Skip to main content
. 2023 Jun 17;66(9):1643–1654. doi: 10.1007/s00125-023-05946-z

Table 2.

Selected diagnostic test characteristics for all linear models to detect an M value in the lowest quartile

Model covariates Sensitivity Specificity PPV NPV Balanced accuracy
RISC → RISC
 Proteins 0.458 0.963 0.805 0.842 0.711
 Centre-Age-Sex-BMI 0.208 0.986 0.833 0.789 0.597
 Centre-Age-Sex-BMI-Proteins 0.542 0.912 0.672 0.857 0.727
 Centre-Age-Sex-BMI-Lipids-SBP 0.250 0.981 0.818 0.796 0.616
 Centre-Age-Sex-BMI-Lipids-SBP-Proteins 0.444 0.916 0.640 0.831 0.680
 BMI-Lipids-SBP 0.236 0.981 0.810 0.793 0.609
 BMI-Lipids-SBP-Proteins 0.486 0.930 0.700 0.844 0.708
ULSAM → ULSAM
 Proteins 0.250 0.964 0.700 0.792 0.607
 Centre-Age-Sex-BMI 0.107 1.000 1.000 0.769 0.554
 Centre-Age-Sex-BMI-Proteins 0.357 0.976 0.833 0.818 0.667
 Centre-Age-Sex-BMI-Lipids-SBP 0.145 0.994 0.889 0.778 0.570
 Centre-Age-Sex-BMI-Lipids-SBP-Proteins 0.455 0.988 0.926 0.845 0.721
 BMI-Lipids-SBP 0.164 0.994 0.900 0.782 0.579
 BMI-Lipids-SBP-Proteins 0.455 0.988 0.926 0.845 0.721
RISC → ULSAM
 Proteins 0.299 0.984 0.862 0.807 0.642
 BMI-Lipids-SBP 0.075 0.996 0.875 0.764 0.536
 BMI-Lipids-SBP-Proteins 0.226 0.986 0.840 0.793 0.606
ULSAM → RISC
 Proteins 0.310 0.942 0.641 0.803 0.626
 BMI-Lipids-SBP 0.213 0.969 0.699 0.787 0.591
 BMI-Lipids-SBP-Proteins 0.479 0.915 0.653 0.840 0.697

Sensitivity = TP/(TP+FN); specificity = TN/(TN+FP); PPV = (sensitivity×prevalence)/((sensitivity×prevalence)+((1–specificity)×(1–prevalence))); NPV = (specificity×(1–prevalence))/(((1–sensitivity)×prevalence)+((specificity)×(1–prevalence))); balanced accuracy = (sensitivity+specificity)/2

FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; TN, true negative; TP, true positive

RISC → RISC, models trained in RISC and tested in RISC; ULSAM → ULSAM, models trained in ULSAM and tested in ULSAM; RISC → ULSAM, models trained in RISC and tested in ULSAM; ULSAM → RISC, models trained in ULSAM and tested in RISC