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Abstract
Self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and 
intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multi-
functional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the 
necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed 
the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function. In this study, we demonstrated that 
complete loss of APEX1 from murine bone marrow HSPCs (induced by CRISPR/Cas9) caused severe hematopoietic failure 
following transplantation, as well as a HSPC expansion defect in culture conditions maintaining in vivo HSC functionality. 
Using specific inhibitors against either the nuclease or redox domains of APEX1 in combination with single cell transcriptom-
ics (CITE-seq), we found that both APEX1 nuclease and redox domains are regulating mouse HSPCs, but through distinct 
underlying transcriptional changes. Inhibition of the APEX1 nuclease function resulted in loss of HSPCs accompanied by 
early activation of differentiation programs and enhanced lineage commitment. By contrast, inhibition of the APEX1 redox 
function significantly downregulated interferon-stimulated genes and regulons in expanding HSPCs and their progeny, 
resulting in dysfunctional megakaryocyte-biased HSPCs, as well as loss of monocytes and lymphoid progenitor cells. In 
conclusion, we demonstrate that APEX1 is a key regulator for adult regenerative hematopoiesis, and that the APEX1 nuclease 
and redox domains differently impact proliferating HSPCs.
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Introduction

Hematopoietic stem cells (HSCs) enable the lifelong pro-
cess of hematopoiesis, through their self-renewal potential 
and their long-term multilineage differentiation capacity 
to replenish all lineage-committed progenitors and mature 
blood cells. These unique HSC properties are tightly regu-
lated by a complex interplay of both intrinsic and extrin-
sic cues during both dormancy and proliferation. Despite 
numerous breakthroughs in the field [1], full understanding 
of all molecular mechanisms underlying hematopoietic stem 
and progenitor cell (HSPC) functionality, especially during 
proliferative demands, remains elusive.

Mammalian apurinic/apyrimidinic endonuclease 1 
(APEX1) is a small pleiotropic protein, which is composed 
of 2 distinct structural catalytic domains [2].

The catalytic C-terminal region of APEX1 exhibits different 
nucleic acid enzymatic activities. Apurinic/apyrimidinic (AP) 
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endonuclease activity is the predominant nuclease function, 
with a central role in the base excision repair (BER) pathway. 
BER is involved in the repair of frequent endogenous DNA 
single-strand lesions [2]. APEX1 endonuclease processes DNA 
AP lesions, which can be BER intermediates or de novo abasic 
sites, into single-strand breaks for subsequent gap filling repair 
[2]. In contrast to other DNA repair pathways [3–9], the role 
of BER genes such as APEX1 in supporting functional adult 
HSPCs remains enigmatic. Aside from its canonical function in 
DNA repair, the APEX1 nuclease domain is also implicated in 
transcriptional and post-translational regulation [10–12].

The catalytic N-terminal protein domain of APEX1, 
known as redox effector function (REF-1), controls the 
DNA binding activity of multiple transcription factors (TFs) 
through modulation of their redox status [2]. Studies per-
formed chiefly in cancer cell lines have identified TFs such 
as AP-1, P53, HIF1A, NF-κΒ, PAX5 and STAT3, involved 
in several cellular responses, as REF-1 targets [13–18]. 
Almost all the above stated TFs have been implicated in the 
regulation of HSPC self-renewal and differentiation [19–26].

Considering the multiple functions ascribed to APEX1, 
we hypothesized that it may be an essential intrinsic regulator 
of bone marrow (BM) HSPC function. However, studies of 
the role of APEX1 in adult hematopoiesis and in other tissues 
have been hampered by the very early embryonic lethality in 
mice following non-conditional full knock-out (KO) of APEX1 
[27, 28]. Cancer cell line studies demonstrated that APEX1 is 
indispensable for cancer cell survival and proliferation [29–33]. 
Others demonstrated APEX1 involvement in pro-inflammatory 
factor expression in lipopolysaccharide-treated macrophage and 
monocyte cell lines [34–36]. APEX1 KO also impaired class-
switch recombination in a B lymphocyte line, without affecting 
cell viability or proliferation [37]. Only a few studies examined 
the role of APEX1 in non-transformed cells. APEX1 is required 
for ex vivo generation, but not survival, of  CD34+ cells from 
mouse embryonic stem cells [38]. APEX2, another AP endo-
nuclease, although less efficient than APEX1 [39], was shown 
to be important during B cell development and regenerative 
hematopoiesis [40, 41]. In addition, brain-specific [42] KO of 
APEX1 differently affected development of some but not all 
neural lineages. Hence, APEX1 appears to play a role in normal 
progenitor proliferation and lineage differentiation, and this in 
a cell type and developmental specific manner.

In the current study, we therefore wished to unravel the role 
of APEX1 and its two main enzymatic domains, in proliferating 
murine BM HSPCs and during HSPC lineage specification.

Materials and Methods

Main Methods are described here below, additional Materi-
als and Methods information can be found in the Supple-
mentary Methods.

Mice

All CRISPR-Cas9 experiments were performed using 
8–13  week-old wild type (WT) C57BL/6J-CD45.2, 
C57BL/6J-CD45.1 (Jackson Laboratory) and homozy-
gous C57BL/6J  R26Cas9GFPdim mice (Jackson Labora-
tory, cat#26179); i.e. ‘Cas9 mouse’. For APEX1 inhibitor 
experiments, 8–12  week-old WT C57BL/6J-CD45.2 or 
WT C57BL/6J-CD45.1 males and females were used. All 
mouse colonies were bred in-house. Transplanted mice were 
maintained in individually ventilated cages. The KU Leuven 
animal ethics committee approved all animal experiments 
(project number P209/2018).

CRISPR‑Cas9 Based Apex1 Knock‑Out

The lentiguide vector (Addgene, cat#52963) was modified 
by replacing the puromycin cassette with a green fluorescent 
protein gene (i.e.  GFPhigh). Two Apex1 targeting sgRNAs 
were cloned separately into the plasmid. SgRNA#1 (exon 
5) sequence: 5’-GAC TGG AAT ACC GAC AGC GT-3’ (Gen-
Script); sgRNA#2 (exon 4) sequence: 5’-ACG GAG CTG 
ACC AGT ACT GA-3’ (Sabatini murine library).

Bone Marrow Derived HSPC Isolation

Mice were sacrificed by cervical dislocation and bone 
marrow cells were flushed from femurs and tibias using 
phosphate-buffered saline (Gibco). For the lentiviral trans-
duction and the in vitro expansion experiments,  Lin−cKit+ 
cells were purified by magnetic-activated cell sorting 
(MACS) as described in Garcia-Abrego et al. [43]. The 
mean purity (± SD) of MACS-isolated  Lin−cKit+ cells 
was 68.73 ± 12.16%, with 89.39 ± 10.19% of cells being 
 Lin− cells, 5.14 ± 2.83% LSK cells, and 0.47 ± 0.31% LSK-
SLAM cells.

Bone Marrow Reconstitution Experiment

CD45.1 recipient mice were irradiated twice with 4.5 Gy 
using an X-ray RS-2000 biological irradiator (Rad Source 
Technologies) the day before transplantation. 36-48 h after 
lentiviral transduction, 2.5 ×  105 viable Cas9 or WT CD45.2 
cells were injected in the tail vein together with 5 ×  104 
freshly isolated BM CD45.1 cells. During the first 2 weeks 
after the transplantation, Baytrill (Bayer) was added to the 
drinking water of transplanted mice. Multilineage differen-
tiation capacity of the  GFPhigh transplanted cells was exam-
ined between 2 and 20 weeks post-transplantation using 
peripheral blood collected via tail puncture. 5 months after 
transplantation, mice were sacrificed and BM HSPC popula-
tions analyzed by flow cytometry.
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HSPC Ex Vivo Culture

Freshly purified  Lin−cKit+ or lentiviral transduced 
 Lin−cKit+ cells were cultured in polyvinyl alcohol (PVA)-
supplemented medium, as described in [44].  Lin−cKit+ 
cells were seeded at  105 cells/ml in 24- or 12-well plates, 
coated with 0.01 mg/ml human fibronectin (Millipore). 
About 65% of the medium was changed every 2 or 3 days. 
For the 4-week culture, cells were diluted 1:4 on day 7, 14 
and 21. For the albumin-based culture, StemSpan™ SFEM 
medium (Stem Cell Technologies) was used instead of PVA-
supplemented medium. Detailed composition of media can 
be found in Table S1.

APEX1 inhibitors E3330, APX2009 and APE1 Inhibitor 
III (Inh. III) (Sigma-Aldrich) were dissolved in dimethylsul-
foxide (DMSO). All HSPC cultures were done under 5%  O2.

Interferon (IFN) Treatment of REF‑1 Inhibited HSPC 
Cultures

5 ×  104  Lin−cKit+ cells were seeded in 500 µl of PVA-based 
medium (Table S1) in a 48-well plate, exposed to a REF-1 
inhibitor (E3330 5 µM or APX2009 2 µM) or DMSO, and 
treated continously with 160 ng/ml of recombinant carrier-
free mouse IFN-α or IFN-γ (Biolegend). IFNs and REF-1 
were refreshed during the 65% medium change at day 3 and 5.

Flow Cytometry

Flow cytometry was used to assess multi-lineage potential 
of grafted cells in blood and BM, and HSPC expansion upon 
APEX1 KO and APEX1 inhibitor treatment, apoptosis, and 
cell division analysis. Details of the flow cytometry experi-
ments are provided in Supplementary Methods.

CITE‑Sequencing Experiment

Cellular Indexing of Transcriptomes and Epitopes by 
Sequencing (CITE-Seq) was performed together with the 
VIB Single Cell Core (Leuven), using 10X Genomics tech-
nology. Details about sample preparation, sequencing and 
bioinformatic analysis are described in Supplementary 
Methods.

Quantification and Statistical Analysis

Details regarding statistical analysis, number of experi-
ments and replicates used in each experiment are provided 
in the figure captions. Raw data prior to matched ANOVA/
Mixed model analysis and fold changes were log-trans-
formed. To evaluate whether data were normally distributed, 

raw, log-transformed or residuals were analyzed using a Sha-
piro–Wilk test. Log-transformed data were back-transformed 
for graphical presentation. Statistical testing was performed 
using GraphPad Prism v9.3.0 (GraphPad Software, Inc.), 
except for the single cell RNA sequencing (scRNA seq) 
where testing was done in R (version 4.1.0). A p-value < 0.05 
was considered significant.

Results

APEX1 is Essential to Maintain HSPC 
Function during Functional HSC Expansion 
and Hematopoietic Regeneration

To evaluate the effect of APEX1 loss on adult hematopoie-
sis, we used a CRISPR-Cas9 KO approach on BM HSPC 
in combination of an in vitro expansion and an in vivo 
competitive repopulation assessment (Fig. 1A). Therefore, 
BM  Lin−cKit+ cells, isolated from Cas9 and WT mice, 
were transduced with a lentiviral vector, containing an 
Apex1 targeting sgRNA and a  GFPhigh reporter. For the 
ex vivo culture, we used PVA-based medium, that has been 
shown to maintain repopulating HSCs for up to 1 month 
(described in Wilkinson et al. [44], and confirmed by our 
own studies (Figure S2A)), together with the use of 5%  O2 
which helps to selectively enrich for functional HSC popu-
lations during the PVA-based expansion, even from unpuri-
fied whole BM cells [45]. Highly efficient APEX1 KO by 
either of the 2 sgRNAs was observed in transduced  GFPhigh 
progeny 2  weeks post-transduction (Fig.  1B), with no 
indels detected in predicted off-target regions (Figure S1).

Loss of APEX1 (by both sgRNAs) caused a significant 
decrease in the relative frequency and expansion of the 
transduced progeny in the total cells  (± 65% expansion 
decrease for both guides by week 2), lineage-restricted 
cells  (Lin+), and the different HSPC populations  (Lin−, 
LSK and LSK-SLAM) over the 4 weeks culture period 
(Fig.  1C, S3A-C). For the HSC population, a ± 76% 
decrease in total LSK-SLAM expansion was seen after 
2 weeks in both APEX1 KO groups.

After transplantation into lethally irradiated recipi-
ents, APEX1 KO HSPCs failed to contribute to hemat-
opoietic recovery. Already 2 weeks after transplantation, 
a significantly lower contribution of APEX1 KO HSPCs 
(using both sgRNAs) was seen to the total donor leucocyte 
population (CD45.2+), B  (B220+) and myeloid lineages 
(Ly6G/Ly6C+CD11b+) (Fig. 1D, S3D). In line with the 
blood chimerism, contribution of APEX1 KO cells (both 
sgRNAs) to the different BM populations 20 weeks after 
transplantation (Fig. 1E, S3E) was significantly reduced 
 (Lin+, B-, T-, myeloid and  Lin− progenitor compartments). 
APEX1 KO multipotent progenitors (LSK cells) were also 
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Fig. 1  APEX1 is essential to maintain HSPC function during func-
tional HSC expansion and hematopoietic repopulation. (A) Experi-
mental set-up to study the role of Apex1 in HSPCs during long-term 
in vitro hematopoietic expansion and in vivo hematopoietic regenera-
tion following CRISPR-Cas9 knock-out (KO). (B) Immunocapillary 
blot (WES) showing efficient CRISPR-Cas9 mediated KO of APEX1 
in the total progeny of 2-weeks expanded  Lin−cKit+ Cas9  GFPhigh 
cells compared to non-edited control cells (progeny of  Lin−cKit+ WT 
 GFPhigh cells). N = 1 with 2 different donors/transductions. Unpaired 
t test was used to compare Cas9 and WT transduced cells. (C) Abso-
lute number of CRISPR-Cas9 mediated APEX1 KO cells (Cas9 
 GFPhigh cells, orange dots) or WT cells (WT  GFPhigh cells, black 
dots), in the total viable cells,  Lin+,  Lin−, LSK and LSK-SLAM cells, 
during a 4-week expansion culture. N = 5 independent experiments 
with 5 independent donors for each group, except for the 4-week time 
point where N = 4. Log scaled axis was used for the expansion graphs. 

(D) Blood percentage of APEX1 KO or WT cells  (GFPhigh cells) pre-
sent in total and leucocyte lineages (B, T and myeloid) of CD45.2+ 
donor cells at 2-, 4-, 8-, 16- and 20-weeks post-transplantation. Ini-
tial transduction efficiency of transplanted cells is shown as percent-
age of  GFPhigh cells 48–72  h after transduction. N = 4 independ-
ent experiments for sgRNA#1, with a total of 9–16 mice per group 
and timepoint. (E) Bone marrow percentage of APEX1 KO or WT 
cells  (GFPhigh cells) in the total, lineage-committed  (Lin+ , B, T and 
myeloid), and HSPC  (Lin−, LSK and LSK-SLAM) CD45.2+ donor 
cells ± 20 weeks after transplantation. N = 4 independent experiments 
for sgRNA#1, with a total of 12–15 mice per group. Sidak post-hoc 
tests (following a two-way ANOVA/Mixed model repeated meas-
ures analysis) were used to compare the 2 groups (Cas9 and WT) at 
the different timepoints, in (C) and (D). Mann–Whitney test for all 
comparisons in (E). Data bars represent the mean ± SD. p < 0.05 (*), 
p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).
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Fig. 2  APEX1 nuclease and REF-1 functions are both essential for 
functional HSPC expansion. (A) Schematic representation of the 
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decreased significantly for sgRNA#2 and almost signifi-
cantly for sgRNA#1 (p-value = 0.08). Although APEX1 KO 
HSCs (LSK-SLAMs) were clearly unable to generate com-
mitted progeny, no significant change was seen between 
the APEX1 KO and WT  LSK-SLAM compartment 
20 weeks after transplantation (both sgRNAs), which 
might be in part due to low-level engraftment of lenti-
virally transduced LSK-SLAM cells [46, 47], as seen in 
BM of control mice. No evidence for malignant hemat-
opoiesis in APEX1 KO grafted animals was seen 5 and 
12 months after transplantation (Figure S4). Moreover, 
we demonstrated that there was no repopulation differ-
ence at 20 weeks post-transplantation between the non-
transduced Cas9 expressing HSCs  (GFPdim) and the non-
transduced WT HSC  (GFPneg) (Figure S2B).

Overall, our results showed that APEX1 KO in adult 
HSPCs causes an ex vivo expansion and in vivo hemat-
opoietic repopulation defect.

APEX1 REF‑1 and Nuclease Inhibitions lead 
to HSPC Expansion Deficits, which are Associated 
with Enhanced Apoptosis and Decreased Cell 
Divisions

To investigate which functional domain(s) of APEX1 
affect(s) HSPC function and due to difficulties in creat-
ing domain-specific KO in primary HSPCs, we added 
small molecules that specifically inhibit the nucle-
ase (using Inh. III) [48] or the REF-1 (using E3330 or 
APX2009) [49, 50] function of APEX1 to PVA-based 
WT  Lin−cKit+ cultures for 3- or 7-days (Fig. 2A), after 
identifying an effective concentration with the lowest 
toxicity (Figure S5A). Inh. III is a competitive inhibi-
tor, binding the active site of the endonuclease domain 

of APEX1 [48]. E3330 is a REF-1 selective inhibitor 
that interferes with disulfide bond formations between 
cysteine residues within the active site of APEX1’s 
redox domain [51] and is currently being used in dif-
ferent clinical trials as cancer treatment (NCT0337508, 
NCT03375086). APX2009 is a second generation E3330 
analogue, which was found more potent compared to 
E3330 [52]. All 3 inhibitors have been previously used 
in diverse studies to decipher the distinct role(s) of the 2 
main APEX1 domains [12, 34–36, 38, 52, 53].

REF-1 inhibition by both E3330 and APX2009 
(Fig.  2B-C) caused a significant expansion defect in 
total cells, committed cells  (Lin+) and  Lin− progenitors, 
already on day 3. After 7 days, the expansion of total, 
 Lin+,  Lin−, LSK and LSK-SLAM cells was significantly 
impeded, with a clear decreased trend for the lowest con-
centration of inhibitors as well. Following 7-days 5 µM 
E3330 and 2 µM APX2009 exposure, a ± 54% and ± 50%, 
respectively, decrease was seen in the number of LSK-
SLAMs compared to the DMSO control. Interestingly, 
we observed a dose dependent increase in the relative 
proportion of HSPCs (LSK and LSK-SLAM) on day 3 
and of LSK-SLAM cells on day 7 compared to control, 
suggesting an early accumulation of HSPC among the 
culture progeny (Figure S5B).

Addition of the nuclease inhibitor (Fig. 2B-C) caused 
a significant expansion defect of LSK cells on day 3, 
while not affecting the other compartments. By day 7 
all cell populations were decreased by Inh. III (± 84% 
decrease in LSK-SLAM cells for Inh. III 500 nM). In 
contrast to cultures treated with the REF-1 inhibitors, 
Inh. III induced a clear dose-dependent decrease in the 
proportion of LSK and LSK-SLAM cells, compared to 
controls (Figure S5B).

Both REF-1 inhibitors caused a concentration-depend-
ent increase in apoptotic cells on day 3 and 7, while 
the nuclease inhibitor induced apoptosis only on day 7 
(Fig. 3A). Almost all HSPC progenies showed reduced 
numbers of cell divisions on days 3 and 7 in response to 
both REF-1 and nuclease inhibitors, indicating that both 
APEX1 functions are necessary to support HSPC divi-
sion (Fig. 3B).

As a recent study suggested that expanded functional 
HSCs can be identified as EPCR (CD201) positive cells 
among the LSK cells [54], we also quantified the num-
ber of LSK  EPCR+ HSCs following REF-1 or nuclease 
inhibition. In line with the LSK-SLAM quantification, 
the expansion of LSK  EPCR+ cells was also significantly 
decreased in REF-1 inhibitor and nuclease inhibitor 
treated HSPCs (Figure S5C).

In line with the severe repopulation phenotype seen in 
the APEX1 KO HSPCs, the combined REF-1 and nucle-
ase inhibitor treatments led to significantly more cell 

Fig. 3  Inhibition of APEX1 REF-1 and nuclease functions in 
HSPCs leads to enhanced apoptosis and decreased cell proliferation. 
(A) Total apoptotic cells were quantified by flow cytometry using 
Annexin V and  eFluorTM780 staining (N = 2–5 indep. exp., with 2 
biological replicates per experiment) after 3 and 7  days of continu-
ous APEX1 inhibitor exposure. (B) Cell divisions of the  Lin−cKit+ 
progenies were analyzed using CellTrace dyes (N = 3 indep. exp., 
with 5–6 biological replicates in total) after 3 and 7 days of continu-
ous APEX1 inhibitor exposure. (C) Apurinic/apyrimidinic (AP) inci-
sion assays to measure the endonuclease activity in total progeny of 
7-days expanded HSPCs treated with APEX1 inhibitors. N = 2 indep. 
experiments with total of 6 biological replicates  per  group. (D) AP 
site quantification on total progeny or  Lin−cKit+ sorted cells after 
ex  vivo treatment with APEX1 inhibitors. N = 2 indep. experiments 
with a total of 3–4 biological replicate per group for the total cells, 
and N = 4 with 8 replicates for the  Lin−c-Kit+ cells. Dunnett’s post-
hoc tests were used to compare each treated group to their corre-
sponding DMSO control condition (following a two-way ANOVA/
Mixed model sample-matched analysis in (A) and (B), or a one-way 
ANOVA in (C) and (D)). Data bars represent the mean ± SD, except 
for (C) and (D) where data bars represent geometric mean ± geomet-
ric SD. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).

◂
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death and a bigger HSPC expansion defect than follow-
ing addition of the nuclease or REF-1 inhibitors alone 
(Figure S6).

The nuclease domain plays a role in DNA repair by 
removing/processing ‘baseless’ AP sites. Therefore, we 
assessed changes in the DNA endonuclease activity and 
AP site accumulation in the total progeny and/or pro-
genitor population following the inhibitor treatments. As 
expected APEX1 nuclease inhibitor (Inh. III 500 nM) 
decreased the endonuclease activity in the HSPC prog-
eny in contrast to both REF-1 inhibitors, which did not 
influence the AP endonuclease activity. Even though we 
noticed the partial impairment in the DNA endonuclease 
activity, the 7-day Inh. III treatment did not cause DNA 
AP site accumulation in the total and  Lin−cKit+ progeny 
cells (Fig. 3C-D). This was contrary to the APEX1 KO, 
which caused a complete absence of endonuclease activ-
ity and a slight increase in DNA damage (AP site and 
γH2AX-positve cells increased) in HSPCs (Figure S7).

These data support that both APEX1 REF-1 and nucle-
ase domains are required for HSPC proliferation. The 
HSPC expansion deficit induced by REF-1 and nucle-
ase inhibitors is associated with increased cell death and 
reduced cell divisions, but no significant accumulation of 
AP lesions could be detected.

CITE‑Seq Revealed that HSPC Populations 
were Affected Differentially upon APEX1 REF‑1 
and Nuclease Deficiencies

To gain insight in the mechanism(s) underlying APEX1 
redox and nuclease mediated deficits in HSPC proliferation, 

we performed 10X CITE-seq on LSK cell progeny 7 days 
after culture in PVA-based medium with APEX1 inhibitors 
(Fig. 4A). Using RNA and antibody-derived tags (ADT) 
data (Fig. 4C-E, S9-10), 10 distinct CITE-seq clusters were 
identified on the UMAP from all 4 samples (Fig. 4B).

APEX1 nuclease inhibition induced decreased frequencies 
of HSC, LSK and lymphoid-myeloid progenitor (LMP) 
cells, while the granulocyte-monocyte progenitor (GMP), 
megakaryocyte-erythroid progenitor (MEP), monocyte, 
dendritic cell and lymphoid progenitor (DCP/LP), and 
mast-basophil progenitor (MBP) clusters were enriched 
(Fig. 4F-G, Table S6). ADT data also showed increased 
percentages of lineage committed cells  (Lin+) and progenitors 
 (Lin−Sca1−cKit− and  Lin−Sca1−cKit+ cells), while the LSKs 
and HSCs (LSK-SLAM and LSK-SLAM   EPCR+) were 
reduced (Figure S10D, Table S7). Following APEX1 REF-1 
inhibition, a different cluster distribution was seen. Treatment 
with either E3330 or APX2009 caused an enrichment in 
HSC and MEP clusters, while the LSKs, LMPs, DCPs/LPs, 
MBPs and monocytes were significantly decreased (Fig. 4F-
G, Table S6). Additionally, REF-1 inhibition resulted in the 
appearance of a new progenitor cluster (cluster 2), which were 
mostly  Lin−Sca1−cKit+ cells (Figure S10D) expressing early 
myeloid and megakaryocyte markers (Fig. 4D, S9A). ADT 
data confirmed decreased monocytes  (CD11b+Ly6C+ cells), 
increased LSK-SLAM and LSK-SLAM  EPCR+ frequencies 
upon REF-1 inhibition (Figure S10D, Table S7), consistent 
with previous flow cytometry data on day 3 (Figure S5B). 
REF-1 inhibition also decreased the percentage of HSCs 
displaying a functional HSC gene signature [55], which 
was not seen following nuclease inhibition (Fig. 4H). Single 
sample gene set enrichment analysis (ssGSEA) confirmed 
that REF-1 inhibition induced expression of megakaryocyte-
biased genes in the HSCs (cluster 0), compared to control and 
Inh. III treated cultures (Fig. 4I).

REF-1 and nuclease functions of APEX1 are  both 
important for HSPC maintenance during in vitro expan-
sion, but their inhibition leads to highly distinct transcrip-
tional changes, as revealed by the differences in the CITE-
seq-defined cell identities.

Differential Gene Expression and Regulon Activity 
Analyses show Mainly Downregulation of Interferon 
Signaling in HSPC Populations caused by APEX1 
REF‑1 Deficiency

To reveal the mechanisms underlying the distinct distribu-
tion of the cell populations upon APEX1 inhibition, we 
performed differentially expressed gene (DEG) and differ-
entially activated regulon (DAR) analyses following REF-1 
and nuclease inhibitions (Supplement File 5–7).

Fig. 4  CITE-seq revealed that HSPC populations were affected differ-
entially upon APEX1 REF-1 and nuclease inhibition. (A) Overview 
of 10X Genomic CITE-seq experimental design. (B) RNA-UMAP 
(Uniform Manifold Approximation and Projection) representation of 
the APEX1 inhibitor-treated and control HSPC samples, revealing 10 
distinct cell clusters. (C) UMAPs showing the Seurat module enrich-
ment score for the HSC and LSK transcriptomic signatures  respec-
tively. (D) Expression of some selected gene markers, highlighted on 
the RNA-UMAP, used to identify the different cell identities in the 
CITE-seq analysis. (E) Antibody-derived tag (ADT) gated HSPC 
populations, highlighted on UMAP from RNA based clustering. (F) 
UMAP plots for the control treated HSPCs (DMSO), the APEX1 
nuclease inhibited HSPCs (Inh. III), and the APEX1 REF-1 inhib-
ited HSPCs (E3330 and APX2009). (G) Frequencies of the different 
annotated CITE-seq clusters, for each of the treated HSPC cultures. 
Chi-square test was performed on cluster proportions (see Table S6) 
(H) UMAP of cluster 0, 1, 2, and 3 displaying the module score for 
the gene signature of functional HSCs, as well as the percentage of 
functional HSCs within the HSC cluster 0 (cut-off = 0.2). (I) Single-
sample gene set enrichment analysis (ssGSEA) for megakaryocyte 
primed HSC signature (from Rodriguez-Fraticelli et  al., 2018) on 
cluster 0. Dunn’s post hoc tests (following Kruskal–Wallis rank sum 
test) were used to compare each treated group to the DMSO. p < 0.05 
(*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).
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REF-1 inhibition caused transcriptional changes in 
HSC, LSK and myeloid progenitor clusters (0, 3 and 2), 
consisting mainly of downregulated DEGs, with promi-
nent downregulation of interferon response genes (IRGs) 
(Fig. 5A). Consistently, the HSPC marker Ly6a, reported 
to be upregulated in HSCs in response to IFNα [56], 
was downregulated in all progenitor clusters. REF-1 

inhibition also downregulated the interferon type I and 
II response in HSCs, LSKs and myeloid progenitors as 
reflected by the ssGSEA enrichment score for the respec-
tive gene ontogeny terms (Fig. 5B). Other downregulated 
DEGs included the TFs, Batf and Bcl11a, shown to be 
essential for HSC functionality and lymphoid lineage 
development [57–60]. Among the few upregulated DEGs 
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in REF-1-inhibited HSCs, we identified marker genes 
that were among the highly expressed in the myeloid 
progenitor, MEP and BMP clusters (Cd63, Gclm, Mt1) 
(Fig. 5A, Figure S9A). In line with DEG analysis, DAR 
analysis for REF-1 inhibitor treated HSCs and LSKs 
showed a decreased activity for many interferon-related 
TFs (Stat1, Stat2 and several Irfs), and for the nuclear 
factor-kappa B (NF-κB) family and related factors (NF-
κB1, NF-κB2, Relb, Rel, Bcl-3) (Figure S11A). Stat1, 
Stat2, Irf1, Ir7, Bcl11a and Irf9 were found central TFs 
driving the negative regulation of most target genes in 
the REF-1-inhibited HSCs (Fig. 5C), and are possibly 
controlled by previously identified REF-1 targets (Jun, 
Pax5, Stat3 and Nf-κb1) [13, 1416, 17].

Among the upregulated regulons in HSCs, we identified 
Cebpβ, which induces myeloid differentiation and prolifera-
tion in stressed HSCs [61], as well as TFs (Gata1, Mafg, 
Nfe2, Kfl1, Fli, Myb) that control myeloid and megakaryo-
cyte differentiation [62–64]. Some of these latter pro-dif-
ferentiation TFs were also found among upregulated DARs 
in LSKs (Figure S11B).

In the more committed progenitor clusters (GMPs, 
MEPs, LMPs, monocytes and DCPs/LPs), REF-1 inhibi-
tion also caused downregulation of IRGs, and/or interferon 
related regulons (Stat1, Stat2, Irf-1, Irf-7, Irf-9). Addition-
ally, LMPs, DCPs/LPs and monocytes appeared to be tran-
scriptionally megakaryocyte-poised, reflected by upregu-
lated MEP-specific regulons such as Gata2, Tal1, Fli, Nfe2, 
and Mafg [62, 63] (Figure S12).

Thus, the APEX1 REF-1 function appears to regulate 
interferon related TFs and genes in proliferating HSPCs. 
Decreased expression of IRGs due to REF-1 inhibition 
leads to impaired expression or activity of stem cell-
essential genes/TFs, while also priming HSC and differ-
ent progenitor cells towards the megakaryocyte lineage at 
the detriment of the monocyte/lymphoid lineages.

HSPC Differentiation Trajectories of APEX1 
Nuclease‑Inhibited Cells Highlight Earlier 
Upregulation of Lineage‑Restricted Regulators

In contrast to the REF-1 inhibitors, much fewer transcrip-
tional changes were induced in HSPCs by APEX1 nucle-
ase inhibition (Fig. 5, S11A). The p53 target gene Zmat3, 
known to play a role in translation regulation [65], was 
upregulated in HSCs. Additionally, in both HSC and LSK 
clusters, a pro-apoptotic signature was detected with the 
upregulation of Bax and higher activity of the Zfp110 
regulon [66, 67]. Pro-differentiation changes were also 
observed with an increased expression of the megakaryo-
cytic marker Pf4 gene in HSCs, and the upregulation of 
lymphoid markers (Dntt Ltb, Ly6d) in LSK cells. Moreover, 
and in contrast to REF-1 inhibition, nuclease inhibition 
decreased expression of Egr-1 and its regulon Fosl1, where 
downregulation of the EGR-1 network was recently linked 
to impaired HSC function [68]. Although downregulation 
of some IRG genes was also seen in Inh. III treated HSC 
and LSK clusters, this was much less profound compared 
to the REF-1 inhibition.

While REF-1 inhibition enhanced expression/activ-
ity of chiefly pro-megakaryocytic progenitor markers, 
nuclease inhibition promoted differentiation towards all 
blood lineages. For instance, Inh. III exposure induced the 
granulocyte and monocyte master regulons Cebpe and Irf8 
[69, 70] in GMPs; the B cell and monocyte/macrophage 
developmental regulator Prdm1 [71] in LMPs; Runx2 and 
Klf2, involved in plasmacytoid dendritic cell (DC) [72] and 
 Ly6Clow monocyte development [73] respectively, in the 
DCP/LP cluster; and the erythroid Klf-1 regulon [62] in 
MEPs (Figure S12C).

To further investigate the apparent increased matura-
tion in nuclease-inhibited progeny, we performed tra-
jectory inference analysis for the MEP, GMP, monocyte 
and DCP/LP lineages on DMSO and nuclease inhibitor 
treated samples (Fig. 6A). Many regulons were differen-
tially active along the pseudotimes between the nuclease-
inhibited and control cells (Figure S13). For each of the 4 
trajectories, APEX1 nuclease-inhibited samples displayed 
an earlier enhanced activity of master TFs (regulons) pro-
moting differentiation (Fig. 6B). Pro-MEP (Tal1, Gata2, 
Gata1) [62], pro-erythroid (Klf1) [62], pro-megakaryocyte 
(Fli) [62] and pro-myeloid (Bach1) [74] TFs in the MEP 

Fig. 5  Differential gene expression and regulon activity analyses 
identify chiefly downregulated interferon signaling in HSPC prog-
eny following APEX1 REF1 inhibition. (A) Heatmaps displaying 
differentially expressed genes (DEGs) in the HSC cluster 0, the LSK 
cluster 3 and the early myeloid progenitor cluster 2, after 7-days of 
APEX1 REF-1 (E3330 and APX2009) or APEX1 nuclease (Inhibi-
tor III) inhibition compared to DMSO treated cells. DEGs common 
to all 3 inhibitor treatments are highlighted in gray, DEGs present 
after both REF-1 inhibitions are highlighted in blue and DEGs only 
present after nuclease inhibition with Inh. III are highlighted in pink. 
(B) Single-sample gene set enrichment analysis (ssGSEA) for inter-
feron responses of cluster 0, 2, and 3 (HSCs, early myeloid progeni-
tors, and LSKs) using published gene lists (GO:0034340 for type I 
interferon and GO:0034341 for type II interferon). Dunn’s post hoc 
tests (following Kruskal–Wallis rank sum test) were used to com-
pare each treated group to the DMSO. p < 0.05 (*), p < 0.01 (**), 
p < 0.001(***), p < 0.0001 (****). (C) Cytoscape representation of 
the specific downregulated regulons upon both APEX1-REF-1 inhi-
bition for the HSC cluster 0 and the LSK cluster 3. The nodes are 
the differentially active transcription factors (TFs) following REF-1 
inhibition, and the node size represents the percentage of target genes 
of each TF that are differential expressed. The node gradient color 
(from light blue to dark purple) represents the number of target genes 
that are negatively regulated compared to DMSO condition  (log2 
fold change <0). TFs that are  among the DEGs are highlighted by 
red squares, and the TFs that were previously published to interact 
directly with REF-1 are highlighted by blue circles. The black arrows 
indicate when a TF has another TF as target gene.
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Fig. 6  Earlier activation of differentiation regulons following APEX1 
nuclease inhibition in HSPCs. (A) Pseudotime inferred by Slingshot 
for 4 distinct trajectories (megakaryocyte-erythroid progenitor (MEP), 
granulocyte-monocyte progenitor (GMP), monocyte and dendritic 
cell/lymphoid progenitor (DCP/LP)) of DMSO and Inh. III treated 
HSPCs is shown on the RNA-UMAP. For each of the 4 trajectories, 
the HSCs (cluster 0) were defined as root cells. Clusters of interest for 
each trajectory were subsetted prior to Slingshot analysis. Cluster 0, 
2, 3, and 5 were used for the MEP trajectory, cluster 0, 2, 3, and 4 
for GMP trajectory, cluster 0, 3, 6, and 7 for the monocyte trajectory, 

and cluster 0, 3, and 8 for the DCP/LP trajectory. Cells of clusters dis-
played in gray were not used for the respective pseudotime analysis. 
(B) Selected differentiation regulons for each of the 4 defined trajec-
tories and their median regulon activity along the pseudotime. These 
selected regulons are among the regulons that are significantly dif-
ferentially active along the pseudotime between the nuclease inhibitor 
(pink line) and DMSO (black line) treated cultures (entire list of dif-
ferentially active regulons in Figure S13, Supplement File 8). Number 
indicated in between brackets after the regulon is the number of targets 
identified in the entire data set by SCENIC analysis.
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trajectory; granulopoiesis (Cebpe, Cebpa, Gfi1) [69], mast 
cell development (Mitf) [75] and monocyte differentia-
tion (Irf8) [70] regulons in the GMP trajectory; monocytic 
(Irf8, Klf4, Jun, Junb, and Cebpb) [70] and macrophage 
(Mafb) [76] differentiation TFs in the monocyte trajectory; 
TFs necessary for plasmacytoid DC differentiation (Irf8 
and SpiB) [72], B development cell (Pax5) [22], develop-
ment/maturation of DC, B-, T- and NK cells (RelB and 
Ets-1) [77, 78] in the DCP/LP trajectory; were all active 
in the nuclease inhibitor sample before being active in the 
DMSO sample (Fig. 6B).

Overall, the transcriptomic data demonstrated that the 
APEX1 nuclease function, contrary to the redox function, has 
only a minor gene regulating function in HSPCs. However, 
its inhibition switches on differentiation programs towards all 
hematopoietic lineages, thus promoting HSPC commitment.

APEX1 REF‑1 Function was Dispensable during HSPC 
Proliferation in Inflammatory Cytokine Inducing 
Conditions

The transcriptomic data surprisingly showed that decreased 
expression of IRGs might underlie HSPC expansion and 
survival defects following REF-1 inhibition. Indeed, when 
we measured inflammatory cytokine/chemokine concentra-
tions in HSPC-conditioned PVA medium in the presence 
of REF-1 inhibitors, the already very low concentrations of 
CCL5, IL-1β, and IFN-β appeared to decrease even further 
(Fig. 7A). However, it is commonly believed that high levels 
of pro-inflammatory cytokines or IFN-α/γ treatment impair 
HSC functionality and ex vivo expansion [44, 79–81].

In all the above HSPC expansion experiments, we used a 
PVA-supplemented medium described to reduce inflamma-
tory factors secreted by HSCs and their progeny and thereby 
allowing expansion of in vivo repopulating HSCs, compared 
to albumin containing medium [44]. During hematopoietic 
development where—as in our in vitro PVA-based culture 
system—HSPCs are highly proliferative, IFN signaling 
is required for HSPC functionality [82, 83]. This let us to 
hypothesize that although REF-1 function is required for 
functional HSPC expansion in medium containing low levels 
of inflammatory factors (PVA-based), it might be dispensa-
ble for HSPC under culture conditions (albumin-containing, 
such as SFEM), that do not support functional expansion of 
the immature HSPC compartment but are associated with 
fast differentiation of HSPCs into  Lin+ cells and production 
of high levels of inflammatory cytokines (Fig. 7B, S14).

In line with our hypothesis, no significant HSPC expan-
sion defect was observed following REF-1 inhibition 
in SFEM culture conditions (Fig. 7C, S15A). E3330 or 
APX2009 did neither affect the percentage, nor the absolute 
number of cells on day 3 or day 7, and this for all the dif-
ferent HSPC progeny populations. Even when we increased 

the inhibitor concentration, no expansion defect was seen. 
By contrast, addition of the nuclease inhibitor to the SFEM 
cultured cells resulted in a similar expansion defect as seen 
in PVA-based medium (Fig. 7C, S15A).

To further demonstrate that the effect of REF-1 inhibi-
tors on HSPC expansion in PVA-based medium is medi-
ated by loss of IRGs, we repeated the cultures adding a 
low concentration of IFN-γ or IFN-α for 7 days in the 
presence of the REF-1 inhibitors. Addition of IFN-γ 
to the control DMSO cultures tended to decrease pro-
genitors  (Lin− and  Lin−cKit+) and HSCs (defined as 
LSK-SLAM  EPCR+CD34−cells, to enrich for functional 
HSCs after IFN exposure [84]). By contrast, addition of 
IFN-γ to the REF-1 inhibitor treated HSPCs increased 
the total cell number, progenitors  (Lin− and  Lin−cKit+) 
as well as HSCs (LSK-SLAM  EPCR+CD34−), even 
if the latter was only significant for APX2009. Thus, 
IFN-γ could partially rescue the REF-1 mediated expan-
sion defect of HSPCs cultured in PVA-based medium 
(Fig. 7D, Figure S15B). However, IFN-α did not signifi-
cantly influence the expansion of REF-1 treated HSPCs 
(Figure S15C).

These studies demonstrate that the APEX1 REF-1 medi-
ated inhibition of interferon related TFs and genes in prolif-
erating HSPCs is only observed when HSPCs are cultured in 
PVA-based medium, which limits production of inflamma-
tory cytokines and expands functional HSCs. Consistently, 
addition of exogenous IFN-γ to PVA-based medium could 
partially rescue the effect of the REF-1 inhibitor, APX2009, 
on HSPC expansion.

Discussion

We provide here, to our knowledge, the first evidence that 
APEX1 is an intrinsic key regulator for adult hematopoiesis, 
as APEX1-deficient HSPCs were unable to restore the blood 
system following transplantation. This in vivo phenotype 
was also recapitulated under culture conditions maintaining 
functional HSCs [44]. Use of specific APEX1 domain-block-
ing chemicals demonstrated that both the APEX1 nuclease 
and redox activities are crucial for the support of HSPC and 
lineage-committed progenitor survival and proliferation. 
Single-cell transcriptomics of HSPCs and their progeny 
identified distinct mechanisms responsible for hematopoietic 
defects induced by nuclease and redox APEX1 inhibition. 
Whereas inhibition of the APEX1 nuclease function induced 
an early activation of differentiation programs, inhibition of 
the APEX1 redox function significantly downregulated IRGs 
in HSCs and their progeny, which appears to be required 
for maintenance and expansion of HSPC culture conditions 
maintaining in vivo repopulating HSCs [44].
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Most studies evaluating the role of APEX1 nuclease and 
redox domains in different cell types and tissues found one 
catalytic function to be the most relevant [29, 38, 85–87]. 
REF-1, not the nuclease function, was needed to generate 
mouse embryonic  CD34+ progenitors in vitro [38]. By con-
trast we provide evidence that both the APEX1 nuclease and 
redox domains are indispensable to support adult BM HSPC 
proliferation, and that inhibitors of either domain differen-
tially affected HSPCs and their progenies.

Indeed, even though decreased HSPC expansion, 
enhanced apoptosis, and reduced cell division were induced 
by REF-1 and nuclease inhibitors, single-cell CITE-seq anal-
ysis demonstrated distinct transcriptional changes underlying 
the expansion defects following inhibition of either domain. 
In the presence of the APEX1 nuclease inhibitor, a signifi-
cant decrease in HSCs and multipotent progenitors was 
observed, with a concurrent increased frequency of lineage-
committed cells and progenitors. The higher vulnerability 
of HSPCs, compared to the more committed cells following 
nuclease inhibition, was associated with pro-apoptotic and 
pro-differentiation transcriptional changes in HSPCs. Cell 
division-uncoupled HSC differentiation into downstream 
lineages has recently been reported [88]. Hence, nuclease 
deficiency favors HSPC fate specification over maintenance, 
while simultaneously limiting their self-renewal activity. 
Interestingly, HSCs with accumulated DNA damage can be 
forced either into differentiation to limit their self-renewal 
capacity [58, 89], or into DNA damage-induced apoptosis 
[90]. Although our scRNA seq data showed upregulation 
of Wig-1, a p53 target gene induced in HSPCs after in vivo 

exposure to benzene or 5-fluoro-uracil [91, 92], we could not 
detect enhanced DNA damage lesions after 7 days of Inh. III 
exposure. It is possible that under nuclease inhibition condi-
tions, other DNA repair proteins may be able to resolve the 
AP DNA lesions in an APEX1-independent manner [39, 93, 
94], even if APEX1 is believed to be the most effective AP 
site-processing enzyme in mammals.

HSPC expansion loss might also be caused by the non-
DNA repair functions of the nuclease APEX1 domain. For 
instance, the APEX1 nuclease domain has been shown to 
modify gene transcription by affecting RNA decay and/or 
miRNA processing [11, 12], or even through its non-canon-
ical role in DNA demethylation [95]. In line with the latter 
example, HSPC dysfunction has recently been correlated to 
DNA hypermethylation and chromatin accessibility changes, 
which were associated with downregulation of the Egr-1 
network [68]. We demonstrated that Egr-1, a TF that can 
regulate HSC proliferation [96], was specifically downregu-
lated in HSCs upon Inh. III treatment. Finally, the APEX1 
nuclease domain might also affect hematopoiesis by regulat-
ing cell fate decisions, as has been described for instance for 
stem cell differentiation towards the neuroectoderm lineage 
and stem cell reprogramming [97].

Following APEX1 REF-1 inhibition with E3330 or 
APX2009, HSCs and their downstream lineages were biased 
towards the megakaryocyte lineage, with an accumulation 
of early myeloid progenitors and concurrent loss of LSKs, 
LMPs, lymphoid and DC progenitor cells, as well as mono-
cytes. This suggests a lineage specific effect of the APEX1 
REF-1 function. In line with this notion is the observation 
that murine BM cells treated with E3330 produced fewer 
myeloid progenitors, GMPs, and erythroid progenitors in 
colony forming assays [98]. Likewise, E3330 treatment 
caused adult and embryonic stem cells to differentiate 
towards some but not all neuronal sub-types [99].

Our transcriptomics data identified APEX1 redox func-
tion to be key for regulating IRGs in expanding HSPCs. Var-
iable effects of REF-1 inhibition on IFN signaling in other 
systems have been reported. E3330 was shown to activate 
p38 MAPK signaling in antigen presenting cells and thereby 
modulating IFN-γ production in T cells [100]. By contrast, 
other studies demonstrated that REF-1 induces lipopolysac-
charide-dependent pro-inflammatory cytokines in monocytic 
or macrophage cell lines in an NF-κB dependent manner [34, 
35]. Similar to p38 MAPK, NF-κB is also known to control 
interferon signaling [79, 101].

In general, it is believed that high levels of IFN signaling 
impair in vitro and in vivo BM HSC self-renewal capacity 
[56, 79–81, 102, 103]. However, we here demonstrated that 
IFN signaling is also required for functional ex vivo expan-
sion of adult murine HSCs. This is in line with what has been 
observed during development, where IFN signaling sup-
ports perinatal HSC and lymphoid progenitor development 

Fig. 7  APEX1 REF-1 function was dispensable during HSPC pro-
liferation in inflammatory cytokine inducing conditions. (A) CCL5, 
IL-1β and IFN-β levels in the supernatant of day 7 HSPC cultures in 
the presence of REF-1 inhibitors. N = 2 independent culture experi-
ments, with 2 biological replicates  per  experiment. (B) Cytokine 
measurement in the supernatant of PVA- and SFEM-based HSPC 
cultures after 7 days. N = 2 independent culture experiments, with 2 
biological replicates per experiment. Mann–Whitney test was used to 
compare the groups. (C) Expansion of the different  Lin−cKit+ prog-
eny exposed continuously for 3 or 7 days to the E3330 or APX2009 
REF-1 inhibitors, or the Inhibitor III (Inh. III) nuclease inhibitor in 
albumin-based medium (SFEM). Log scaled axis was used for the 
expansion graphs. N = 2–7 independent experiments, with a total of 
4–13 donors per group for day  7, and N = 1–6 independent experi-
ment for day 3, with a total of 2–10 replicates per group. (D) Expan-
sion of HSPC progeny (total cells,  Lin−,  Lin−cKit+, LSK-SLAM and 
LSK-SLAM  EPCR+CD34−) following IFN-γ treatment with and 
without REF-1 inhibitors. Fold change of expansion was calculated 
for each sample relative to their corresponding non-IFN-γ control 
with and without REF-1 inhibitors. N = 4 independent culture experi-
ments, with a total of 6–8 biological replicates per group. Dunnett’s 
post hoc tests (following a one-way (in (D)) or two-way (in (C)) 
ANOVA/Mixed model matched analysis) were used to compare each 
treated group to their corresponding DMSO control condition. Data 
bars represent the mean ± SD, except for (D) where data bars repesent 
geometric mean ± geometric SD p < 0.05 (*), p < 0.01 (**), p < 0.001 
(***), p < 0.0001 (****).
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[82, 83], as well as during ex vivo human HSC culture using 
UM171, where pro-inflammatory NF-κB mediated signaling 
is required for true HSC expansion [104]. The skewing of 
differentiation towards the megakaryocyte lineage at the det-
riment of monocytic differentiation caused by REF-1 inhibi-
tion is consistent with studies that illustrated that IFN type 
I signaling repressed in vitro megakaryocyte differentiation, 
while being required for  Ly6Chigh monocyte differentiation 
[105, 106]. Our results also show that REF-1 inhibition does 
not impair HSPCs when cultured under conditions that induce 
much higher levels of inflammatory factors (albumin-contain-
ing SFEM medium); conditions associated with significantly 
less HSC maintenance compared to PVA-based culture that 
maintains functional HSCs [44]. Hence, the REF-1-mediated 
impairment of HSPC appears to be specific for culture condi-
tions where inflammatory cytokines are low, and as a result 
repopulating HSCs are expanded. Partial rescue of the HSPC 
expansion defect (due to APX2009) was achieved by IFN-γ 
treatment. To achieve a complete rescue might require that 
cells are exposed to not only IFN-γ but to a balanced mix-
ture of several inflammatory cytokines. Alternatively, the 
fact that HSCs, like other stem cells, intrinsically express 
IFN-independent IRGs and do poorly respond to exogenous 
IFN-β [107], might explain that the effect of REF-1 inhibition 
can only be partially rescued by exogeneous IFN-γ and not 
by IFN-α. Further studies will have to elucidate why IFN-γ 
only partially rescued the APX2009 treated HSPCs and not 
the E3330 ones. Moreover, it remains to be determined if the 
decreased IRG expression and reduced related TF activity 
in the HSPCs following REF-1 inhibition is due to specific 
HSPC-intrinsic IFN signaling reduction, or if it is caused by 
reduced extrinsic IFN/inflammatory signaling in the altered 
mature lineages of the culture.

In conclusion, our study highlights the importance 
of APEX1 during regenerative hematopoiesis. In addi-
tion, our data indicate differential roles for the APEX1 
nuclease and REF-1 functions in HSPC expansion and 
maintenance. Domain specific KO mouse models could 
elucidate the function of both APEX1 domains during 
in vivo hematopoiesis. Such studies might also shed light 
on the role of APEX1 during steady-state hematopoiesis, 
where most adult HSCs are dormant. The APEX1 nucle-
ase function plays predominately a role in HSPC survival 
and maintenance even if we do not yet fully understand 
this mechanism. By contrast, APEX1 REF-1 functions by 
regulating interferon transcriptional networks in HSPCs 
and their progeny, thereby supporting functional prolifera-
tion of HSPCs. Whether inhibition of the APEX1 REF-1 
function blocks differentiation towards monocyte and DC/
lymphoid lineages and favors MEP commitment, and/or 
whether some committed cells are more susceptible to die 
than others due to decreased IFN/inflammatory signaling, 
still needs further evaluation. Also, which TF(s) is (are) 

the upstream REF-1 target(s) in HSPCs, governing the IRG 
expression, remains to be determined. Finally, this study 
may aid in our understanding of potential hematopoietic 
side effects associated with the use of APEX1 inhibitors 
in cancer therapy and suggests a possible beneficial thera-
peutic use of E3330 in interferonopathies.
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