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Abstract

AlphaFold2 has already changed structural biology but its true power may lie in how it changes 

the way we think about cells and organisms. Two studies broadly analyze and assess the 

performance of AlphaFold2 to outline the extent of its utility and limitations in providing 

structural models that shed light on biological questions, including mutations, post-translational 

modifications, and protein-protein complex interactions.

The Human Genome Project and its accompanying technological advances paved the way 

for the genomics revolution, yielding an abundance of sequenced genes and genomes, and 

enabling biologists to study cells, organisms, and their evolution using the firm molecular 

basis of genetic data. Combined with physically-inspired mathematical methods such as 

maximum entropy models1 and, more recently, machine learning, this wealth of sequence 

data has formed the foundation for the recent revolution in protein structure prediction2, 

epitomized by DeepMind’s and the European Bioinformatics Institute’s recent release of 

200 million AlphaFold2-predicted protein structures3. As one revolution begets another, 

the widespread availability of structural information posits a new possibility: a structural 
systems biology in which biological phenomena across the varied scales of life are studied 

through a structural and mechanistic prism. In this and a previous issue of Nature Structural 
& Molecular Biology, Akdel et al.4 and Burke et al.5 take some of the first steps toward this 

goal. Akdel et al. assess AlphaFold2 across multiple tasks, including its structural coverage 

of multiple proteomes, the extent of fold space it models, and its ability to predict ligand 

binding sites, finding that AlphaFold2 systematically outperforms existing state-of-the-art 

tools. In a complementary paper, using the wealth of AlphaFold2-predicted structures, Burke 

et al. assess AlphaFold2’s abilities, and limitations, to structurally model the human protein-

protein interaction network (less than 5% of which is estimated to have been structurally 

characterized). They find that AlphaFold2 increases the number of high accuracy predictions 

of human protein-protein interactions and use these predictions to provide structural insights 

into pathogenic mutations and the phosphorylation of protein interaction interfaces.
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To evaluate the breadth of applicability of AlphaFold2, Akdel et al. assess the quantity 

and quality of new structural knowledge made possible by AlphaFold2. They start by 

quantifying for different organisms the amount of additional coverage AlphaFold2 provides 

over experimentally determined structures. On average, 25% of all residues in any given 

proteome are predicted with very high accuracy by AlphaFold2 (accuracy is predicted 

using AlphaFold2’s own calibrated self-assessment, which has been shown to be reliable 

in other studies6). This amount of coverage far exceeds what was previously possible 

using traditional homology modeling techniques. The breadth and quality of coverage for 

any given species/protein depends on the number and diversity of available homologous 

protein sequences, which are correlated with AlphaFold2 accuracy. A large fraction of 

low-confidence AlphaFold2 predictions also likely correspond to intrinsically disordered 

protein regions.

Another way to assess structural coverage is not by proteomes but by the extent of fold space 

modeled. Existing experimental coverage of fold space is difficult to quantify due to over 

sampling of species and proteins most pertinent to contemporary research interests, which 

likely leaves out swaths of archaeal and prokaryotic proteomes. Past studies have however 

suggested that the Protein Data Bank may already encompass near complete coverage of 

single domain space7. Akdel et al. shed new light on this question by showing that among 

structures predicted with high accuracy by AlphaFold2, a large fraction contains either novel 

folds or folds that have yet to be functionally characterized. Akdel et al. conduct their 

analysis using the original release of the AlphaFold2 database with ~360,000 structures 

focused on key model organisms; the newest release with nearly complete coverage of 

the UniProt8 protein database may thus increase this fraction. Studying the emergence and 

diversification of new folds may further provide a complementary approach to evolutionary 

analyses, which have traditionally been driven by sequence-based methods.

Having addressed the question of quantity, Akdel et al. turn their attention to the quality 

of AlphaFold2-predicted structures. Experimental protein structures can provide biologists 

with molecular insights into protein function and dysfunction, and the same may be 

expected of predicted structures. Akdel et al. first assess the utility of AlphaFold2 structures 

in predicting the impact of missense mutations on protein function. When comparing 

predictions of change in stability using experimental structures, traditional homology 

modeling, and AlphaFold2, they find that when high-confidence predictions are available, 

AlphaFold2 is nearly as informative as experimental structures. Another task for function 

prediction is the identification of protein pockets and binding sites from structure. Here too, 

the authors find that when using a set of proteins with known binding sites, high-confidence 

regions of predicted structures are as informative as experimental structures in pinpointing 

binding sites. This suggests the possibility of discovering previously unknown pockets for 

potential binding by small molecule drugs.

In a parallel study, Burke et al. apply various augmentations of AlphaFold2, which was 

originally trained to predict structures of individual proteins, to tackle the prediction of 

multi-protein complexes. In prior work by the same team9, a clever trick was developed 

to goad AlphaFold2 into predicting protein-protein complexes by concatenating sequences 

of proteins belonging to the same complex and computationally inserting a flexible linker 

Bouatta and AlQuraishi Page 2

Nat Struct Mol Biol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between them (an idea inspired by RoseTTAFold10). Remarkably, this trick resulted in more 

accurately predicted protein complexes than ones inferred by dedicated protein docking 

software. Taking advantage of this approach, Burke et al. tackle the human interactome 

by first predicting the structures of ~65,000 pairs of interacting human proteins. Among 

these are ~3,000 high-confidence pairs with a pDockQ score greater than 0.5 (the team 

previously9 introduced pDockQ as a metric to assess the accuracy of predicted protein 

complexes, with scores greater than 0.5 corresponding to accurate predictions based on 

comparisons with experimental structures). Interestingly, ~1,400 of the newly predicted 

high-confidence complexes lack homology to existing structures, suggesting that the model 

is capable of substantially enlarging our corpus of structural knowledge.

Burke et al. next consider higher-order assemblies, a more challenging problem as naïve 

one-step prediction of whole assemblies is beyond reach due to intractable computational 

cost. Instead, the team tackle the problem using a multi-step pairwise approach. Their 

algorithm starts by first selecting the highest-ranked dimers in a complex then iteratively 

adds additional dimers that share one non-overlapping subunit with the complex. The order 

by which dimers are added is based on their pDockQ scores. This approach works for some 

assemblies but fails for others, such as the 20S proteasome complex. Another method, based 

on Monte Carlo tree search, is also considered and appears to perform better11.

With these tools at their disposal, Burke et al. turn their attention to the systems biology 

problem of how these protein-protein interactions are regulated. Specifically, they look at 

phosphorylation at protein interfaces as a regulatory mark. Of the over 100,000 known 

human phosphorylation sites, few have been functionally characterized. By analyzing the 

structures of protein-protein interaction interfaces and performing a Gene Ontology (GO) 

enrichment analysis, the authors observe that clusters of interface phosphosites are involved 

in different GO processes. They furthermore analyze these interfaces for coordinated 

regulation by combining their analysis with experimental measurements of changes in 

phosphorylation levels across hundreds of experimental conditions. They find that in certain 

conditions, one or a set of kinases appear to phosphorylate the same set of sites across 

multiple proteins, suggesting that coordinated regulation is indeed taking place.

Together, the papers by Akdel et al. and Burke et al. offer a glimpse of the power 

of structural systems biology to gain biological insights through large-scale structural 

analyses, building on prior experimentally- and computationally-driven work in this space12. 

These remain early days however, and we expect rapid progress on multiple fronts. First, 

prediction speed and memory efficiency remain a bottleneck, particularly when predicting 

multimeric protein complexes, which must be applied at scale to assemble a comprehensive 

picture of all molecular machines. Advances in more efficient neural networks13, especially 

the widely used attention architecture14, have resulted in a flurry of highly optimized 

AlphaFold2 reimplementations15–17, including our own OpenFold system18. These methods 

predict structures at rates up to two times faster than the original AlphaFold2 and 

utilize substantially less memory, making it possible to tackle larger assemblies. Another 

promising approach is the use of protein language models19, which implicitly encode a 

rich representation of protein sequence space. When coupled to protein structure prediction, 

language models obviate the need for the computationally costly search for homologous 
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protein sequences. This too is a rapidly evolving area with new methods appearing regularly 

(RGN220, trRosettaX-Single21, OmegaFold22, and ESMFold23 to name a few) that are 

already providing notable gains in efficiency.

Second, proteins and the molecular machines they comprise are dynamic objects whose 

function is often driven by changes in conformational state. For the time being, the ability of 

AlphaFold2, and more generally machine learning based methods, to provide an accounting 

of the conformational landscape of proteins remains very limited. Physics-based methods, 

including molecular dynamics, have historically played a key role in understanding protein 

motion and we expect this to continue. The outstanding challenge for structural systems 

biology is scaling such approaches to the proteome scale, which remains out of reach.

The current state of computational molecular biology is perhaps reminiscent of early 

20th-century physics and the remarkable developments that transpired then, where novel 

theoretical ideas, driven mainly by quantum mechanics, radically changed our understanding 

of physical phenomena. AlphaFold2 and related deep learning techniques may similarly 

change the way we model and understand biological phenomena. Experiments, although 

ultimately the final arbiters of truth, cannot comprehensively characterize the remarkable 

diversity that is life; the combinatorics of biology, from molecules to cells to organisms, are 

simply too overwhelming. Machine learning in combination with simulation may tame this 

combinatorial complexity, as AlphaFold2 has arguably done for the space of protein folds. 

One can only hope that if this successful, this approach will reveal general principles about 

the organization and behavior of biological phenomena at all scales.
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