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Abstract
Multi-omics usually refers to the crossover application of multiple high-
throughput screening technologies represented by genomics, transcriptomics,
single-cell transcriptomics, proteomics and metabolomics, spatial transcrip-
tomics, and so on, which play a great role in promoting the study of human
diseases. Most of the current reviews focus on describing the development
of multi-omics technologies, data integration, and application to a particular
disease; however, few of them provide a comprehensive and systematic intro-
duction of multi-omics. This review outlines the existing technical categories
of multi-omics, cautions for experimental design, focuses on the integrated
analysis methods of multi-omics, especially the approach of machine learn-
ing and deep learning in multi-omics data integration and the corresponding
tools, and the application of multi-omics in medical researches (e.g., cancer,
neurodegenerative diseases, aging, and drug target discovery) as well as the
corresponding open-source analysis tools and databases, and finally, discusses
the challenges and future directions of multi-omics integration and application
in precision medicine. With the development of high-throughput technolo-
gies and data integration algorithms, as important directions of multi-omics
for future disease research, single-cell multi-omics and spatial multi-omics
also provided a detailed introduction. This review will provide important guid-
ance for researchers, especially who are just entering into multi-omics medical
research.
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1 INTRODUCTION

As medical technology rapidly evolves, researchers need
to conduct an in-depth analysis of the pathogenesis of dis-
eases. The omics technologies provide a high-throughput
screening method to uncover the detailed biological infor-
mation of human diseases efficiently and rapidly. Usually,
the omics technologies included genomics, transcrip-
tomics, proteomics, metabolomics, single-cell transcrip-
tomics, single-cell multi-omics, spatial transcriptomics,
and others. Each type of omics data provides differentially
expressed disease-associated molecules that can serve as
biomarkers during disease progression and provide insight
into which biological pathways or processes differ between
disease and control groups. However, it should be noted
that single omics technology cannot give full play to its
application value in disease research.Mutations that occur
in DNA will affect the expression of proteins, which may
result in partial or total loss of some functions, leading to
biological defects. But it is hard to tell the extent of the loss
of function based on the genome alone. The level of gene
expression, and ultimately howmuch protein is produced,
both are related to the state of the disease. In addition, the
occurrence of a disease may be related to a mutation in a
gene, or an error in the transcription, translation, or other
processes of the gene. In real research, one type of omics
research can only carry out the correlation analysis with
diseases, mainly reflecting the change of disease process
and cannot explain the causal relationship. In Alzheimer’s
disease, for example, even if a biochemical molecule is sta-
tistically associatedwith the disease, it does not explain the
complex mechanisms underlying the disease.
Integration of different types of omics data can eluci-

date underlying pathogenic changes of the disease, which
can then be verified in further molecular researches. By
integratingmulti-omics, scientists can filter out novel asso-
ciations between biomolecules and disease phenotypes,
identify relevant signaling pathways, and establish detailed
biomarkers of disease. Therefore, the integration of var-
ious omics data will facilitate the match of associations
betweenmolecular-disease and phenotype-environmental

factors. For instance, the molecular profiling in primary
tissues through multi-omics integration to reveal molecu-
lar mechanisms of the progress of disease,1 estimation of
the biological age of organs (liver, kidneys, etc.), and sys-
tems (immune and metabolic systems) by a multi-omics
approach for the assessment of aging status.2 Moreover,
since the occurrence and development of diseases are
not only affected by the latest gene mutations, but also
by the environmental factor, genetic background, gene
regulation, and so on, the research of multi-omics from
different levels has also laid the foundation for the devel-
opment of systems biology technology, such as multi-
omics reveals systems biology in cardiovascular disease.3
Recently, single-cell omics and spatial omics provide
more detail information about the mechanisms of inter-
actions between intracellular and intercellular molecules
that control development, physiology, and pathology.4 The
integration analysis of single-cell transcriptomics and spa-
tial transcriptomics has successfully resolved the logic
underlying spatially organized immune-malignant cell
networks in human colorectal cancer.5 However, although
many high-throughput omics technologies have made
good research progress in the medical field, there are
few systematic introductions on how multi-omics should
be carried out in disease research, such as experimental
design, data integration, analysis tools, and so on,6 espe-
cially for researchers who are just coming or preparing to
conduct multi-omics research.
In this review, we briefly described the types of multi-

omics used in human disease research, and focused on the
experimental design, data integration, application, chal-
lenges, and future development directions of multi-omics.
In particular, we provide a detailed description of the
experimental design and data integration in multi-omics
research. We also have offered open-source tools that can
be used to analyze and integrate multi-omics data, which
will greatly benefit researchers who are unfamiliar with
algorithms. This reviewwill be described in sequence from
omics classification, experimental design, data integration,
disease application, challenges and future development
directions, and conclusion, which will provide valuable
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F IGURE 1 Multi-omics approaches in disease research. Here lists the currently main available methods for each omics.
RNA-transcriptomics including next-generation sequencing (NGS), single-cell sequencing, and microRNA microarray. Proteins-proteomics
including 2D differential gel electrophoresis (2D-DIGE), liquid chromatography-mass spectrometry (LC-MS), matrix-assisted laser desorption
ionization time-of-F (MALDI-TOF-MS), tandem mass tag (TMT), and selected reaction monitoring (SRM). DNA-genomics and epigenomics
including genome-wide association studies (GWAS), whole-exome sequencing (WES), next-generation sequencing (NGS), and single-cell
sequencing. Images—radiomics including positron emission tomography (PET), magnetic resonance imaging (MRI), and computed
tomography (CT). Metabolites—metabolomics including mass spectrometry and NMR spectroscopy. Microbe—microbiomics including 16S
rRNA gene sequencing.

guidance for researchers or newcomers in the field of
multi-omics.

2 THE CATEGORIES OF OMICS

With the development of high-throughput technology,
there are now many types of omics in the medi-
cal field, mainly including transcriptomics, proteomics,
genomics and epigenomics, single-cell omics, spatial tran-
scriptomics, radiomics, metabolomics, and microbiomics,
whose applications mainly involve cell molecular level,
intestinal microbial system, and pathological imaging, and
so on (Figure 1).

2.1 Genomics

Genomics is the application of omics in entire genomes,
which aims to collect character and quantify all genes of
an organism, uncover their interrelationship, and influ-
ence on the organism. Genomics is the earliest and most
common application in medicine, such as The Human
Genome Project.7 Genomics usually contains the com-
ponents of high-throughput DNA sequencing, sequence
assembly, and genome annotation.8 Genome-wide associ-
ation study (GWAS) is a typical application of genomics
to find out the existing sequence variation in the whole
human genome, namely, single nucleotide polymorphism
(SNP), and screen out disease-related SNPs (https://

www.ebi.ac.uk/gwas/). The associated technologies con-
tained genotyping array,9 third-generation sequencing for
whole-genome sequencing,10 and exome sequencing.11 In
GWAS studies, the millions of genetic variants across the
genomes of multiple individuals are tested to identify
genotype−phenotype associations.12 Despite GWAS can
identify novel disease-associated susceptibility genes, bio-
logical pathways and translate these findings into clinical
care,most of the acquired variants and genes have no direct
biological relevance to disease.13

2.2 Transcriptomics

Transcriptomics refers to the study of the expression
of all the RNAs from a given cell population, which
offer a global perspective on molecular dynamic changes
induced by environment factors or pathogenic agents. The
transcriptome of RNAs detection includes protein-coding
RNAs (mRNAs), long noncoding RNAs, short noncoding
RNAs (microRNAs, small-interfering RNAs, small nuclear
RNAs, piwi-interacting RNAs, and enhancer RNAs), and
circular RNAs. In addition to mRNAs, noncoding RNAs
also have associations with diseases,14 such as diabetes,15
cancer,16 and so on, circular RNAs have a link with car-
diovascular disease,17 CNS disease,18 and cancer.19 Since
mRNA accounts for 1%−4% of the overall transcript, the
use of the transcriptome to study the impact of non-
coding RNAs on disease is an important trend in the
future. The usually used technology for transcriptomics is

https://www.ebi.ac.uk/gwas/
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RNA-seq, which can quality and quantify RNA transcripts
from little RNA sample.20 Currently, with the development
of technology, the single-cell transcriptome (single-cell
RNA sequencing [scRNA-seq]) becomes hot, which can
detect the transcripts of specific cell types in diseases (such
as cancer,21 Alzheimer’s disease,22 etc.).

2.3 Proteomics

Proteomics enables themaximum identification and quan-
tification of all proteins in cells or tissues. Because the
level of gene transcription is often affected by post-
transcriptional modifications, the RNA analysis usually
lacks correlation with protein expression.23 Thus, pro-
teomics can quantify the protein expression and provide
the directly associated information with the environment
change or disease progression. The large-scale study of pro-
teins can be detected by mass spectrometry-based method,
affinity proteomics, protein chips, and reverse-phased pro-
tein microarrays.24 The mass-based proteomics is widely
used in modern medical research and classified as sta-
ble isotope labeling proteomics and label-free proteomics,
while labeled proteomics can shorten the detection time
of mass spectrometry significantly and reduce the batch
effect between samples.25 In addition, the protein and pro-
tein interaction can also be identified by a combination of
immunoprecipitation andmass spectrometry, for example,
purification of target proteins by antibodies (BMPR-1B),
and followed by the detection of interacting unknown pro-
teins bymass spectrometry, finally, acquired the interacted
proteins (GDF5, GDF9, RhoD, and HSP10).26 Notewor-
thy, the post-translational modifications can be broadly
found in proteins after translation, such as phospho-
rylation, glycosylation, ubiquitination, acetylation, and
nitrosylation,27 and those modifications are critical to
intracellular signal transduction, protein transport, and
enzyme activity.28 Studying a set of modified proteins can
better understand the progression of the disease, such
as phosphoproteomics uncover the novel mechanism in
type 2 diabetes,29 lung adenocarcinoma,30 nonalcoholic
steatohepatitis,31 Alzheimer’s disease,32 and so on.

2.4 Metabolomics

Metabolomics (usually containing untargeted
metabolomics and targeted metabolomics) focuses
on the study of a set of small molecule metabolites derived
from cellular biological metabolic processes. Those
metabolites include small molecule substrates, interme-
diates, and end products of cellular metabolism, such as
carbohydrates, fatty acids, and amino acids. In general,

metabolite analysis can immediately reflect dynamic
changes in cell physiology, and abnormal metabolite level
or ratio may induce disease. Metabolomics will help to
elucidate the mechanisms of disease progression.33–35
Additionally, there has a quantifiable correlation between
metabolomics and other omics (genomics, transcrip-
tomics, proteomics, etc.), such as mRNA count can
predict metabolite level,36 gut bacteria has a correlation
with amino acids level in patients with fibromyalgia,37
the expressions of creatine kinase and mitochondrial
protein are consistent with acylcarnitine and acetyl-CoA
in human hypertrophic cardiomyopathy.38 Moreover, the
Human Metabolome Database (https://hmdb.ca/) is a
free database containing detailed information of small
molecule metabolites in the human body that can be
used for metabolomics research,39 and the corresponding
metabolites analysis can be performed by MetaboAnalyst
5.0 (https://www.metaboanalyst.ca/, a free platform
for metabolomics analysis).40 Finally, the associated
databases and related technologies for metabolomics
include nuclear magnetic resonance (NMR)41 and mass
spectrometry (MS)-based methods (gas chromatograph–
mass spectrometer (GC-MS), liquid chromatography
tandem mass spectrometry(LC-MS), and capillary
electrophoresis–mass spectrometry (CE-MS)).42,43

2.5 Single-cell omics

Recently, the rapid development of single-cell sequenc-
ing technology has become popular in medical research.
Single-cell sequencing has great power in elucidat-
ing the heterogeneity of transcriptomics, genomics, and
epigenomics in cellular populations, and corresponding
changes in those levels.44 To be specific, single-cell tran-
scriptomics aims to accurately understand the transcrip-
tome status of heterogeneous cell populations. Single-cell
genomics reveals genetic heterogeneity from cells with or
without mutation accumulation. Single-cell epigenomics
is used for detecting footprints of differentiation of indi-
vidual cells. For instance, single-cell transcriptome iden-
tified distinct transcriptional responses in lung cancer
cell lines (CCLs), which were sensitive and insensitive
to receptor tyrosine kinase inhibitors, and found dis-
tinct transcriptional modules that may be associated with
early drug resistance.45 Single-cell targeted DNA sequenc-
ing obtained the information that cells that acquired
RAS/MAPKmutations have a resistance to FLT3 inhibitors
in acute myeloid leukemia.46 Single-cell ChIP-sequencing
revealed a distinct H3K27me3 pattern in resistant cells
obtained from breast cancer.47 In addition, single-cell
proteomics, another research center stage after single-
cell sequencing,48 enables qualitative and quantitative

https://hmdb.ca/
https://www.metaboanalyst.ca/
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analysis of protein composition within individual cells
to reveal fundamental differences in the types and states
of different individual cells, such as tumor heterogene-
ity, stem cell differentiation, germ cell development, and
circulating tumor cells.
Moreover, single-cell analysis has a tendency to enter the

multi-omics age. By integrating different types of molecu-
lar data (such as data onmutations, mRNAs, and proteins)
from single-cell, a comprehensive understanding of cel-
lular processes can be achieved. Mahdessian et al. have
systematically identified cell cycle-associated heteroge-
neously expressed proteins at themRNAand protein levels
in single-cell level.49 Meanwhile, there are many assay
platforms for single-cell analysis, such as 10×Chromium
Single Cell Gene Expression Solution, BD Rhapsody™
Single-Cell Analysis System, and so on.

2.6 Spatial transcriptomics

Spatial transcriptome (ST) is a technology that preserves
the spatial location of tissues and simultaneously resolves
transcriptome information in tissue sections. This tech-
nique is used to analyze and describe the expression
profiles of specific cell types in a spatial dimension to
understand transcription differences among organs, tis-
sues, and pathological states. ST can also be able to parse
transcripts of tissues at different spatial locations. For
example, ST has successfully pinpointed the type of testic-
ular cells in a single spermatogenic tubule in mammals.50
By detecting spatial gene expression in HER2-positive
breast tumors, ST spatially maps tumor-associated cell
types and obtains tertiary lymphoid-like structures whose
signal intensity correlates with overall survival.51 The ST
technologies include next-generation sequencing (NGS)-
based techniques, where positional information is encoded
onto transcripts prior to NGS sequencing, and imaging-
based methods include in situ sequencing, where tran-
scripts are amplified and sequenced in tissue, and in situ
hybridization (ISH)-basedmethods, where imaging probes
are sequentially hybridized in tissue. Moreover, spatial
omics techniques have evolved to the spatial multi-omics
stage. The combination of spatial transcriptomics and pro-
teomics has identified the multicellular mechanisms and
early neurodegenerative pathways in the pathogenesis of
progressive multiple sclerosis.52

2.7 Epigenomics

Epigenomics focuses on the reversible modifications of
DNA or histones that affect gene expression, and the
mainmodification, including DNAmethylation or histone

modification.53 The modifications of DNA and histone act
as important roles to regulate gene expression and cellu-
lar processes (such as development or differentiation).54
Those modifications usually can be influenced by environ-
mental or genetic factors, and sometimes may be lasting
or heritable.55 Many researchers reported that epigenetic
modifications have an association with diseases, such as
type 2 diabetes,56 cardiovascular disease,57 cancer,58 and
so on. Epigenetic marks are often tissue-specific, and the
related research program contains Reference Epigenome
Mapping Centers.59 NGS is the common technology for
epigenomics analysis.

2.8 Microbiomics

Microbiomics is to study the ecological community of
microorganisms that symbiotically or pathologically live
on plants and animals, including bacteria, archaea, pro-
tozoa, fungi, and viruses.60 Due to the composition of the
human microbiome being unique across individuals, the
influence of the human genome on the gut microbiota
is limited and generally influenced by the environment.61
Thus, the microbiome can be used to explain clinical
variations in phenotypes of interest under specific con-
ditions better than genetic factors in humans. For those
characteristics of the microbiomics, many diseases have
found a relationship with the gut microbiome, such as
neurological disorders,62 renal failure,63 and cancer.64 The
macro-genome and macro-transcriptome are the main
technical tools for studying themicrobiome, and 16S rRNA
gene sequencing is the most commonly used method for
microbial diversity analysis.65

2.9 Radiomics

In the medical field, radiomics refers to extracting high-
throughput image features from the region of interest of
radiographic images (computed tomography (CT), mag-
netic resonance (MR), positron emission tomography
[PET], etc.) and the precise quantification of lesion areas,
and key information (such as biomarker) throughmachine
learning (ML) methods,66 and ultimately aiding in the
diagnosis, classification, or grading of diseases.67,68 The
radiomic features from PET imaging are better at pre-
dicting treatment response than conventional measures,
such as tumor volume, diameter and metastases, and
so on.69,70 Deep learning (DL) of PET reconstruction
and post-processing of traditional reconstructed images
can restore or reconstruct PET images of higher quality
than traditional ordered-subset expectation maximization
through reducing image noise to obtain more details of
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F IGURE 2 Notable recommendations for experimental design of multi-omics. We list a lot of factors influencing the experimental
results during experimental design, among them, three main factors include disease characteristics, choice of disease model, sample size, and
phenotypic data. The disease characteristics contain pathogenic factors (bacteria or virus), genome instability and mutation, progressive
disease (neurodegenerative disease), and sample type (tissue, cell, blood, or microbe). The disease model can be chosen according to suitable
model type (human, mouse, or cell line), sample availability (unavailable samples, such as brain tissue and cerebrospinal fluid), and
human-omics databases (access to existing human disease omics data to compensate for uncommon disease models). The sample size and
phenotypic data also need to be considered in multi-omics experiment, such as the appropriate number of animal or human samples to
achieve economically reliable omics results, while the appropriate number of detected samples usually according to confounding factors
(batch effect, environmental stress like diet and smoking). The phenotypic data contain pathology, questionnaires, images, and so on.

radiation features.71 However, class imbalances and over-
fitting are common defects in radiomics, such as the low
prevalence of certain diseases in the cohort results in an
inability to distinguish between affected and unaffected
lesion areas on PET images.71

3 EXPERIMENTAL DESIGNS AND
CAUTIONS FORMULTI-OMICS

Due to the high cost of multi-omics technology in experi-
ments, different types of omics have differences in sample
collection time, collection conditions, and setting groups,
and samples involving human sources are more pre-
cious, careful design of experiments is often required in
multi-omics studies. And detailed design will improve the
repeatability and reliability of multi-omics results, espe-
cially for large sample sizes, multiple comparison groups,

and specific data analysis experiments.6 Moreover, the
experimental design of reliable research is often insepara-
ble from excellent statistical guidance, which can help to
identify the research problem, study analysis, data inter-
pretation, and conclusion.72 Here, we will discuss some
notable captions for multi-omics design (Figure 2).

3.1 Sample collection according to
disease characteristics

Disease characteristics are important factors to consider
in multi-omics study design. Diseases caused by single-
gene mutations often have fewer pathogenic factors that
play an important role in the development of the disease.
For example, Duchenne muscular dystrophy is caused by
a gene mutation of dystrophin, which helps keep muscle
cells intact.73 The mutation of phenylalanine hydroxylase
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gene-induced phenylalanine accumulated in the body that
leads to phenylketonuria.74 For these types of diseases, col-
lecting special tissue samples at specific time points and
performing multi-omics detection to deeply analyze the
immediate molecular changes caused by pathogenic fac-
tors will help to enhance the understanding of the disease
and find possible treatment strategies. Additionally, the
pathogenic factors of some diseases also contain infectious
agents, more than genetic mutations, such as Coronavirus
disease 2019 (COVID-19).
However, most diseases are caused by multiple factors

rather than focusing on a single factor, and the pathogene-
sis is more complicated. Combinations of different factors
may converge into phenotypically similar states. For these
common and complex diseases, pathologic processes usu-
ally span a long time, and involve the interaction with
genes, environment factors, and so on. Therefore, it is nec-
essary to collect at multiple time points and different types
of tissue samples for multi-omics analysis, so as to reveal
the mechanism of disease occurrence and development
in depth. For example, in the case of Alzheimer’s disease
(AD),which has an uncertain etiology,multi-omics studies
often analyze AD patients or AD model mice at different
ages and/or different types of samples (cerebrospinal fluid,
plasma, or brain tissue).75–77

3.2 Establishment of the disease model
(human or animal)

The main purpose of medical research is to solve human
diseases, so human-related omics research has more
translational potential than animal model-related omics
research. Several human-omics databases have been estab-
lished, including epigenome and transcriptome databases
of different tissues or cell types, such as the public database
of IHEC Data Portal (https://epigenomesportal.ca/ihec/)
and the Human Protein Atlas (https://www.proteinatlas.
org/). Moreover, there have been some established large
human disease repositories, collecting medical informa-
tion and samples from different patients, such as the UK
biobank.78
However, there also have some limitations in the study

of human omics, and the replacement of animal dis-
ease models can solve these problems. For example, some
human samples are not easy to collect, there aremany con-
founding factors in human samples, and human-derived
cell lines cannot replicate the complex molecular network
changes in vivo. While the animal model has the advan-
tages of easy sample collection, uncontrolled sample size,
clear phenotype, high reproducibility, easy environmental
control, and so on. Animals play an important role in the
research of diseases caused by environmental factors and

can link omics datawith corresponding environmental fac-
tors to reveal the pathogenesis of diseases. For instance, an
animalmodelwas used to study the effects of a high-fat diet
on nonalcoholic fatty liver disease.79 Furthermore, com-
paring omics data from human and animal models will
help to validate the biological relevance of themodels, such
as mice as useful models for functional studies of AD gene
regulatory regions.80 Nevertheless, animal model also has
some application drawbacks, many transgenic models are
restricted to one genetic background, some human disease
manifestations cannot be reproduced in mouse models,
and mouse models may not account for human biological
processes in complex diseases.

3.3 Sample size and phenotypic data

The reliability of the information on omics results often
depends on effect size, the sample size tested, and the
magnitude of the effect of confounding factors. In terms
of human studies, there have been many confounding fac-
tors, such as diet and lifestyle. Therefore, omics research
on human diseases requires a large sample size to avoid
misinformation and false-positive results from individual
abnormal samples. The sample size calculated from the
initial efficacy is increasingly important for the reliability
of the results of large-scale studies.81 Moreover, omics
experiments often overlook the need for data analysis
before and during data collection, and most fields of
omics have not yet developed a gold standard for data
analysis. Thus, in order to ensure that the collected data
meet the requirements of subsequent analysis, the design
of omics research needs to carefully consider the main
objectives of the experiment and the analysis method
before collecting the data. For instance, in order to acquire
important molecules that are closely related to phenotype,
some critical phenotypic data need to acquire in omics,
such as the data of histological features, tumor stage,
smoking history, and mutation status need to be collected
in the study of lung adenocarcinoma.82 The acquisition
of phenotypic data of the disease is crucial for omics to
reveal the molecular changes in the progression of the
disease, and may directly find the key target molecules
of the disease. For example, in the multi-omics discovery
of peripheral blood biomarkers of Alzheimer’s disease,
various cognitive impairment scale scores (MMSE and
MoCA), brain imaging (PET and MRI), and other pheno-
type data play a decisive role in the discovery of diagnostic
biomarkers.83–86 Similarly, the purpose is to know the
differentially expressed molecules between the disease
and the control, so the experimental design should focus
on the sample size87; if the experiment wants to find new
molecules, the omics design should focus on a higher

https://epigenomesportal.ca/ihec/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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F IGURE 3 The methods for multi-omics data integration. Here simply shows the multi-omics data (such as genomics, epigenetics,
transcriptomics, proteomics, and metabolomics) integration method based on the correlation of each omics, molecular network construction
at different levels, and machine learning. The ultimate goal of data integration is to discover disease biomarkers, confirm
phenotypic spectrum and mechanisms, and identify therapeutic targets.

technical coverage depth, such as long-read
transcriptome.88 In addition, in order to avoid or minimize
technically introduced errors, batch effects introduced in
sample processing and data acquisition should also be
considered in the design of omics experiments.89,90

4 INTEGRATED ANALYSIS
APPROACH FORMULTI-OMICS DATA

Although the detection of multi-omics can more deeply
analyze the occurrence and development of diseases,
and advance the development of systems biology com-
pared with single omics, the integration of omics data
has always been a cumbersome and nonstandard difficult
problem. Inmost cases, multiple approaches to integrating
omics data at multiple levels can be employed depend-
ing on the experimental design.91 Before the integration
of multi-omics data, we need to understand the character-
istics of multi-omics data. The multi-omics data acquired
from different technology are usually heterogeneous,92
such as transcriptomics and proteomics have different
dynamic ranges and data distribution, due to the dif-
ferent normalization and scaling techniques among var-
ious omics analyses. In addition, some omics may pro-
duce null values due to being below the detection line
of the instrument, such as metabolomics.93 Therefore,
before integrating multi-omics data, the imputation94
and outlier detection95 for each omics data should be

considered separately. Next, we briefly discuss some
current common methods for multi-omics integration
(Figure 3).

4.1 Mining correlation and network in
multi-omics data

After acquiring multi-omics data, the fundamental analy-
sis contains single omics annotation, biological informa-
tion derived from single omics, and biological network
between two ormore omics data, such as gene andmetabo-
lite or protein (enzyme) and metabolite. However, the
integration of multi-omics data is the toughest problem
in dealing with multi-omics analysis. A relatively com-
mon and simple method for multi-omics data integration
is the correlation or co-mapping between two different
omics data. For example, there is a relatively direct cor-
respondence between transcriptome and proteome, the
integration of those two omics usually contains an anal-
ysis of molecules with consistent or different trends in
differentially transcribed genes and differential proteins,
and a correlation of expression level between transcribed
genes and proteins.96,97 Sometimes, there is also a need
to compare the correlation of expression level between
transcriptome and proteome, and many research results
have shown that the correlation between the expression
of mRNA and protein is not strong, indicating that the
post-transcriptional regulation may be involved, such as
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TABLE 1 The online tools and resources of network-based multi-omics knowledge bases.

Tool name Biological entities Implementation Ref
netOmics Genes, RNAs, proteins, metabolites R package 110

HetioNet Genes, SNPs, proteins, compounds, tissues, diseases Online 112

MergeOmics 2.0 Genes, SNPs, RNAs, proteins, metabolites Online 111

MetaboAnalyst 5.0 Genes, metabolites Online
MiBiOmics Genes, RNAs, proteins, metabolites Online 113

PathMe Viewer Genes, proteins, metabolites Online 114

OmicsNet 2.0 Genes, proteins, TFs, miRNAs, metabolites Online 115

PathwayCommons Proteins, metabolites, drugs Online CyPath2a 116

Recon3D Genes, metabolites Online 117

BioCyc Genes, proteins, metabolites Online 118

PaintOmics3 Genes, proteins, metabolites Online 119

MetExplore Genes, enzymes, metabolites Online 120

aApplicable in Cytoscape software.

in Alzheimer’s disease, which has been reported that 42%
of Tau-induced transcripts were discordant with the pro-
teome, showing the opposite direction of change.98 Thus,
the correlation between two omics will contribute to a bet-
ter understanding mechanism in the process of disease
occurrence and development.
In addition, the integrated multi-omics also needs to

take an effort to analyze the network between differ-
ent omics data. The network serves as an established
mathematical model for describing the complex inter-
actions and regulatory mechanisms that occur in bio-
logical systems,99 such as protein−protein interaction.100
Network-based approaches to the integrated analysis of
multi-omics data provide a framework to conceptual-
ize the complex interactions of multi-omics molecules
as a collection of connected nodes (molecular features)
in a network. Through these networks, it is possible
to further identify associations (e.g., gene, protein, and
metabolite relationships) and/or subnets (e.g., biologi-
cal pathways) that can inform observed phenotypes.101
Compared with transcriptome and proteome, metabolome
records the real biochemical reactions in biological pro-
cesses, and measures the metabolic level of substrate and
product in chemical reactions, while transcriptome and
proteome measure and quantify enzymes that catalyze
biological reactions. Therefore, in multi-omics research
with metabolomics, the molecular regulatory network
between each omics data and metabolites is often ana-
lyzed. However, network construction is usually applied
to a single omics, and appropriate methods still need
to be developed for network interactions between multi-
omics.102 One simple and convenient approach to address
multi-omics network construction is to refer to public
databases and frameworks, for example, omicsNet,103,104
MetaboAnalyst,40 and ConsensusPathDB.105 Additionally,

various algorithms (meta-path-based techniques,106 ran-
dom walk,107 and module identification108) of heteroge-
neous networks can be used to build multi-level com-
plex networks, such as HENA,109 an Alzheimer’s data
set based on heterogeneous network, which integrated
AD-related co-expression networks from public databases
and experimental data sets to identify disease-associated
genes. Bodein et al. proposed to construct a hybrid multi-
omics network from longitudinal multi-omics data using a
random walk algorithm, highlighting key intra- and inter-
omics mechanisms and interactions.110 Overall, the inte-
grated analysis of highly complex networks inmulti-omics
is not straightforward, requiring complex algorithms, and
the downstream functional interpretation and validation
of multi-omics findings is not straightforward either.
Therefore, for most researchers, the construction of multi-
omics networks and the interpretation of the resulting data
still require open-source tools and shared databases, such
as netOmics,110 MetaboAnalyst 5.0,40 MergeOmics 2.0,111
and so on (Table 1).

4.2 ML and DL for multi-omics
integration

With the development of high-throughput omics tech-
nologies, multi-omics data can also be integrated by ML-
or DL-based predictive algorithms to reveal the com-
plex work of systems biology. ML is increasingly used
in the development of precision medicine based on big
data121,122 and data mining,123 these techniques facilitate
the discovery of new omics biomarkers that can iden-
tify the molecular causes of disease. However, unlike the
correlation- and network-based integration approach, the
approach of using ML to integrate multi-omics data has
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some unique challenges. First, ML may result in class
imbalance and overfitting during disease classification and
subsequent model training in multi-omics data set.124 For
example, the ML-trained model using an imbalance data
set, such as hypertension, which is only 5% of patients
with endocrine hypertension, may be overfitted and lead
to underperformance for unseen test data, despite high
accuracy for training data. For this situation, it can be
solved by collecting more data, or using weighted or nor-
malized metrics (e.g., F1-Score or Kappa125) to measure
the ML performance, oversampling, or synthetic sample
generation of under-represented class. Second, the data
sets of multi-omics usually suffer the problem of “curse
of dimensionality,” which refer to inconsistency in data
dimensions and features,126 leading to redundant fea-
tures in high-dimensional space followed by misleading
algorithm training. While, feature extraction and selec-
tion can be used for dimensionality reduction, such as
principal component analysis (PCA), linear discriminant
analysis, biofilter, and so on.127 Third, the appropriate
algorithms are essential for multi-omics analysis, and pre-
vious reviews reported that different ML algorithms have
diverse strengths and weaknesses in integrating multi-
omics data sets derived from cancer-related research.128
Reel et al. have proposed a flowchart that can help the
interdisciplinary user to choose the appropriate algo-
rithms from available methods.129 Finally, ML requires
high computational power and large storage for data pro-
cessing and analysis, while the corresponding cost should
be considered before planning an ML-based multi-omics
workflow.Moreover, reasonable transparency and explain-
ability are also important for multi-omics integration by
ML, and thus can be helpful for building trust in clinical
decision-making.130 Therefore, when using ML to inte-
grate multi-omics data, researchers should consider all the
above direct influences. Next, we will briefly introduce
threeML-basedmulti-omics integrationmethods from the
published reports,129,131 which are shown in Figure 4A.

4.2.1 Concatenation-based integration
methods

Concatenation-based integrated approach pipeline
includes raw data from individual omics with corre-
sponding phenotypic information, and then, the data
from the individual omics are concatenated to form
a single large matrix of multi-omics data, and finally,
supervised or unsupervised methods are used for joint
matrix analysis. Specifically, multiple data matrices for
each sample in multi-omics were combined into a large
input matrix, and then different classical ML methods
are used for data analysis. For example, data from gene

expression, copy number variation, and mutation were
combined into a joint matrix, and the joint was then used
with classical random forest and SVM (support vector
machine) to predict anticancer drug response.132 A joint
matrix of multi-omics features (which included SNPs
and mRNA gene expression) was used with the Bayesian
integrative model to assess drug cytotoxicity.133 According
to the characteristics of ML, the concatenation-based
integration methods can be classed as unsupervised
and supervised type. A variety of concatenation-based
unsupervised methods are available for clustering and
association analysis, such as MoCluster, which can find
the joint clusters among inputted multi-omics data.134 The
Multi-Omics Factor Analysis (MOFA) can disentangle the
heterogeneity shared across different omics to discover the
principal source of variability.135 The concatenation-based
supervised learning methods that usually can be used for
phenotypic prediction, such as boosted trees and SVR,
have been investigated for identifying longitudinal predic-
tors from a large multi-omics data set of type 2 diabetes.136
Advantages of concatenation-based integration methods
include that continuous or categorical data can be easily
analyzed using ML, and the most discriminative features
can be selected for a given phenotype. However, there has
a challenge in concatenation-based integration for com-
bining multiple matrices that include data from different
scales. For instance, the value of SNP data contains 0, 1,
or 2, while the value of copy number data may consist
of −2, −1, 0, 1, or 2, and the value of CpG loci between 0
and 1. Thus, concatenating this form of data integration
can inflate high-dimensionality during data analysis, and
concatenation-based integration is only possible applied
after performing data reduction.

4.2.2 Model-based integration methods

Model-based integration is a method of generating mul-
tiple models by using different types of data as training
sets, and then generating a final model from the mul-
tiple models created in the training phase. Specifically,
this integration method contains: (1) establishment of the
original data of various omics and the corresponding phe-
notypic information; (2) development of individualmodels
for each omics and then integrate them into a joint model;
and finally, (3) analysis of the joint model. This approach
can combine predictive models from different omics and
facilitate the understanding of a certain phenotype among
different types of data. For example, to identify genetic,
genomic, and proteomic associations with ovarian cancer,
model-based integration will allow independent analysis
of each of the DNA sequence data, microarray data, and
proteomic data, and then integrate top-level models from
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F IGURE 4 The brief process of integrating multi-omics data with machine learning and deep learning. (A) The process of data
integration by machine learning. The concatenation-based integrated approach pipeline includes raw data from individual omics with
corresponding phenotypic information, the data from the individual omics are then concatenated to form a single large matrix of multi-omics
data, and finally, supervised or unsupervised methods are used for joint matrix analysis. The model-based integration method flow contains
the establishment of the original data of various omics and the corresponding phenotypic information, develop individual models for each
omics and then integrate them into a joint model, and finally, to analyze the joint model. And transformation-based method starts with raw
data of individual omics and corresponding phenotypic information, followed by developing individual transformations (in the form of
graphs or kernel relations) for each omics, and then integrating it into joint transformations, and finally, analyzing it. The letters of PGPM are
represented as phenotypic data (P), genomic data (G), proteomic data (P), and metabolomic data (M) in sequence. (B) The brief concept of
data integration is achieved by deep learning. First, preprocess and clean the multi-omics data, and then use conventional feature selection
techniques or feature reduction methods for feature selection or dimensionality reduction to reduce the number of multi-omics variables.
Next, multiple omics variables are concatenated into one large data set for data integration. Finally, further feature selection or reduction
techniques are applied to reduce the variables, and the integrated data are analyzed using classification, regression, and clustering.

each data set to find integrated models, such as model-
based integration performedwithATHENA (Analysis Tool
for Heritable and Environmental Network Associations)
to create an integrative model from each data type of
ovarian cancer.137 Similarly, the model-based integration
methods also divide into unsupervised and supervised
types. Various model-based unsupervised learning meth-
ods have been achieved, such as patient-specific data
fusion, which is used for clustering of predicted can-
cer subtypes by combining gene expression and copy
number variation data,138 perturbation clustering for data

integration and disease subtyping139 and Bayesian con-
sensus clustering140 are more flexible and allow late-stage
integration of clusters. Supervised learning model-based
methods include various frameworks for developing mod-
els, such as Multi-omics Supervised Autoencoder, which
is used for pan-cancer analysis,141 DFNForest (hierarchical
integration deep flexible neural forest) framework inte-
grated three omics data sets to predict cancer subtype
classification,142 and so on. An advantage of model-based
integration approaches is that they can be used to com-
bine models based on different omics types, where each



12 of 32 CHEN et al.

model was developed from a different patient group with
the same disease information. However, model-based inte-
gration also needs specific hypothesis and analysis for each
data type, and appropriate mechanisms for the resultant
model combination.When integratingmodels constructed
fromdifferent types of data, some interactions between dif-
ferent data types may be missed because the only variables
are those detected during the data type-specific modeling
process. For instance, themethylation pattern and another
protein expression pattern that are not independently asso-
ciated with the results, but only through their interactions,
their effects will be missed in the model-based integration.
Thus, model-based integration is particularly suitable if
each genomic data type is very heterogeneous.

4.2.3 Transformation-based integration
methods

Transformation-based integration involves converting
each omics data set into an intermediate form (such as
a graph or kernel matrix), and then combining them
together before elaborating any models. Briefly, this
method starts with raw data of individual omics and
corresponding phenotypic information, followed by devel-
oping individual transformations (in the form of graphs
or kernel relations) for each omics, and then integrating
it into joint transformations, and finally analyzing it. The
graph-based method provides a formal method for trans-
forming and portraying relationships between samples
of different omics. The kernel-based method transforms
the data from the original space to a higher dimensional
feature space. These methods then explore linear decision
functions in the feature space that are nonlinear in the
original space. Various transformation-based unsuper-
vised methods have been introduced, such as PAMOGK,
which can integrate multi-omics data with pathways,143
somatic mutations, transcriptomics, and proteomics data
were used to identify subtypes of kidney cancer. While
transformation-based supervised learning methods are
mostly kernel-based and graph-based algorithms, such
as Multi-Omics gRaph cOnvolutional NETworks, which
uses graph convolutional networks to take advantage
of both the omics features and the correlations among
samples described by the similarity networks for better
classification performance.144 A major advantage of
transformation-based integration methods is that they
can be used to combine broad omics studies if unique
information (patient ID) is available. The disadvantage of
transformation-based integration is that each data type is
transformed independently, which makes it more difficult
to detect interactions between different types of data, such
as an SNP and gene expression interaction. Therefore,

conversion-based integration is suitable for each data type
with an associated intermediate representation, such as a
kernel or a graph.
In short, the above-described approaches for multi-

omics data sets integration are based on various supervised
and unsupervised ML methods. The advantages and dis-
advantages of using those integrative methods, and the
detailed variousmulti-omics integrationmethods based on
ML can be found in the previous review.129
Moreover, DL has emerged as one of themost promising

approaches in the integrated analysis of multi-omics data
due to its predictive performance and ability to capture
nonlinear and hierarchical features. DL can integrate dif-
ferent omics data from clinical or health records with high
specificity, sensitivity, and efficiency,145 and has the ability
to automatically capture nonlinear and hierarchical repre-
sentative features with multi-layer neural network archi-
tecture, which has an excellent performance in prediction.
For example, the multi-omics integration approach with
DL can robustly predict liver cancer survival,146 and theDL
approach can predict AD on the basis of combined neu-
roimaging and genomics data.147 Overall, most DL-based
data integration studies are categorized into clustering for
feature selection/reduction, clinical outcome prediction,
survival analysis, and subtype discovery. For these studies,
the DL models for multi-omics data integration analysis
follow a general principle148 (Figure 4B). First, preprocess
and clean the multi-omics data, and then use conven-
tional feature selection techniques or feature reduction
methods (such as PCA and autoencoder) for feature selec-
tion or dimensionality reduction to reduce the number
of multi-omics variables. Next, multiple omics variables
are concatenated into one large data set for data inte-
gration. Finally, further feature selection or reduction
techniques are applied to reduce the variables, and the
integrated data are analyzed using classification, regres-
sion, and clustering. For example, in the survival analysis
study of liver cancer reported by Chaudhary et al.,146 first,
transforming features of omics data (mRNA, DNA methy-
lation, and miRNA) using a DL framework (autoencoder)
to generate new features. Second, the univariate Cox-PH
model was used for identifying survival-associated fea-
tures, which then were clustered by a K-means clustering
algorithm to identify cancer subtypes. Third, according to
the cluster labels obtained from K-means to build super-
vised classificationmodel(s) using the SVMalgorithm, and
data samples were divided into training sets and test sets
followed by fivefold cross-validation to find the best hyper-
parameters of the SVM model(s). Finally, concordance
index (C-index), log-rank p-value of Cox-PH regression,
and brier scorewere used formodels’ evaluation, and then,
the acquired model to predict the survival risk labels of
new data sets. In addition, many DL tools for integrated
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analysis of multi-omics data have been developed, such
as DeepOmix, DeepProg, and DeepDRK. DeepOmix can
be used not only for survival prediction analysis, but also
for predicting various clinical indicators, such as drug
response.149 TheDeepOmix integrated different omics data
as input gene layer, and connected gene layer nodes to
functional layer according to the prior information of path-
way or functional module defined by input. The basic
idea behind the model is that the gene function module
layer is introduced into the algorithm model, and the bio-
logical prior information of the gene module is fused to
integrate the multi-omics characteristic information from
the sample, and then applied to the prediction of sur-
vival state. The training model can predict the survival
period of patients, and obtain the low-dimensional repre-
sentation of sample data in the functional module layer.
Through statistical analysis, the functional modules of
genes affecting prognosis can be found. DeepProg is used
to integrate multi-omics phenotypes, such as survival to
predict cancer prognosis.150 The method can be briefly
described as follows: first, the custom rank normalizations
and auto-encoders were used for dimension reduction
and feature transformation, second, the univariate Cox-PH
fitting was performed on the transformed features to fur-
ther select the feature subset related to survival, finally,
using an unsupervised clustering approach to identify the
optimal number of classes (labels) for survival subgroups
followed by building a support vector machine (SVM)-
based ML model according to these classes, and then
using the acquired model to predict survival groups for
new patients. DeepDRK predicts cancer cell drug response
by integrating pharmacogenomics data sets, providing an
alternative approach to prioritizing drug repurposing in
precision cancer therapy.151 DeepDRK used a kernel-based
approach to generate integrated representations of CCL
and anticancer drug interaction partners, which were then
employed to train deep neural networks for drug response
prediction. Briefly, various types of multi-omics data were
collected, and CCL similarity matrices based on multiple
kernels were constructed, respectively, then two similar-
ity matrices for anticancer drugs were calculated using
chemical characteristics of compounds and drug−target
interactions. The CCL−drug pairs were represented by
concatenating multiple similarity vectors, and then train-
ing the classification model to predict drug efficacy. In
addition, there also has another new method of DL for
multi-omics integration. For instance, Multi-omics Atten-
tion Deep Learning Network focuses on the correlations
between patients and omics.152 Specifically, the authors
used three fully connected layers to reduce dimensional-
ity and extract the significant features from omics data of
mRNA, DNAmethylation, and miRNA, and used the self-
attention (SA) mechanism to construct the correlations

between patients, respectively, for omics-specific feature
learning. The initial category labels were generated using
the feature vectors learned from the SA. Then, the Multi-
Omics Correlation Discovery Network was used to learn
the cross-omics correlations in the label space for the ini-
tial label predicted of each omics data. Finally, the SoftMax
classifier was used for label prediction.
However, like ML, DL also encounters challenges, such

as high-dimensional and low sample-size data, missing
data and data heterogeneity, model interpretability, and
integrating clinical and environmental exposure data. In
general, the method of multi-omics data integration will
become easier and more feasible for nonprofessionals to
obtain more biological information through multi-omics
technology with the development of various computing
frameworks and tools.

5 APPLICATIONS OFMULTI-OMICS
IN HUMANDISEASES

In addition to the omics types, multi-omics experimen-
tal design, and multi-omics data integration analysis
described above, we will introduce various applications of
multi-omics in human diseases, such as cancer (malignant
tumor, lung cancer, liver cancer, and ovarian cancer) and
neurodegeneration (Alzheimer’s disease, Parkinson’s dis-
ease, and amyotrophic lateral sclerosis [ALS]). Moreover,
multi-omics have also application in drug target discovery
and aging research (Figure 5). The next part will introduce
some previous studies of multi-omics in human diseases.

5.1 Disease biomarkers and targets

Based on the outstanding advantages of multi-omics in
the discovery of disease etiological mechanisms, disease
research increasingly requires the participation of multi-
omics and computational algorithms. Biomarkers can not
only explore the pathogenesis at the molecular level, but
also have unique advantages in accurately and sensitively
evaluating early, low-level damage, providing early warn-
ing, prognostic efficacy analysis, and accurate staging and
typing of diseases. For clinical diseases, the discovery of
disease biomarkers plays a guiding role in the diagno-
sis and prognosis of diseases.152 While the screening of
biomarkers usually requires the use of high-throughput
omics methods to measure large-scale clinical samples,
followed by screening to statistically significant differ-
ential molecules (genes, proteins, or metabolites), and
finally a series of complex bioinformatics analyses to
screen out the target biomarkers. Although many cancer-
related biomarkers have been identified by single omics,
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F IGURE 5 The application of multi-omics in disease, aging, and natural drug target identification. There lists some disease-associated
applications of multi-omics in cancer (liver cancer, lung cancer, ovarian cancer, and malignant lymphocytic tumor) and neurodegeneration
(AD, PD, and ALS). Other applications, such as aging and natural drug (natural compound obtained from the flowers, seeds, or rootstock of
plants) target screening, are also shown in the figure. The brief process and methods for the application of multi-omics in their research area
are listed right. For biomarker and target research, multi-omics data are analyzed by differential expression analysis, correlation analysis, and
network construction, and then, machine learning was used to obtain diagnostic biomarkers or therapeutic targets. The procedure for
screening natural drug target is usually based on the integration of label-free proteomics and chemical proteomics, and then is used for
machine learning to acquire possible functional target.

multi-omics is more advantageous for cancer research.
Proteomics data reveal overlapping but not identical cor-
relations with transcriptomic and genetic data in breast
cancer,153 high-grade serous ovarian cancer,154 or rectal
cancer,155 and this phenomenon may account for the
unique genetic and transcriptional process of proteomic
alterations in the cancer process. For example, phospho-
proteomic analysis of breast cancer identified G protein-
coupled receptor clusters which cannot be readily identi-
fiable at the mRNA level.153 Integration of various omics
information is expected to be valuable in guiding targeted
cancer therapy.156 Moreover, there have been many suc-
cessful examples in finding cancer biomarkers by multi-
omics, for example, diffuse large B-cell lymphoma,157
ovarian cancer,158 and pancreatic cancer.159 In addition
to the application in the discovery of tumor or cancer-
related disease biomarkers, multi-omics is also applied
to find biomarkers for other diseases, such as stroke,160
obesity,161 cardiovascular diseases,162,163 severe COVID-
19,164–166 Alzheimer’s disease,167 diabetes,168 obstructive
sleep apnea,169 and so on.
Integrated omics can also be used to investigate the

influence of environmental factors on early disease for-
mation in humans, such as sleep deficiency. Our study
integrated analysis of transcriptomics, proteomics, and
metabolomics in the blood of young health people suffer-
ing from transient sleep deprivation170 (Figure 6). In this
study, 32 volunteers suffered 1 day of sleep deprivation, and
donated fasting blood samples prior to (Day 1) and follow-

ing (Days 2 and 3) short-term sleep deprivation. Then, the
plasma was used for proteomics and metabolomics anal-
ysis, and the peripheral blood mononuclear cell (PBMC)
was used for transcriptomics analysis. After integration
analysis, the prominent biological pathway was immune
disorders. Further detail analysis found that neutrophil-
mediated immune processes (such as neutrophil degran-
ulation) mainly account for sleep deprivation-induced
immune disorders. And the correlation analysis showed
that SOD1 and S100A8 may be served as biomarkers for
immune disorder caused by sleep deprivation (Figure 6A).
Noteworthily, the integrated analysis of metabolomics and
proteomics showed that differentially expressed metabo-
lites and proteins were involved in pathways of arginine
and proline metabolism, tricarboxylic acid cycle (TCA)
cycle has a similar trend of changes, and pyruvate and
GOT1 linked these two pathways (Figure 6B). In addition,
the integrated pathway analysis of proteome and tran-
scriptome showed that differentially expressed genes and
proteins shared the highest enriched score of pathways
(such as neutrophil extracellular trap formation, com-
plement and coagulation cascades, and focal adhesion)
(Figure 6C).
Compared with cancer or chronic diseases (diabetes),

neurodegeneration acts as a major disease and lacks effec-
tive treatments, multi-omics has important applications in
the discovery of diagnostic biomarkers, pathogenic mech-
anisms, and therapeutic targets for neurodegenerative
diseases. In view of the increasing aging of the population
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F IGURE 6 The integrated multi-omics analysis on sleep deprivation. (A) The brief procedure and data for multi-omics study in sleep
deprivation. The blood sample obtained from 32 volunteers suffered sleep deprivation and recovery for plasma proteomics and metabolomics,
PBMC transcriptomics analysis. After multi-omics integration, the prominent biological pathway induced by sleep deprivation was immune
disorders followed by metabolism disorders and neurodegenerative disease, and neutrophil degranulation was main account for the immune
change. The detailed analysis showed that immune cell counts and inflammatory factor levels were elevated, and neutrophils and their
mediated immune processes were highly coordinated with sleep states. The correlation analysis revealed that SOD1 and S100A8 were the
most likely biomarkers of sleep deprivation-induced immune changes. (B) The integration of proteomics and metabolomics, and the
differentially expressed proteins and metabolites linked the pathway of arginine and proline metabolism, the TCA cycle. (C) The integration
of proteomics and transcriptomics, and the shared top pathways enriched by differentially expressed genes and proteins are listed.

and the lack of effective treatments for neurodegenera-
tive diseases, the next section will focus on the application
of multi-omics in neurodegenerative diseases, which were
represented by AD, PD, and ALS, with special emphasis
on the discovery of diagnostic biomarkers and therapeutic
targets.

5.2 Applications of multi-omics in
neurodegenerative diseases

As the most common neurodegenerative disease, the
prevalence of AD has been increasing year by year. A
global public health study estimated that the number of
AD patients will increase from the current 57 million
in 2019 to about 150 million in 2050,171 which leads to
significant increases in medical and social costs.172 How-
ever, there is still no effective treatment for AD, and the

pathogenesis of AD is still not fully understood, although
amyloid (Aβ) plaques and tau neurofibrillary tangles have
revealed major pathological changes in AD.173 Therefore,
a comprehensive understanding of the molecular mecha-
nisms underlying AD pathophysiology bymulti-omics will
help to provide support for the prevention, treatment, and
prognosis of AD.174 Systematic integration of multi-omics
disciplines, including genome, transcriptome, proteome,
andmetabolome, will comprehensively and systematically
reveal the pathophysiology of AD.175 Genomics, the study
of describing and quantifying all genes and mutations
in an organism, can identify new loci that increase AD
risk and is critical to understanding the underlying causes
of AD,176 such as high-risk mutated genes of APP, PS1,
Tau, APOE4, and so on. Transcriptomics, as a powerful
approach to studying gene regulatory mechanisms, can
map co-expressed genomes of transcriptional programs
associated with AD phenotypes.177 Proteomics explores
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proteins that play a role in AD by studying protein expres-
sion, protein−protein interactions, and post-translational
modifications.178 The changes of hippocampal proteins
involved in insulin signaling and mitochondrial electron
transport chain may be the crucial biological processes in
AD progression.179 In our laboratory, by integrated hip-
pocampal proteomics and phosphoproteomics, abnormal
phosphoration of GSK3β and Ppp3ca was found to induce
mitochondrial dysfunction in low-dose copper-treated AD
mice.180 Yu et al. conducted platelet proteomics in patients
with cognitive impairment in type 2 diabetes mellitus and
reported that optineurin can act as a biomarker for pre-
dicting a cognitive decline,83 and also found that PHB,
UQCRH, GP1BA, and FINC may be the most promising
platelet biomarkers for predicting cognitive decline inmild
cognitive impairment and AD patients.84 Metabolomics
studies all themetabolites in the biological process of cells,
which can reveal the persistent pathological process of
AD,181 for example, sphingolipids may act as biomarkers
for early AD by metabolomics.182
However, although signal omics can more or less pro-

vide information on the biological processes ofADprogres-
sion, the regulatory and causal relationships among differ-
ent levels of genes, mRNAs, regulatory factors, proteins,
and metabolites are still unclear. For instance, although
studies of themetabolome can be used tomeasure changes
in biochemical pathways associated with AD pathogen-
esis, the relationship between systemic abnormalities of
metabolism and AD pathogenesis is poorly understood,
whereas integrating genetic, transcriptomic, metabolomic,
and proteomic data in AD can enable the identification
of AD-specific metabolomic changes and their poten-
tial upstream genetic and transcriptional regulators.183
Therefore, integratedmulti-omics research can explore the
entire biological continuum, and may find key molecules
in the progression of AD. Comprehensive and in-depth
multi-omics research, which integrates multi-level bio-
logical information and explains the interaction between
components, is consistent with the concept of systems
biology.184 Multi-omics analysis identified IVD, CYFIP1,
and ADD2 as autoantibody biomarkers for distinguish-
ing AD from controls,185 biomarkers (FBP1, FBP2, RHOH,
JPH2, ERAp2, and SCLT1) distinct from AD patients with
APOE2 and APOE4,186 ABCA1, CPT1A, adiponectin, and
NGAL to be associated with AD pathology,183 and 14-3-3
zeta/delta and clusterin associated with AD and cogni-
tive decline.187 Moreover, AD-related multi-omics data
integration tools have been developed for the discov-
ery of AD biomarkers and drug therapeutic targets, for
example, Genome-wide Positioning Systems Platform for
Alzheimer’s Drug Discovery (AlzGPS), which is used for
the excavation of AD-related targets and clinical-related
candidate drugs.188 Another platform based on gene regu-

latory networks can integrate multi-omics data to identify
key disease pathways and driver genes.189 Wang et al.
obtained AD drug targets and biomarkers through a
comprehensive analysis of multi-omics data and animal
genome-scale metabolic model, which could eventually
be validated and transformed into therapeutic or diagnos-
tic methods.190 Collectively, identifying the associations
of AD-related brain functional and structural changes by
integrating multi-omics studies will contribute to a more
comprehensive molecular understanding of the disease
pathophysiology.191,192
For Parkinson’s disease (PD), the second largest neu-

rodegenerative disease in the world, its main clinical
manifestations are resting tremors and movement disor-
ders, accompanied by some mental problems, such as
cognitive impairment and depression.193,194 However, the
early diagnosis of PD has been a difficult problem in clini-
cal medicine, the research on the etiology and biomarkers
has a very important medical value for early diagnosis.
In terms of a single omics study, through GWAS analy-
sis, genes closely related to PD have been screened, such
as SCNA, MAPT, and LRRK2.195,196 Zhang et al. showed
that SSR1 (the signal sequence receptor subunit1) can be
used as a biomarker for the early diagnosis of PD by
analyzing the transcriptomics of peripheral blood of PD
patients.197 Proteomic analysis of cerebrospinal fluid of
PD patients showed that OMD, CD44, VGF, PRL, and
MAN2B1 were significantly correlated with PD clinical
scores.198 Metabolomic study of sebum shows that sebum
can be used as a biomarker for PD diagnosis.199 In the
integration of multi-omics, an integrated study of the
PD gut microbiome and metabolome revealed that low
short-chain fatty acids were significantly associated with
poorer cognition in PD, and lower butyrate levels were
associated with worse postural instability gait disorder
scores.200
Finally, for ALS which is characterized by loss of upper

and lower motor neurons, multi-omics technology has
also been applied to study biomarkers for its diagnosis
and prognosis.201,202 For instance, a multi-omics integra-
tion approach not only identifies neurotrophic factors
and histamine as potential therapeutic targets, but also
provides additional guidance for the personalized medi-
cal applications for ALS.203 GWAS have reported highly
pathogenic mutations in ALS genes, such as C9ORF72,
FUS, OPTN, SOD1, TARDBP, TBK1, and TDP-43.204 ST
of SOD1-G93A transgenic mice reveals sphingomyelin sig-
naling as a therapeutic target for ALS.205 UCHL1, MAP2,
and GPNMB are reported to be promising biomarker can-
didates for ALS using proteomic studies of cerebrospinal
fluid and spinal cord.206 Patin et al. reported that argi-
nine and proline metabolism may be used as targets for
ALS therapy through muscle and brain metabolomics
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studies in SOD1-G93A transgenic mice.207 Moreover,
omics has also reported many possible therapeutic tar-
gets or biological processes for neurodegenerative diseases.
We reported that Mucolipin-1 may be the target which
can ameliorate mitophagy defect in 5×FAD mouse,208
and confirmed that TrkB receptor agonist R13 promoted
mitochondrial biogenesis and function in 5×FAD and
SOD1-G93A mouse by upregulated PGC-1α, NRF1, and
TFAM by mitochondriomics.209,210
Overall, multi-omics has many applications in the

study of neurodegenerative biomarkers and therapeu-
tic targets. It is believed that with the development of
high-throughput histology technologies and integration
algorithms, multi-omics technologies will reveal more in-
depth molecular network changes in neurodegenerative
diseases.

5.3 Applications in aging research

In addition to the application in the basic and clinical
research of disease, multi-omics is also being explored
in aging science. Aging is a time-dependent physiologi-
cal process characterized by DNA mutations, epigenetic
alterations, abnormal protein aggregation and autophagy
disturbances, immune impairment, mitochondrial dys-
function, telomere shortening, abnormal intracellular sig-
naling, nutrient-sensing obstacle, and so on.211 These
changes impair the normal function of cells and contribute
to the development of age-related diseases.And since aging
is not only the greatest risk factor for many chronic dis-
eases, but also a major cause of functional decline, there is
a need to develop methods to measure the rate of aging in
a given individual. The study of aging can be addressed by
systematically describing the relationship between organ
biomarkers, phenotypes (molecular biomarkers), and clin-
ical presentation.212 A major and future trend in the field
of aging is the development of omics-based biomarkers,
and these biomarkers have greater potential for assessing
multifactorial processes. Over the past few years, genes,
gene products, epigenetic modifications, and/or metabo-
lites during aging have been profiled by high-throughput
sequencing, mass spectrometry, and other techniques.
Aging is a very complex process that is influenced by a
myriad of factors in addition to genetic predisposition, and
the extent towhich genes influence variation in the human
aging process remains controversial.213,214
In particular, genomics analysis of centenarians pro-

vides insights into genetic susceptibility to exceptional
longevity.215,216 Human lifespan GWAS of more than
500,000 participants proved that previous research
found that APOE, FOXO3,217 and 5q33.3218 are longevity
genes, and proposed five new genes related to longevity

heritability.219 As epigenetic modifications are highly
variable over the life cycle and potential biomarkers in
response to aging, epigenomics shows a slow decline
in total DNA methylation levels with age, and cytosine
methylation containing CpG sites is hypermethylated
or hypomethylation at different genomic locations with
age.220,221 The transcriptome is markedly altered during
aging, and age-associated transcriptome changes are
highly tissue-specific.222 Mamoshina et al. identified
tissue-specific biomarkers of aging through transcrip-
tomic analysis of muscle tissue using ML algorithms.223
Plasma proteomic studies of healthy humans of various
ages have found biomarkers highly correlated with age,
such as growth differentiation factor 15.224 Lehallier
et al. analyzed the plasma proteomics of 4263 healthy
people aged 18−95, and revealed specific changes in the
proteome in the fourth, seventh, and eighty decades.225
Compared with other omics, metabolomics has strong
advantages in the sensitivity and predictability of the
physiological state of the body in aging research.226
Previous studies have reported significant changes in
plasma concentrations of a large number of metabolites
correlated with aging.227 In a plasma metabolome study
of a large cohort of men and women followed by up to
20 years follow-up, higher concentrations of isocitrate
and the bile acid taurocholate were associated with lower
odds of longevity.228 However, single-omics studies do
not systematically account for the deep relationships
between genes, proteins, metabolites, and other molecules
in the aging process. For instance, epigenomics alone
cannot reveal how epigenetic changes specifically regulate
transcriptional changes and gene expression, whereas
integrating data from transposase-accessible chromatin
(ATAC-seq), RNA-seq, and ChIP-seq can identify major
regulatory elements and key genes of aging.229 Through
the integrated application of multi-omics, molecules
closely related to aging have been discovered, for example,
transcription factors E2F4, TEAD1, and AP-1 have been
found to be key factors regulating aging by integrating
transcriptome and epigenome.230 Song et al. revealed that
NAT1, PBX1, and RRM2 may be potential biomarkers of
aging and aging-related diseases by integrating ATAC-seq,
RNA-seq, and ChIP-seq in a multi-omics analysis.229
In order to facilitate the research of big aging-related
omics data, a multi-omics database of aging biology has
also been established, such as Aging Atlas, which pro-
vides user-friendly functionalities to explore age-related
expression changes in genes, RNA, proteins, and so on.231
At the same time, it has also developed a multi-omics
data analysis platform and comprehensive database that
provide aging-related data in multiple species, such as
AgingBank, which provided experimentally supported
multi-omics data relevant to aging in multiple species.232
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TABLE 2 Published reports on multi-omics discovery of natural drug targets.

Methods Compounds Targets
Type of disease or
model study Potential applications Ref

Transcriptomics and
proteomics (DARTS)

Arctigenin PP2A Diabetic kidney disease Hypertension;
inflammation

243

Genomics and
proteomics (DARTS)

Ecumicin ClpC1 Tuberculosis Lead compounds for
antituberculosis drugs

241

Chemical proteomics
and bioinformatics
(gene ontology)

Baicalin CPT1 Obesity and hepatic
steatosis

Inflammation;
antibacterial; obesity

242

Metabolomics and
chemical proteomics
(ABPP)

Perfluorooctanoic
acid

Acaca, Acacb PFOA-induced liver
toxicity

No 239

Proteomics (DARTS)
and bioinformatics
(gene docking)

Bithionol NAD-dependent
dehydrogenases

Cryptococcus neoformans Antifungal 237

ShRNA Aurilide B ATP1A1 Mitochondria-mediated
apoptosis

No 244

SiRNA QS11 ARFGAP1 Breast cancer No 245

CRISPR Ispinesib Kinesin-5 Human cancer cells Cancer 246

AI (machine learning) β-Lapachone 5-lipoxygenase Human cancer cells Cancer 247

AI (deep learning) Ziprasidone 5-hydroxytryptamine
receptor

No No 248

5.4 Multi-omics in the discovery of
natural drug targets

Natural products are capable of selectively and specifi-
cally interacting with myriad molecular targets due to
their complex molecular frameworks and diverse biolog-
ical activities.233 Biologically active natural products often
readily penetrate cell membranes and disrupt the phys-
iological levels of the genome, transcriptome, proteome,
and metabolome. These phenomena indicate that nat-
ural products have interactive properties with specific
molecular targets in organisms. The discovery of new
drug targets or new pharmacological effects of drugs is
of great significance for expanding the scope of drug
indications.234 Therefore, the discovery of precise drug
targets is crucial to the development of new drugs. Sig-
nificant progress has been made in drug target discov-
ery through chemogenomics, chemoproteomics, label-free
proteomics, and bioinformatics approaches.235,236 How-
ever, any single omics approach is insufficient to clearly
define precise molecular targets in complex physiologi-
cal networks, while an integrated multi-omics approach
can simultaneously elucidate, define, and validate multi-
ple potential targets and mechanisms of candidate natural
products.237,238 For example, a single chemical proteomics
strategy can obtain 14 possible targets of perfluorooctanoic
acid (PFOA)-induced toxicity and carcinogenic potential
in humans; however, only the simultaneous combination

of targeted metabolomics enabled the identification of
acetyl-CoA carboxylase 1 (ACACA, ACCa) and acetyl-CoA
carboxylase 2 (ACACB, ACCb) as bona fide binding tar-
gets of PFOA.239 Using genomic and proteomic (DARTS,
drug affinity responsive target stability, a method to iden-
tify targets of small molecules240) integration, the natural
product ecumicin was identified to inhibitMycobacterium
tuberculosis by targeting ClpC1.241 The natural product
baicalin improved diet-induced obesity and hepatic steato-
sis through carnitine palmitoyltransferase 1 (CPT1), which
was also discovered through chemical proteomics and
bioinformatics (gene ontology).242 Zhong et al. used tran-
scriptomic and proteomic (DARTS) to discover that the
natural product arctigenin played a role in renal protec-
tion through targeting PP2A.243 Previous research applied
metabolomics and chemical proteomics (ABPP) to identify
acetyl-CoA carboxylase 1 (Acaca) and acetyl-CoA carboxy-
lase 2 (Acacb) as binding targets of PFOA239 (Table 2).
Through these existing research reports, it can be shown
that multi-omics is a promising approach to the discovery
of natural drug targets.

6 CHALLENGES AND FUTURE
DIRECTIONS OFMULTI-OMICS

Although multi-omics plays an important role in pro-
moting research on human diseases, aging, discovery of
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F IGURE 7 Challenges and opportunities for data integration of multi-omics. The analysis challenges together with possible solutions
are presented for three different levels, such as data collection, integrative analysis, and community distribution.

natural drug targets, and so on, it also facesmany problems
and challenges. Here, we will discuss some challenges and
future directions for multi-omics research.

6.1 Challenges and opportunities for
multi-omics integration

An early approach to multi-omics analysis was the sepa-
rate analysis of different types of data and then combined
the results to obtain a comprehensive network of molec-
ular interactions. With significant developments in this
field, algorithmic meta-analysis frameworks and meth-
ods have become the primary means of a comprehensive
analysis of multi-omics data.92,249 However, multi-omics
integration analysis also faces some challenges and oppor-
tunities, such as missing value handling, heterogeneity
between different omics, difficulties in interpreting multi-
omics models, and problems in data annotation, storage,
and computing resources (Figure 7).250 In terms ofmissing
values in omics data, the treatment of missing values is a
more critical issue in the integrated analysis ofmulti-omics
data. Missing values can lead to undetectable features in
some samples, for example, in proteomic andmetabolomic
analysis. The complete measurements are not available for
some samples in multi-omics, which may lead to more
missing values. For example, in cohort studies, not all
individuals can collect all types of omics data, so the
number of individuals with complete records is usually
much smaller than the overall sample size.251 And the
missing values among various omics can influence the
correlation analysis between different omics data, and
interrupt the integration analysis between omics. While
the missing values among omics can be solved by using a
method of multiple imputation in a multiple factor analy-
sis framework.252 Missing values in some samples may be
due to quality control procedures, which usually can be
solved by using the k-nearest neighbor weighted imputa-

tion method for trans-omics block missing data,253 such
as MOFA, which can perform sample subgroup identifi-
cation, data imputation, and abnormal sample detection
for multi-omics data.135 However, missing value imputa-
tion methods can reduce the reliability of the resulting
data set,254 and generate data structures that violate the
independence assumptions required by many statistical
frameworks. Therefore, in integrated analyzes of multi-
omics data, sensitivity analysis was performed on missing
value imputations to assess their impact on downstream
analysis. In addition, for nonspecialist data processors, the
researcher usually should try to avoid the intragroup or
intergroup errors in samples from experimental manipula-
tions, andminimize the testing times of omics instruments
to avoid missing values due to batch benefits, especially
for omics studies of large cohorts. In addition, the settings
of instrument parameters need to be corrected in time to
avoid data loss caused by instrument noise.
The heterogeneity among different omics is also an

important factor affecting the integration of multi-omics
data. Different omics technologies have different preci-
sion levels, and the signal-to-noise ratio in multi-omics
measurements often affects the integration of multi-omics
data. For instance, proteomics favors the detection of
abundantly expressed proteins, which is largely absent in
transcriptomics. Due to this differential signature, analysis
of the relationship between gene and protein expression
is influenced by proteomic data.81 Algorithms have been
developed to estimate the optimal sample size required for
different omics to achieve a given statistical power.81 How-
ever, this treatment can lead to different amounts of sample
data collected by different types of omics, resulting in
manymulti-omics integration statistics methods not being
applicable. Therefore, there is a need to find new ana-
lytical approaches that enable homogenous capabilities
across multi-omics data. In addition, the interpretability of
multi-omicsmodels has outstanding advantages for under-
standing the complexity of life at the molecular level. In
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most cases, however, interpretability refers to the identifi-
cation of biomarkers and the biological processes in which
they are involved. Functional enrichment analysis is often
used in the interpretation of multi-omics data,255,256 but
these methods also have inherent limitations in provid-
ing mechanistic insights across molecular layers. Pathway
diagrams have also been used for interpretation of multi-
omics data,257 but this approach lacks the flexibility to
reveal novel regulatory relationships. In addition, Net-
works (such as Cytoscape258) that combine multi-omics
data, even though more general, can easily become too
large, complex, and difficult to interpret. In the future, it
is necessary to develop a calculation method combining
the mathematical formula of multi-layer adjustment with
interactive visualization.
Data annotation and storage is also a challenge for

multi-omics data integration. Integrated annotation of
multi-omics data often requires software provided by tech-
nology suppliers; however, this software may be not pub-
licly shared. Despite the abundance of publicly available
multi-omics studies and databases, retrieving multi-omics
data for specific biological entities remains a challenge. It
is difficult to connect different types of omics data under
the same research topic on various data platforms. Typi-
cally, various omics data sets are hosted in specific types
of repositories, such as European Genome Archive (EGA,
a sequencing database),259 MetaboLights (a metabolite
database),260 and ProteomeXchang (a protein database).261
Therefore, hyperlinks are the only option to connect the
same study across different omics databases. For example,
construct metadata summaries to concatenate multiple
omics data files from the same sample and then used them
on a public database file.262 The European Bioinformat-
ics Institute has developed a unified query system that
can quickly find omics data sets responding to the same
keyword across repositories.263 In the future, metadata
description frameworks that define batch, experimental
conditions, preprocessing, and replication will need to
enable the linking of samples across omics data files and
enable efficient reuse of multiple omics data.
In the future, with the expansion of samples and fea-

tures, multi-omics data will become more complex, and
the development of precision medicine requires the inte-
gration of multi-omics data sets from large cohorts of
patients.264 The inclusion of other types of data, such as
radiomics and single-cell omics into multi-omics research,
will further increase the complexity of data processing.
It is worth noting that cloud servers have been devel-
oped to help large-scale data storage and data sharing,
saving the operation and maintenance costs of comput-
ing infrastructure.265 Moreover, the processing of large
amounts of data also requires high computing power, and
cloud computing infrastructure needs to use sufficiently

powerful computing units to achieve fast multi-omics
data processing, such as the often-used graphics process-
ing unit (GPU).266 GPUs can also meet the demand of
the DL processing, which is often used in multi-omics
data analysis.267 In summary, developing efficient comput-
ing software and processing technology based on cloud
services will facilitate the integration of multi-omics data.

6.2 Single-cell analysis as the future
direction of multi-omics

Single-cell multi-omics is the most promising develop-
ment direction in the field of multi-omics, which can infer
regulatory models between multilayer molecules with bet-
ter accuracy. Accounting for cell type heterogeneity will
facilitate the modeling of complex biological processes
(tumor268) and understanding of function in highly dif-
ferentiated organs (brain4). Multiple omics studies on
the same cell have been successful, such as combin-
ing RNA-sequencing, DNA methylation, and/or protein
abundance at the single-cell level.269,270 In view of the
multiple omics data collected on the same cell, as they
have the same cell information, the characteristics of dif-
ferent modalities can be matched,271 which is conducive
to the subsequent integrated analysis, thereby improving
the level of multi-omics research. The main components
of single-cellmulti-omics analysis include single-cell isola-
tion, barcoding, and sequencing techniques for measuring
multiple types of molecules from the same cell, as well as
a comprehensive analysis of molecules measured at the
single-cell level to identify cell types and their functions
related to pathophysiological processes based on molec-
ular characteristics. The single-cell omics usually focus
on the data of mRNA-genome, mRNA-DNA methylation,
mRNA-chromatin accessibility, and mRNA-protein. Here,
we briefly introduce some detection technologies of the
above single-cell multi-omics from the previous review270

(Table 3).
For integrated analysis of single-cell genome and

transcriptome data, there have several approaches to
achieve this analysis, such as genome and transcrip-
tome sequencing (G&T-seq),272 gDNA-mRNA sequenc-
ing (DR-seq),273 and so on. The approaches for single-
cell whole-genome sequencing (scWGS) contain multi-
ple displacement amplification,274 PicoPLEX (Rubicon
Genomics PicoPLEX Kit), and so on, while the meth-
ods for scRNA-seq include switching mechanism at
the 5′end of the RNA transcript (Smart-seq),275 and
cell expression by linear amplification and sequencing
(CEL-seq).276 G&T-seq uses the oligo-dT-coated magnetic
beads to separate poly-A-tailed mRNAs from gDNA, and
then sequencing by Smart-seq2 and scWGS protocols,
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TABLE 3 Some technologies for single-cell multi-omics.

Category Technologies Separation methods Feature Ref
Genome-
transcriptome

G&T-seq Flow cytometry; bead-based separation Medium cell throughput;
automation

272

DR-seq Cell picking by pipette; preamplification and tagging of
DNA and RNA followed by splitting

Low cell throughput 273

Transcriptome-
DNA
methylome

scM&T-seq Flow cytometry; bead-based separation followed by
bisulfite treatment

Medium cell throughput;
automation

277

scMT-seq Micropipetting for isolation of single nuclei Low cell throughput;
partial automation

281

Transcriptome-
chromatin
accessibility

sci-CAR Combinatorial indexing; lysate splitting followed by
library preparation

High cell throughput 282

SNARE-seq Microfluidic channels; open chromatin tagmentation
followed by dual-omics capture

High cell throughput 283

Transcriptome-
proteome

PEA/STA Microfluidic channels; reverse transcription of PEA
probe and RNA followed by targeted amplification

Medium cell throughput;
automation

279

PLAYR Flow or mass cytometry; detection of amplified product
of PLAYR probe pair and antibody staining

High cell throughput 280

respectively.With this technology,Macaulay et al. reported
that genomic imbalance on the chromosomes of a sub-
population of HCC38-BL cells was consistent with changes
in gene expression in unbalanced regions.272 The tech-
nology for integrating the signal-cell data of transcrip-
tome and epigenome is that the gDNA and RNA in the
same single cell were separated and amplified using the
G&T-seq program, and then the single-cell methylome
and transcriptome sequencing (scBS-seq) program was
applied to the amplified gDNA to generate DNA methy-
lome data.277 Using this technique, previous research
found a link between epigenetic and transcriptional sig-
natures associated with tissue-specific mouse stem cell
aging.278 The integration analysis of transcriptome and
proteome data can be conducted by proximity extension
assay/specific RNA target amplification (PEA/STA),279
proximity ligation assay for RNA (PLAYR),280 and so on.
For PEA/STA method, adjacent-dependent hybridization
of DNA oligonucleotides attached to antibody pairs was
performed using adjacent extension assay (PEA) labeled
antibody pairs to convert proteins into DNA oligonu-
cleotides, and RTmRNA using randomRT primers to gen-
erate cDNA. Then, the DNA oligonucleotides and cDNA
were amplified by PCR and quantified using quantitative
PCR or sequencing. Using the PEA approach, Genshaft
et al. found that a subpopulation of glioblastoma cells
showed significant changes in mRNA and protein abun-
dance following BMP4 treatment, and the proteins were
able to define the response more accurately to BMP4.279
In addition, the analysis for single-cell multi-omics data

is also complex. The general approaches can be divided
as follows: correlation analysis between single-cell mono-
omics data, combined analysis of all types of single-cell

omics data to generate an overall single-cell atlas, ana-
lyze one type of single-cell data and then integrate another
single-cell data type. For example, REAP-seq was used
to analyze PBMCs and calculated the Pearson correla-
tion between single-cell mRNA and protein expression of
immune cell markers, and found that protein quantifi-
cation was more sensitive than mRNA quantification for
markers with low mRNA expression.284 Stoeckius et al.
integrated cellular protein and transcriptome measure-
ments into an efficient, single-cell readout, and found
that the protein expression level can be used to fur-
ther subdivide the cell population identified by RNA-seq
with subtle mRNA expression differences, such as the
(NK cell population.285 In addition, there are other meth-
ods for single-cell multi-omics integration, such as bi-
order canonical correlation analysis (bi-CCA),286 Unpair-
Reg (regression analysis on unpaired observations),287
PyLiger,288 nonnegative matrix factorization algorithm
(UINMF),289 and so on.
However, although single-cell multi-omics data provide

a wealth of biological information, their integrated anal-
ysis faces the same types of challenges described above.
In addition, there is a lack of technology capable of
generating multimodal data, resulting in comprehensive
studies that often rely on the integration of modalities
from different data sets. Notably, cross-omics matching of
cell types by using publicly available data from different
modalities can greatly increase the number of single-cell
multi-omics studies, such as MATCHER, an ensemble
method dedicated to single-cell-specific data.290 Integra-
tion of single-cell multi-omics data also hinders the use
of batch data processing methods due to specific techni-
cal limitations, such as cell-level noise. Therefore, in the
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future, it also needs to develop relevant methods to inter-
pret the biological significance of the data generated from
a single type of cell.
In a word, the future field of single-cell multi-omics will

not only address existing technical limitations, but also
is a significant breakthrough in single-cell ChIP-sep, pro-
teomics, metabolomics, and single-cell omics combined
with cellular-level imaging and morphological analysis.
Furthermore, future single-cell multi-omics will require
the development of methods to decipher the biological
interpretation of the complex signals linked between the
different modalities. Finally, incorporating patient clinical
data into single-cell omics studies will help explain molec-
ular regulatory models of health and disease at the cellular
level.

6.3 Application of multi-omics in
precision medicine

The concept of precision medicine refers to an emerg-
ing approach to provide disease treatment options and
prevention strategies based on individualized genetic,
environmental, and lifestyle factors, in other words, the
shift from one-size-fits-all medicine to a broader paradigm
of precision medicine (right drug, right patient, right
dose, right time).291 Clinical data can be categorized
into phenotypic (physiological assessment, disease scor-
ing, imaging, health questionnaires, etc.) or multi-omics
molecular (genomics, transcriptomics, proteomics and
metabolomics, etc.). Genetics research combined with
clinical data provides the basis for precision medicine,
such as translational genomics.292 And the study of blood
proteomics can provide pathogenic target proteins for
personalized therapy.293 Moreover, based on multi-omics,
there are significant advantages in explaining the molec-
ular patterns of complex diseases, and identifying key
nodes of disease at multiple levels of convergence, thus
maximizing the precision of identifying new drug targets,
endotypes, or biomarkers. However, the development of
biomarkers based on multi-omics is a key step in the
realization of precision medicine.294 For example, the
development of biomarker-based companion diagnostics
achieves precision medicine in the field of oncology.295,296
While multi-omics has difficulty in explaining the com-
plex interactions between genetics, gene regulation, and
proteins at multiple biological levels, networks can use
their network topology to identify key nodes that are
critical for screening drug targets and biomarkers for com-
plex diseases.297,298 In addition, based on the ML and
DL methods discussed above, it is also helpful for multi-
omics to play an important role in the identification of
biomarkers, and ultimately realize precision medicine.129

At present, there are also many review articles clarify-
ing the wide application of multi-omics in tumor and
immune-related precisionmedicine.299,300 Similarly, in the
field of neurodegenerative diseases, there are also research
initiatives based on multi-omics technology to realize pre-
cision medicine, such as the multi-omics study of the gut
microbial ecosystem in Parkinson’s disease,200 brain tis-
sue in Alzheimer’s disease,75 induced pluripotent stem
cell lines from ALS patients.301 In addition, multi-omics
has also been applied to precision medicine research on
metabolic-related diseases, such as type 2 diabetes.302
In general, multi-omics plays a pivotal role in the devel-

opment of precision medicine. With the development
of high-throughput technology and artificial intelligence
algorithms, precision medicine based on multi-omics will
become the main trend of disease diagnosis, treatment,
and prognosis in the future.

7 CONCLUSION

The study of biological multi-omics data systematically
reveals the physiological or pathological molecular map
in health or disease state, and the development of multi-
omics technology is mainly to achieve precision medicine
in the future. It is undeniable thatmulti-omics is becoming
increasingly important in medical research, and further
development of its technologywill likely explain the patho-
genesis of major diseases (such as cancer and neurode-
generative diseases) and provide an important molecular
theoretical basis for the clinical diagnosis, treatment, and
prognosis. However, the current development of multi-
omics is also facing many challenges, such as the design of
multi-omics experiments mentioned above, especially the
integrated analysis of multi-omics data.
With the development of medical treatment and high-

throughput technology, various omics technologies are
also integrated into disease research. In addition to
the application of advanced omics technology, high-level
research reports often show their innovation and nov-
elty in very sophisticated experimental design or analysis
methods. Therefore, at the beginning of the experiment,
special attention should be paid to whether the design of
the experiment corresponds to the expected research pur-
pose, after all, omics analysis is often both time-consuming
and costly. When conducting multi-omics research, we
must consider whether the type of omics, analysis tech-
niques, and collected data indicators can achieve the set
research goals or solve existing research problems. In
other words, only a multi-omics design approach suitable
for explaining the purpose of the experiment is needed
here, rather than just forcing the use of as many types of
omics in the study as possible. It is believed that some
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TABLE 4 Open-source tools for the integrated analysis of multi-omics data.

Tool name Omics type Website Advantages Ref
OmicsAnalyst Transcriptomics, proteomics,

metabolomics, microbiome
https://www.
omicsanalyst.ca

Correlation network analysis, cluster heat map
analysis, and dimension reduction analysis
all have comprehensive options for
parameter customization, view
customization, and target analysis.

303

OmicsNet 2.0 Genomics, transcriptomics,
proteomics, metabolomics,
microbiome

https://www.omicsnet.ca/ Web-based multi-omics analysis platform
supporting 2D and 3D network visualization
exploration.

The RandomWalk with Restart algorithm can
be used to search for candidate disease
markers.

115

Hiplot Genomics, transcriptomics,
proteomics

https://hiplot.com.cn/ Have a variety of omics analysis,
bioinformation analysis modules, especially
in the possession of high-quality visual
mapping tools.

304

Wu Kong Genomics, transcriptomics,
proteomics,
phosphoproteomics

Metabolomics

https://www.
omicsolution.com/

Complete one-click omics result generation, as
well as a variety of statistical analysis,
functional analysis, visualization analysis,
clinical data analysis, multi-omics
cross-association, and other modules.

305

OmicStudio Genomics, transcriptomics,
proteomics, metabolomics,
microbiome

https://www.omicstudio.
cn/

A variety of modules for single-cell omics
analysis, easy data entry types, and
high-quality visual mapping tools are
available.

306

Majorbio Cloud Genomics, transcriptomics,
proteomics, metabolomics,
microbiome

https://cloud.majorbio.
com/

Provides interactive analysis reports that
produce analysis results from
bioinformation workflows into Web-based
interactive analysis reports.

307

suggestions on the design of multi-omics experiments in
this reviewmay be helpful to guide researchers to carry out
multi-omics experiments in the future.
In addition, the large amount of data sets generated by

multi-omics also brings great difficulties to the data anal-
ysis. In this review, we also discussed some of the more
commonly used multi-omics data analysis and integration
methods. For researchers with relatively weak computing
algorithms, theway ofmulti-omics data integration is often
based on the correlation between various omics data and
the discovery of related upper-lower-level regulatory net-
works, so as to further explain the biological significance
of the data. However, researchers who are more proficient
in bioinformatics and algorithms usually develop ML or
DL-related algorithms to integrate multi-omics data, since
ML and DL have significant advantages in multi-omics
data integration. For instance, ML and DL have excellent
data processing capabilities for both linear and nonlin-
ear data, and use supervised or unsupervised learning
capabilities for disease prediction or biomarker discov-
ery. Fortunately, open-source platforms and software are
also being developed to help noncomputational medical

researchers integrate and analyze multi-omics data, such
as Hiplot and the “Wu Kong” platform (Table 4). There-
fore, asmore andmore open-source tools will be developed
and accessible for the integrated analysis of multi-omics
data in the future, the application of multi-omics will
become more and more easy for most researchers.
In conclusion, with the development of high-

throughput technology, multi-omics technology will
become inseparable in the research of diseases, and finally
realize precision medicine.
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