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Two optimized novel potential 
formulas and numerical algorithms 
for 

m× n
 cobweb and fan resistor 

networks
Wenjie Zhao 1, Yanpeng Zheng 1*, Xiaoyu Jiang 2 & Zhaolin Jiang 3*

The research of resistive network will become the basis of many fields. At present, many exact 
potential formulas of some complex resistor networks have been obtained. Computer numerical 
simulation is the trend of computing, but written calculation will limit the time and scale. In this 
paper, the potential formulas of a m× n scale cobweb resistor network and fan resistor network are 
optimized. Chebyshev polynomial of the second class and the absolute value function are used to 
express the novel potential formulas of the resistor network, and described in detail the derivation 
process of the explicit formula. Considering the influence of parameters on the potential formulas, 
several idiosyncratic potential formulas are proposed, and the corresponding three-dimensional 
dynamic images are drawn. Two numerical algorithms of the computing potential are presented by 
using the mathematical model and DST-VI. Finally, the efficiency of calculating potential by different 
methods are compared. The advantages of new potential formulas and numerical algorithms by the 
calculation efficiency of the three methods are shown. The optimized potential formulas and the 
presented numerical algorithms provide a powerful tool for the field of science and engineering.

Tan1 creatively established the mathematical model of cobweb and fan resistor networks, according to this model, 
gave the incomparable analytical potential formula in theory. This is a breakthrough work, and its theoretical 
significance and application prospects are huge. As is well-known, classical physics is based on the analysis of 
physics mathematical models of physical processes. Computers have given physicists and engineers a new way to 
analyze and apply physical formulas and mathematical models that has revolutionized science and engineering 
outside the university. Everything changes if the computer is used to analyze and apply physical formulas and 
mathematical models. In addition, experts in engineering and scientific computing know that to improve the 
computational efficiency of the potential to help computational physicists and engineers solve major scientific 
and technical problems, it is a good idea to optimize the perfect analytical potential formula given in theory to 
improve the computational efficiency. In order to improve the calculation performance and scale of the formula. 
In this paper, based on the original potential formula, we re-represent it with the Chebyshev polynomial of 
the second class and the absolute value function, which improves the computational efficiency, and design the 
numerical algorithms can be used to the calculating potential for large-scale resistor networks.

In the process of scientific development, many complex problems have arisen, which often require simple 
models to solve. According to the research results of resistor network model2–11 and neural network model12–18, 
ideas can be obtained on many complex problems. In the past many years, through the research results of Green’s 
function, Laplace equation, Poisson equation, finite and infinite dimensional resistor network and Laplace matrix 
(LM) method and so on8–11,19–32, the foundation of resistor network research has been laid. Shi et al.12,13 studied a 
new discrete time recurrent neural network and its application to manipulators. Sun et al.14,15 studied the theory 
and application of noise tolerance zeroing neural network. And Jin et al.16–18 proposed a modified Zhang neural 
network (MZNN) model for the solution of time-varying quadratic programing (TVQP).

In the past few years, Tan et al.33–53 proposed a simpler recursive transformation (RT) method than LM 
method in the research of resistance network. It simplified the Laplacian matrix in two directions to the Lapla-
cian matrix in one direction. In 2014, Tan et al.37 solved the potential formula of spherical resistance network 
for the first time. Since 2015, Tan et al.34–44 has studied the resistance network model by RT method. After 2020, 
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Tan et al.45–53 made more in-depth research on resistance network. Since RT method requires using a tridiagonal 
matrix to construct a mathematical model, and the analytical potential formula must be expressed by using the 
exact eigenvalues of this tridiagonal matrix. So the exact eigenvalues of the tridiagonal matrix need to be found. 
Tridiagonal matrices are used in many areas of science and engineering, and there are many good conclusions 
about it54–61.

In 2017, Tan1 used RT-V method for the first time to study cobweb network and fan network. In Figs. 1 and 
2, the resistance on the warp and weft lines is r0 and r, where m and n are the scale of the resistor network, it 
contains m rows and n columns. Point O(0,0) = 0 is defined as the origin of the resistor network. The potential 
formula Um×n(x, y) of any node d(x, y) in the m× n cobweb network is shown as

The potential formula Um×n(x, y) of any node d(x, y) in the m× n fan network is shown as

where θi = (2i−1)π
(2m+1) , Syk ,i = sin(ykθi)
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Figure 1.   A 8× 4 cowbeb resistor network containing 8× 4 nodes and a zero potential point O.

Figure 2.   A 10× 6 fan resistor network containing 10× 6 nodes and a zero potential point O.
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the parameter h = r
r0

 is defined.

Novel formulas of potential represented by Chebyshev polynomials
This section presents the re-expressed potential formulas (1) and (3)1 of the resistor network. The potential 
formula expressed by the Chebyshev polynomial of the second class62 can reduce the running time of computer 
simulation.

Assume that the current J is input from d1(x1, y1) and output from d2(x2, y2) . The potential formula of any 
node d(x, y) in the m× n cobweb resistor network is

where

The potential formula of any node d(x, y) in the m× n fan resistor network is

where

We set the node voltage at point O(0,0) to 0, and the formula for calculating the potential of any node is described 
as

where V(y)
x  and V(y)

x  are denoted by the node voltage of any node.

Horadam sequence and discrete sine transform
In this section, we introduce the explicit formula of Horadam sequence which is expressed by the Chebyshev 
polynomial of the second class and the sixth kind of discrete sine transform.

A second-order recurrence sequence Wv is called a Horadam sequence if

where v ∈ N, v ≥ 2, a, b, d, q ∈ C , N is set of all nonnegative integers and C is the set of all complex numbers.
The explicit formula of Horadam sequence expressed by the Chebyshev polynomial of the second class is63

where Uv is the Chebyshev polynomial of the second class62, i.e.

(6)
�i = 1+ h− h cos θi +

√

(1+ h− h cos θi)2 − 1,

�̄i = 1+ h− h cos θi −
√

(1+ h− h cos θi)2 − 1,

(7)ti = 2+ 2h− 2h cos θi ,

(8)
Um×n(x, y)

J
=

4r

2m+ 1

m
∑

ι=1

µ
(ι)
x1,xSy1,ι − µ

(ι)
x2,xSy2,ι

U
(ι)
n − U

(ι)
n−2 − 2

Sy,ι,

(9)µ(ι)
xs ,x

= U
(ι)
n−|xs−x|−1 + U

(ι)
|xs−x|−1, s = 1, 2.

(10)
Um×n(x, y)

J
=

4r

2m+ 1

m
∑

ι=1

ε
(ι)
x1,xSy1,ι − ε

(ι)
x2,xSy2,ι

(ωι − 2)U
(ι)
n

Sy,ι,

(11)ε(ι)xs ,x = (U
(ι)
−0.5)

2(U
(ι)
n−|xs−x|+1 − U

(ι)
n−|xs−x|−1 + U

(ι)
n−xs−x − U

(ι)
n−xs−x−2), s = 1, 2,

(12)Syk ,ι = sin(
yk(2ι− 1)π

2m+ 1
), k = 1, 2,

(13)ωι = 2+
2r

r0
−

2r

r0
cos

(2ι− 1)π

2m+ 1
,

(14)U (ι)
ν = U (ι)

ν (cosh φι) =
sinh(ν + 1)φι

sinh(φι)
, cosh φι =

ωι

2
,
ωι

2
> 1, φι > 0,

v = n− |xs − x| − 1, |xs − x| − 1, n− 2, n− |xs − x| + 1, n− xs − x,

n− xs − x − 2, n, − 0.5, s = 1, 2, ι = 1, 2, . . . , m.

(15)Um×n(x, y) = V
(y)
x , Um×n(x, y) = V

(y)
x , V

(0)
0 = 0,

(16)Wv = dWv−1 − qWv−2, W0 = a, W1 = b,

(17)Wv = (
√
q)v

(

b
√
q
Uv−1

(

d

2
√
q

)

− aUv−2

(

d

2
√
q

))

,



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12417  | https://doi.org/10.1038/s41598-023-39478-8

www.nature.com/scientificreports/

If d
2
√
q > 1 , the Chebyshev polynomial of the second class is re-described by hyperbolic functions, then Eq. (18) 

is transformed into

where R is the set of all real numbers.
First, we will present the derivation of Eq. (5) represented by the Chebyshev polynomial of the second class.

Remark 1  It can be obtained from Eq. (6) that �ι + �̄ι = ωι and �ι · �̄ι = 1 . Adding these conditions to Eq. (16), 
we get the following special Horadam sequence

where d = ωι > 2, q = 1 , F(ι)v  and ωι are expressed in Eqs. (5) and (13), respectively. By replacing the expression 
of Eq. (5), with the results of Eq. (19), we have

Secondly, we will give the derivation of �nι + �̄
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Then the recursive relation of B(ι)n  is expressed as

where d = ωι, q = 1 , ωι and B(ι)n  are expressed in Eqs. (13) and (22), respectively.
By Eqs. (17) and (19), B(ι)n  is represented as follows

Next, we will show the derivation of replacing Eq. (4) in terms of piecewise functions with Eq. (11) in terms of 
absolute value functions.
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Combining Eqs. (25) and (26), Eq. (4) is re-expressed by the absolute value functions as

By Eqs. (21), (27) and (11) in terms of the Chebyshev polynomial of the second class and absolute value func-
tion is obtained.

Using Eqs. (19), (21) and (24), the potential formulas (8) and (10) are obtained.
In order to achieve the fast calculation of numerical simulation, we utilize the sixth kind of discrete sine 

transform to diagonalize the perturbed tridiagonal matrix Am
1.

where h = r
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.
The eigenvectors ω1, . . . ,ωm of matrix Am are expressed as
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As is known to all, if the orthogonal matrix SVIm  is the sixth kind of discrete sine transform (DST-VI)64–68, where
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where (SVIm )T is the transpose of the matrix SVIm  and SVIIm  is the seventh kind of discrete sine transform (DST-VII).
The process of realizing the orthogonal diagonalization of matrix Am by SVIm  is as follows
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where ωι is given by Eq. (29).
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where Am in Eq. (28), Vv and Iv are vectors of length m× 1 , in which δk,v(v = k) = 1 , δk,v(v  = k) = 0.

Since Eq. (35) cannot be directly calculated. Equation (35) is transformed by SVIm  method. The process of trans-
formation is as follows.

where Cv is also a m× 1 vector

Remark 4  Tan1 proposed the node voltage formula of the cobweb network as follows

where g (i)x1,x is expressed in Eq. (2), �ni  and �̄ni  is in Eq. (6), θi = (2i−1)π
(2m+1)  , Syk ,i = sin(ykθi), k = 1, 2.

According to Eqs. (2), (21), (24) and (40), we re-express the node voltage formula by the Chebyshev polyno-
mial of the second class as follows

where µ(ι)
xs ,x , s = 1, 2 is same as Eq. (9), U (ι)

v  is same as Eq. (14), and Sys ,ι is same as Eq. (12).
According to Eqs. (38), (39) and (41), we can get the analytic formula of c(ι)x  as

Tan1 proposed the node voltage formula of the fan network as follows

where β(i)
xs ,x is expressed in Eq.  (4), F(i)k  is given in Eq.  (5), ti is given in Eq.   (7), θi = (2i−1)π

(2m+1)  , 
Syk ,i = sin(ykθi), k = 1, 2.

According to Eqs. (4), (7), (13), (21) and (43), we re-express the node voltage formula by the Chebyshev 
polynomial of the second class as follows

where ε(ι)xs ,x , s = 1, 2 is same as Eq.  (11), Sys ,ι is same as Eq. (12), ωι is same as Eq. (13) and U (ι)
v  is same as Eq. (14).

According to Eqs. (38), (39) and (44), we can get the analytic formula of c(ι)x  as

Displaying of some special and interesting potential formulae
According to the obtained resistor network potential formulas (8) and (10) which contain multiple variables, 
this chapter analyzed the influence of different variables on the resistance network potential formula from two 
directions, assigned corresponding variables according to the conditions, and drew a three-dimensional dynamic 
view intuitive display.

Idiosyncratic potential formulas with the change of current input point and output point posi-
tion.  This section discusses the influence of changes in the position of the input and output points of the cur-
rent in the resistor network on the potentials, as reflected in the three-dimensional dynamic view.

Idiosyncratic potential formula 1. If the current J flows in point d1(x1, y1) and out of d2(x2, y2) = O(0,0) , 
then a novel potential formula of the cobweb resistor network can be rewritten as
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and a novel potential formula of the fan resistor network can be rewritten as

where µ(ι)
xs ,x , s = 1, 2 is defined in Eq.  (9), ε(ι)xs ,x , s = 1, 2, is defined in Eq. (11), U (ι)

v  is defined in Eq. (14), and 
Sys ,ι is defined in Eq. (12).

Let m = n = 60, J = 10, x1 = y1 = 20, x2 = y2 = 0 , and r0 = r = 1 in Eqs. (46) and (47), respectively. Then 
a special potential formula of the cobweb resistor network is obtained as follows

and a special potential formula of the fan resistor network is obtained as follows

where

And the three-dimensional dynamic views for the generative process of the potential graph are shown in Figs. 3 
and 4, respectively.
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v = 61− |20− x|, 59− |20− x|, |20− x| − 1, 40− x, 38− x, 60, 58, − 0.5. ι = 1, 2, . . . , 60.

Figure 3.   The potential graph for U60×60(x, y)/J with the cobweb resistor network in Eq. (48).



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12417  | https://doi.org/10.1038/s41598-023-39478-8

www.nature.com/scientificreports/

Idiosyncratic potential formula 2. If the current J flows in from point d1(x1, y1) and out of d2(x2, y1) , then 
a novel potential formula of the cobweb resistor network can be rewritten as

and a novel potential formula of the fan resistor network can be rewritten as

where µ(ι)
xs ,x , ε

(ι)
xs ,x , Sys ,ι and U (ι)

v  are same as Eqs. (9), (11), (12) and (14), respectively.
Let m = n = 60 , J = 10 , y1 = y2 = x1 = 20 , x2 = 40 , and r0 = r = 1 in Eqs. (56) and (57), respectively. Then 

an idiosyncratic potential formula of the cobweb resistor network is given by

and an idiosyncratic potential formula of the fan resistor network is given by

where µ(ι)
20,x , ε(ι)20,x , ωι , S20,ι and Sy,ι are expressed in Eqs.  (50), (51), (52), (53) and (55), respectively, with 

v = 61 − |20 − x|, 61 − |40 − x|, 59 − |20 − x|, 59 − |40 − x|, |20 − x| − 1, |40 − x| −
1, 40− x, 38− x, 20− x, 18− x, 60, 58, − 0.5, ι = 1, 2, . . . , 60

.

And the three-dimensional dynamic views for the generative process of the potential graph are shown in 
Figs. 5 and 6 by Matlab.

Idiosyncratic potential formula 3. If the current J/h flows in from point ds(xs , y1)(s = 1, 2, . . . , h) and the 
current J out of d2(x2, y1) , then a novel potential formula of the cobweb resistor network can be rewritten as

and a novel potential formula of the fan resistor network can be rewritten as

where µ(ι)
xs ,x , ε

(ι)
xs ,x , Sys ,ι and U (ι)

v  are same as Eqs. (9), (11), (12) and (14), respectively.
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Figure 4.   The potential graph for U60×60(x, y)/J with the fan resistor network in Eq. (49).
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Let m = n = 60, J = 10, x1 = y1 = 20, x2 = y2 = 40 , r0 = r = 1 , and h = 10 in Eqs. (62) and (63), respec-
tively. Then an idiosyncratic potential formula of the cobweb resistor network is represented by

and an idiosyncratic potential formula of the fan resistor network is represented by

where µ(ι)
40,x , ε(ι)40,x , ωι , S20,ι and Sy,ι are expressed in Eqs.  (59), (61), (52), (53) and (55), respectively, with 

v = 61−|s−x|, 61−|40−x|, 59−|s−x|, 59−|40−x|, |s−x|−1, |40−x|−1, 60−s−x, 58−s−x, 20−x, 18−x, 60,
58, − 0.5, s = 1, 2, . . . , 10. ι = 1, 2, . . . , 60.

And the three-dimensional dynamic views for the generative process of the potential graph are shown in 
Figs. 7 and 8 by Matlab.

Idiosyncratic potential formulas with the change of resistivity h ( h =
r

r
0

 ) in resistor net-
work.  This section discusses the effect of changes in resistivity h in the resistor network on the potential 
formulas as reflected in the three-dimensional dynamic view.

Let m = n = 60, J = 10, x1 = y1 = 20, x2 = y2 = 40 , and r = 1 in Eqs. (8) and (10), respectively. Then an 
idiosyncratic potential formula of the cobweb resistor network is expressed by
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Figure 5.   The potential graph for U60×60(x, y)/J with the cobweb resistor network in Eq. (58).

Figure 6.   The potential graph for U60×60(x, y)/J with the fan resistor network in Eq. (60).
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and an idiosyncratic potential formula of the fan resistor network is expressed by

where µ(ι)
20,x , µ

(ι)
40,x , ε

(ι)
20,x , ε

(ι)
40,x , S20,ι , S40,ι and Sy,ι are expressed in Eqs. (50), (59), (51), (61), (53), (66) and (55), 

respectively.
Idiosyncratic potential formula 4. When r0 = 10 , h = 0.1 is got, as h changes, ωι and φι are obtained as 

follows, respectively

Equation (69) is combined with Eqs. (67) and (68), respectively, and the three-dimensional dynamic views for 
the generative process of the potential graph are shown in Figs. 9 and 10, respectively.

Idiosyncratic potential formula 5. When r0 = 1 , h = 1 is got, as h changes, ωι and φι are obtained as follows, 
respectively
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Figure 7.   The potential graph for U60×60(x, y)/J with the cobweb resistor network in Eq. (64).

Figure 8.   The potential graph for U60×60(x, y)/J with the fan resistor network in Eq. (65).
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Equation (70) is combined with Eqs. (67) (68), respectively, and the three-dimensional dynamic views for the 
generative process of the potential graph are shown in Figs. 11 and 12, respectively.

Idiosyncratic potential formula 6. When r0 = 0.1 , h = 10 is got, as h changes, ωι and φι are obtained as 
follows, respectively

Equation (71) is combined with Eqs. (67) and (68), respectively, and the three-dimensional dynamic views for 
the generative process of the potential graph are shown in Figs. 13 and 14, respectively.

Numerical algorithms for computing potential
Combining the DST-VI and Eqs. (30), (31), (32), (33), (34), this chapter provides two numerical algorithms to 
achieve fast calculation of large-scale potential for the resistor network. The numerical algorithm obtains similar 
results to the potential formulas (8) and (10).

(70)
ωι = 4− 2 cos

(2ι− 1)π

121
,

cosh φι = 2− cos
(2ι− 1)π

121
.

(71)
ωι = 22− 20 cos
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121
,

cosh φι = 11− 10 cos
(2ι− 1)π

121
.

Figure 9.   The potential graph for U60×60(x, y)/J with the cobweb resistor network by Eq. (67).

Figure 10.   The potential graph for U60×60(x, y)/J with the fan resistor network by Eq. (68).
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Figure 11.   The potential graph for U60×60(x, y)/J with the cobweb resistor network by Eq. (67).

Figure 12.   The potential graph for U60×60(x, y)/J with the fan resistor network by Eq. (68).

Figure 13.   The potential graph for U60×60(x, y)/J with the cobweb resistor network by Eq. (67).
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Remark 5  As is well-known, the Algorithm 1 is a tridiagonal matrix-vector multiplication, which the compu-
tational complexity is O(n). Moreover, one DST-VI needs 2n log2 n+ O(n) real arithmetic operations68. So the 
Algorithm 2 composed of Algorithm 1 and two DST-VI, and it’s computational complexity is 4n log2 n+ O(n) . 
Analogous, the computational complexity of Algorithms 3 is also 4n log2 n+ O(n) . According to the above 
Algorithms 2 and Algorithms 3, two instances are used to display the iterative effect of large-scale data graphi-
cally in the following.

Let m = 400 and n = 10 , the current J flows from the d1(x1, y1) point, x1 = 3, y1 = 150 , and out from the 
d2(x2, y2) point, x2 = 7, y2 = 350 . r = 1 , r0 = 100 , and J = 10 . The fast algorithm of cobweb resistor network is 
shown in Fig. 15, and the fast algorithm of fan resistor network is shown in Fig. 16.

Figure 14.   The potential graph for U60×60(x, y)/J with the fan resistor network by Eq. (68).
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Efficiency of calculation method
On the m× n scale resistor network models, (x1, y1) refers to the input point of the current and (x2, y2) refers to 
the output point of the current. We give a comparison of calculation efficiency for the calculating potential in 
three different methods. “Time” is the total CPU time in seconds, t1 , t2 and t3 denote CPU times of the potential 
computed by formulas (1), (3), formulas (8), (10) and Algorithm 2, 3, respectively.

The experiment is completed under the environmental conditions of CPU model AMD R9-5900HX, CPU 
frequency 3.30 GHz, and Matlab version is R2020b. “m× n" is the number of nodes in the resistor network., 
“− " denotes the operation time more than 1200s or beyond the memory limit of Matlab.

Figure 15.   A 3D image display for the fast Algorithm 2 of U400×10(x, y)/J on the cobweb resistor network.

Figure 16.   A 3D image display for the fast Algorithm 3 of U400×10(x, y)/J on the fan resistor network.

Table 1.   The comparison of calculation efficiency for potential formulas (1) and (8).

m× n (x1, y1) (x2, y2) r/r0 t1 t2

100× 100 (40 , 40) (80 , 80) 1 0.139 0.029

200× 200 (40 , 40) (180 , 180) 1 0.923 0.121

300× 300 (40 , 40) (180 , 180) 1 2.817 0.340

400× 400 (40 , 40) (180 , 180) 1 7.685 1.649

800× 100 (40 , 40) (80 , 80) 1 6.652 0.874

800× 200 (40 , 40) (180 , 180) 1 15.269 3.510
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Remark 6  Tables 1, 3, 5 show the calculation time of cobweb resistor network with different square and rectan-
gular sizes at different resistivity. The optimized potential formula (8) has faster operation speed.

Remark 7  Tables 2, 4, 6 show the calculation time of fan resistor network with different square and rectangular 
sizes at different resistivity. The optimized potential formula (10) has faster operation speed.

Remark 8  Table 7 shows the efficiency of the potential formula (1), formula (8) and the Algorithm 2 for calculat-
ing the potential. Algorithm 2 not only realizes large-scale calculation, but also has shorter calculation time in 
calculating cobweb resistor network.

Remark 9  Table 8 shows the efficiency of the potential formula (3), formula (10) and the Algorithm 3 for calcu-
lating the potential. Algorithm 3 not only realizes large-scale calculation, but also has shorter calculation time 
in calculating fan resistor network.

Table 2.   The comparison of calculation efficiency for potential formulas (3) and (10).

m× n (x1, y1) (x2, y2) r/r0 t1 t2

100× 100 (40 , 40) (80 , 80) 1 0.271 0.045

200× 200 (40 , 40) (180 , 180) 1 1.667 0.244

300× 300 (40 , 40) (180 , 180) 1 – 0.631

400× 400 (40 , 40) (180 , 180) 1 – 2.964

800× 100 (40 , 40) (80 , 80) 1 13.210 1.546

800× 200 (40 , 40) (180 , 180) 1 30.351 5.925

Table 3.   The comparison of calculation efficiency for potential formulas (1) and (8).

m× n (x1, y1) (x2, y2) r/r0 t1 t2

400× 400 (40 , 40) (180 , 180) 0.1 7.626 1.760

500× 500 (40 , 40) (180 , 180) 0.1 14.666 3.001

600× 600 (40 , 40) (180 , 180) 0.1 25.365 4.932

1100× 1100 (40 , 40) (180 , 180) 0.1 159.767 34.444

1000× 400 (40 , 40) (180 , 180) 0.1 47.323 9.187

1000× 500 (40 , 40) (180 , 180) 0.1 59.539 11.613

Table 4.   The comparison of calculation efficiency for potential formulas (3) and (10).

m× n (x1, y1) (x2, y2) r/r0 t1 t2

400× 400 (40 , 40) (180 , 180) 0.1 14.962 3.016

500× 500 (40 , 40) (180 , 180) 0.1 28.453 5.325

600× 600 (40 , 40) (180 , 180) 0.1 – 9.052

1100× 1100 (40 , 40) (180 , 180) 0.1 – 63.093

1000× 400 (40 , 40) (180 , 180) 0.1 91.827 16.498

1000× 500 (40 , 40) (180 , 180) 0.1 118.262 20.461

Table 5.   The comparison of calculation efficiency for potential formulas (1) and (8).

m× n (x1, y1) (x2, y2) r/r0 t1 t2

1000× 1000 (40 , 40) (580 , 580) 0.01 120.787 25.788

1500× 1500 (40 , 40) (580 , 580) 0.01 405.983 92.694

1800× 1800 (40 , 40) (580 , 580) 0.01 700.525 159.449

2000× 2000 (40 , 40) (580 , 580) 0.01 958.713 217.022

1500× 1000 (40 , 40) (580 , 580) 0.01 270.714 61.578

2000× 1000 (40 , 40) (580 , 580) 0.01 480.070 110.790
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Conclusion
In this paper, based on the RT-V method, the accurate potential formulas of the m× n cobweb resistor network 
and the m× n fan resistor network1 are improved. The potential formula is represented by the Chebyshev poly-
nomial of the second class and the tridiagonal matrix is diagonalized by the DST-VI method, which realizes the 
high efficiency of the numerical simulation of the potential formula. The changes of variables in the potential 
formula are analyzed, and the corresponding three-dimensional view is drawn to show the influence of variable 
changes on the image. Then we design a fast algorithm for the resistor network potential to achieve fast calcula-
tion in the case of large-scale resistor networks. Finally, we show the calculation time of different calculation 
methods under different scale resistor networks, and the comparison shows the efficiency of the improved 
numerical simulation calculation.

Data availability
All data generated or analysed during this study are included in this article and its supplementary information 
files.
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