RRID:SCR_014242

Excel v1808 Microsoft RRID:SCR_016137

General Juxtacrine Signaling Model (GJSM) in CC3D This paper N/A
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