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ABSTRACT
◥

Somatic mutational profiling is increasingly being used to identify
potential targets for breast cancer. However, limited tumor-
sequencing data from Hispanic/Latinas (H/L) are available to guide
treatment. To address this gap, we performed whole-exome sequenc-
ing (WES) and RNA sequencing on 146 tumors andWES of matched
germline DNA from 140 H/L women in California. Tumor intrinsic
subtype, somaticmutations, copy-number alterations, and expression
profiles of the tumors were characterized and compared with data
from tumors of non-Hispanic White (White) women in The Cancer
Genome Atlas (TCGA). Eight genes were significantly mutated in the
H/L tumors including PIK3CA, TP53, GATA3, MAP3K1, CDH1,
CBFB, PTEN, and RUNX1; the prevalence of mutations in these
genes was similar to that observed in White women in TCGA.
Four previously reported Catalogue of Somatic Mutations in Cancer
(COSMIC) mutation signatures (1, 2, 3, 13) were found in the H/L
dataset, along with signature 16 that has not been previously reported

in other breast cancer datasets. Recurrent amplifications were
observed in breast cancer drivers including MYC, FGFR1, CCND1,
and ERBB2, as well as a recurrent amplification in 17q11.2 associated
with high KIAA0100 gene expression that has been implicated in
breast cancer aggressiveness. In conclusion, this study identified a
higher prevalence of COSMIC signature 16 and a recurrent copy-
number amplification affecting expression of KIAA0100 in breast
tumors from H/L compared with White women. These results
highlight the necessity of studying underrepresented populations.

Significance: Comprehensive characterization of genomic and
transcriptomic alterations in breast tumors from Hispanic/Latina
patients reveals distinct genetic alterations and signatures, demon-
strating the importance of inclusive studies to ensure equitable care
for patients.

See related commentary by Schmit et al., p. 2443

Introduction
Sequencing studies of breast cancer have identified recurrently

mutated genes and somatic copy-number alterations (SCNA) affecting
tumor suppressors and oncogenes (1–3). Both somatic mutations and
CNAsmay be useful in determining prognosis. Currently, therapies for
breast cancer can be selected on the basis of particular somatic
mutations [i.e., alpelisib for PIK3CA (4)], SCNAs (i.e., trastuzumab
for HER2), and germline mutations in genes in the homologous
recombination repair (HRR) pathway (PARP inhibitors).

Genetic ancestry is associated with specific somatic mutations in
many cancer types. EGFR mutations are approximately 4-fold more

common in lung cancer from women and men of East-Asian ancestry
compared with lung cancer from women and men of other popula-
tions (5) with self-reported Hispanic/Latinos (H/L) representing an
intermediate group (6, 7). FOXA1 mutations in prostate cancer also
are substantially more common in East-Asian ancestry populations
compared with European and African ancestry populations (8). Com-
prehensive analyses of The Cancer Genome Atlas (TCGA) have
demonstrated that many mutations and CNAs are more common in
specific ancestral populations (9, 10). In breast cancer, previous studies
have demonstrated that women of African ancestry have higher rates
of TP53mutations and lower rates of PIK3CAmutations, likely related
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to a higher incidence of a basal-like breast cancer subtype in African-
American women (11, 12). However, the genomic landscape of breast
cancer has not been well characterized in H/L groups.

H/L represent the largest minority population in the United
States and have diverse origins, with the largest subpopulations
including Mexican Americans and Puerto Ricans. Genetically, H/L
are a population of mixed European, Indigenous American (IA),
and African ancestries with those ancestry proportions varying
widely depending on country of origin and regions within a
country. Although breast cancer is less common overall among
H/L compared with self-reported non-Hispanic White (White)
women due to both environmental (13) and genetic factors (14),
there is a higher proportion of breast cancers diagnosed under age
50 years than in Whites (15). Moreover, outcomes are usually worse
among H/L compared with White women (16). In some studies, IA
ancestry was associated with poorer outcomes among H/L with
breast cancer (17). HER2 amplifications are overrepresented among
H/L and are more common among H/L with more IA ancestry
compared with those with more European ancestry (18). Few
studies have investigated the distribution of somatic mutations
and SCNAs in breast tumors from H/L. In TCGA, out of 1,096
breast cancer cases, only 39 are self-reported H/L. A recent study
analyzed data including whole-exome sequencing (WES) and gene
expression data from 109 Mexican women living in Mexico (19).
However, no similar size study has been conducted in H/L in the
United States. To investigate the somatic mutational spectrum in
breast cancer among H/L, we generated WES and RNA sequencing
(RNA-seq) data from 146 tumors from 140 H/L from Southern
California and performed analyses of somatic mutations, SCNAs,
and gene expression.

Materials and Methods
Participants

One hundred and forty patients with breast cancer seen at City of
Hope (COH) in Duarte, California were included in this study. All
participants signed a written informed consent approved by the COH
Institutional ReviewBoard. Inclusion criteria were: (i) self-identified as
H/L; (ii) tumor tissue from surgery was available and the sample
contained more than 40% tumor based on examination by a single
breast pathologist (D. Schmolze). The percentage tumor ranged from
40% to 90% with an average of 64% and a median of 65% tumor. An
exclusion criterion was neoadjuvant therapy as treatment could
change the mutation profile. Clinical data were abstracted from
medical records including date at diagnosis, date at surgery, tumor
stage, grade, histologic estrogen receptor (ER), progesterone receptor
(PR), and HER2 status, second cancers, breast cancer recurrence,
parity, history of breast feeding, age at menarche, and cause of death, if
applicable. Six of the 140 patients with breast cancer had two primary
contralateral breast cancers with tissue available for study for a total of
146 tumors.

DNA and RNA-seq
DNA extraction

Germline DNA was extracted from peripheral blood cells or from
formalin-fixed paraffin-embedded (FFPE) normal breast tissue adja-
cent to tumor tissue from surgery. Peripheral blood cell DNA was
extracted using a standard phenol chloroform method. For FFPE
tissue, DNA and RNA were extracted from 10 30 mm sections from
each tumor using the QIAmp DNA FFPE Tissue Kit (Qiagen) and
miRNeasy Kit (Qiagen) according to manufacturer’s instructions.

DNA was quantified with the Quant-iT PicoGreen dsDNA Assay Kit
(Thermo Fisher Scientific). After extraction and quantification, DNA
was sent to TheNCICancer Genomics Research Laboratory (CGR) for
WES. For RNA-seq, 500 ng total RNAwas sent to the COH Integrative
Genomics Core (IGC).

DNA library construction, hybridization, and massively parallel
sequencing

Library production and sequencing for 146 tumors and 140 match-
ing normal samples was performed at CGR. The KAPAHyperPlus Kit
(Kapa Biosystems, Inc.) was used to generate libraries from 300 ng
DNA according to the KAPA-provided protocol. Libraries were
pooled and sequence capture was performed with NimbleGen’s Seq-
Cap EZ exome v3 (Roche NimbleGen, Inc.), according to the man-
ufacturer’s protocol. The resulting postcapture enriched multiplexed
sequencing libraries were used in cluster formation on an Illumina
cBOT (Illumina) and paired-end sequencing was performed using an
Illumina HiSeq 4000 following Illumina-provided protocols for 2 �
100 bp paired-end sequencing to an average-fold coverage of 80X for
the tumors and 30X for the germline samples. Paired-end reads from
each sample were aligned to human reference genome (hg19) using
Novoalign (v3.00.05), and the aligned binary format sequence (BAM)
files were sorted and indexed using SAMtools (1, 2). The sorted and
indexed BAMs were processed by Picard (v1.126, https://broadinsti
tute.github.io/picard/) to remove duplicate sequencing reads. Local
realignment around suspected sites of indels was performed using
Genome Analysis Toolkit (GATK) IndelRealigner (v3.3-0-g37228af).
Thesemapped sequence reads were then base recalibrated before being
used for somatic mutation calling by MuTect2 in GATK (v4.0.11.0).

RNA-seq
In the COH IGC, sequencing libraries were prepared with Kapa

RNA HyperPrep Kit with RiboErase (Roche) and sequenced on a
HiSeq 2500 (Illumina) with 40million reads per sample. The RNA-seq
reads were aligned to hg19 genome assembly using Tophat2 (v2.0.8)
with default settings. The gene expression levels were counted by
obtaining raw counts with HTSeq (v0.6.1p1) against Ensembl v86
annotation. The counts data were normalized using the trimmedmean
of M values method implemented in R package edgeR (20). Log2-
transformed counts were used to assign PAM50 subtypes based on the
subgroup-specific gene centering method developed by Zhao and
colleagues (21). We estimated Z-scores based on the corrected median
absolute deviation (MAD) implemented by the robStandardize R
function in the robustHD R package and defined expression outliers
as gene-sample datapoints with robust Z-scores greater than three.
Raw counts of RNA-seq data for 1,189 TCGA samples (including both
tumor and matched normal samples) were downloaded from the
Genomic Data Commons (GDC) using the GDCRNATools (22) R
package. RNA-seq data for H/L tumor samples and TCGA samples
were processed and analyzed separately.

Data analysis
Germline variant calling

Germline variant calling from the BAM files was performed in the
COH IGC using GATK HaplotypeCaller (https://software.broadinsti
tute.org/gatk). Variants with a call quality less than 20, read depth less
than 10, or allele fraction ratio less than 20%were removed. Variants in
variant call format files were evaluated for pathogenicity using Inge-
nuity Variant Analysis (IVA) version 4 (Qiagen) and American
College of Medical Genetics and Genomics (ACMGG) guidelines
were applied using the IVA ACMGG calling algorithm (23).
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Pathogenic or likely pathogenic variants were individually evaluated
by the research teamusing the available literature and ClinVar tomake
a final determination (24).

We inferred germline SNP calls using the WES data. Low-pass
whole-genome sequence data can be used to impute SNP data using
reference human genomes and equivalent data from WES off-target
reads can be leveraged with reference human genomes to infer
common variants (25–27). To perform common variant inference,
we used the BAM files from the germlineWES datasets and performed
common variant calling using STITCH (25) Version 1.6.6. We per-
formed rigorous quality control on the data by excluding variants with
info score <0.8, deviations from Hardy–Weinberg equilibrium P <
0.001, call rate < 0.95, minor allele frequency < 0.005. In addition, we
performed ax2 test for allele frequency differences between our sample
and the 1000 Genomes AMR sample, which has a similar ancestry
profile (mixture ofmostly European and IA) and dropped variants that
had a P value < 5 � 10�8. We used this additional filter to minimize
SNPs with imputation errors because our goal was not to perform a
genome-wide association study analysis but to obtain the best quality
subset of SNPs to perform locus-specific ancestry estimates and
conduct limited germline–somatic interaction and expression quan-
titative trait locus analysis (eQTL). Overall, 2,118,749 variants passed
all the levels of quality control. Included in this set of SNPs was
rs12628403 (imputation quality score¼ 0.97), which is a surrogate for
the APOBEC3A/B deletion (r2 ¼ 0.91; ref. 28).

Genetic ancestry analysis
We performed genetic ancestry estimation for each of the 140

women using the germline WES data. We used 90 European (1000
Genomes), 90 African (1000 Genomes), 90 East-Asian (1000 Gen-
omes), and 71 IA ancestry (29) reference samples. We identified the
SNPs that overlap all datasets (N ¼ 9,935). We combined all SNPs
and dropped SNPs that did not match based on reference and
alternate alleles. To estimate the ancestry for each sample, we used
ADMIXTURE 1.3.0 setting the K parameter to 4 and running the
unsupervised algorithm (30). In addition, we used principal com-
ponents analysis, calculated using PLINK 1.9 (31) as a comple-
mentary method to assess ancestry.

Locus-specific ancestry
The imputed data were phased using Beagle 5.4 (32). The phased

data were combined with data from European, African, and IA
reference samples as described above. We used RFMix version 2
[https://github.com/slowkoni/rfmix (33)] to estimate locus-specific
ancestry on the overlapping 2,118,045 SNPs between our data and
data from ancestral samples.

Somatic variant calling
We identified somatic single-nucleotide variants (SNV) using

MuTect2 in GATK4 (v4.0.11.0) suite with default parameters (34)
and indels using GATK Indelocator. Using the SNV and indel filtering
method described in Pereira and colleagues (3), we focused
on frameshift, nonsynonymous, canonical splicing site, and stop
gain mutations. Briefly, somatic mutations were manually curated
and considered true positives in a sample if themutation was observed
in >10% of reads or with a frequency of 5% to 10% if in frequently
mutated breast cancer genes or seen inCatalogue of SomaticMutations
in Cancer (COSMIC) database (35). Because the tumors include
both tumor and normal stromal cells, it is expected that the proportion
of reads will have less than the expected 50% if 100% tumor.Mutations
in <5% of reads, in segmental duplication regions, or indels that

overlapped homopolymer stretches of six or more bases were
considered false positives. We did visual checking using the
Integrative Genomics Viewer (IGV) to assess the quality of all
somatic mutations. We performed Sanger sequencing on a subset of
samples to confirm specific mutations in AKT1, BARD1, MAP3K1,
and MET. Using the filtered and annotated somatic mutations, we
performed a somatic mutation significance analysis via MutSigCV
(version 1.3.5; ref. 36) on Genepattern (https://www.genepattern.org/
modules/docs/MutSigCV). Genes with FDR q < 0.05 are considered to
be significantly mutated genes.

We compared the significant somaticmutations in our analysis with
the mutations from the Romero-Cordoba dataset (19). Using the
publicly available somatic mutation data from the Romero-Cordoba
study of theMexican patients, we combined our somaticmutation data
and performed a MutSigCV analysis to identify the common signif-
icant genes. Similarly, to investigate whether these significantly mutat-
ed genes were associated with ancestry, we performed the same
analysis on breast tumors from Whites in TCGA. Using 2% as the
mutation frequency threshold, we counted the number of mutations
and their corresponding mutation frequencies in each cohort, and
performed Fisher exact test to investigate whether any gene was
significantly more frequently mutated in either cohort. Further-
more, we tested whether common germline and somatic mutations
(frequency > 5%) were associated with global and/or local ancestry
using logistic regression models in which mutation (yes or no) was
the outcome variable and numerical global ancestry (percentage)
and local ancestry (the number of IA ancestry allele) were the
explanatory variables.

CNA using FACETS
We used FACETS implemented in R package FACETS version

0.6.1 (37) to calculate CNAs. The counts of reads with the reference
(ref) allele, alternate (alt) allele, errors (neither ref nor alt), and
deletions at a specific genomic position were generated using BAM
files from the 146 matched tumor-normal sample pairs using the
application snp-pileup in the FACETS package. The segmentation of
each tumor sample was then estimated with the critical value (cval)
150. The segmentation files generated by FACETS served as input files
for theGISTIC2.0 (38) on theGenePattern server (https://genepattern.
broadinstitute.org/gp) to identify significant SCNAs using a q-value
cutoff < 0.05. A gene was considered as copy number altered with
GISTIC2-thresholded scores of �2 (deep loss), �1 (shallow loss),
1 (low-level gain), and 2 (high-level gain). The GISTIC2 copy-number

Table 1. Patient and tumor characteristics of 140 H/L breast
cancer cases and their 146 breast tumors.

Patient characteristics Mean Range Median

Age at diagnosis (years) 48.7 31–75 48
Breastfeeding (months) 7.2 0–84 2
Parity (number children) 2.3 0–8 2
Age at menarche (years) 12.6 9–18 12

Tumor characteristics Positive Negative Unknown Equivocal

Estrogen receptor 120 (82%) 25 (17%) 1 (0.7%)
Progesterone receptor 104 (72%) 41 (28%) 1 (0.7%)
HER2 25 (17%) 116 (80%) 1 (0.7%) 4 (3%)
Stage at diagnosis I II III IV

63 (44%) 63 (43%) 17 (12%) 3(2%)
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results and clinical data for 816 TCGA tumor samples were down-
loaded from the cBioPortal database (https://www.cbioportal.org;
ref. 39). Expression outliers (defined by Z-scores greater than 3.0)
were considered as driven by copy-number changes if greater than
90% expression outliers in a gene had a GISTIC2-thresholded copy-
number score of 2 (high-level gain) or 1 (low-level gain). Fisher
exact test was used to identify genes with frequency difference in

expression outliers, driven by CNAs, between 146 tumor samples
from H/L and 452 TCGA Whites (determined as having > 95%
European ancestry as described below).

Mutation signature analysis
Using the previously called SNVs, we performed a mutational

signature analysis via the MutationalPatterns R package (40).

Figure 1.

Ancestry of the cohort. Results of principal components analysis comparing the values for samples on principal component (PC) 1 (x-axis) and PC3 (y-axis) (A). Each
dot represents the results from one individual. H/L, dark blue; TCGA, pink; and reference populations including African (AFR), Yoruban individuals fromNigeria from
HapMap (light green); East Asians (EAS), Han Chinese fromHapMap (brown); EuropeanAmerican (EUR) fromHapMap (light blue); and IA (yellow) fromMexico. PC2
(not shown) captures individuals of Asian and IA ancestry.B,Results fromADMIXTURE analysis. Each vertical bar represents estimate of ancestry fromone individual.
Ancestry is assigned for each individual as a fraction of either African (green), Asian (brown), European (light blue), or IA (yellow) ancestry.
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Hg19 was used as the reference genome. SNVs were parsed and
classified into six mutation patterns (C>T, T>A, C>G, T>C, C>A
and T>G) and 96 trinucleotide changes. Then a non-negative
matrix factorization algorithm was implemented to extract muta-
tion signatures. We compared the similarities of these mutation
signatures with the COSMIC mutation signatures and each muta-
tion signature could be treated as a linear combination of the 30
COSMIC mutation signatures. The 30 COSMIC mutation signa-
ture percentage contribution was then computed for each tumor
and a contribution heatmap was generated. Within these tumor

samples, we performed a signature contribution comparison using
the two-sided Wilcoxon rank-sum tests among the five tumor
subtypes (luminal A, luminal B, basal-like, HER2-enriched, and
normal-like).

We also compared the mutation signature analysis with the breast
tumors in the Romero-Cordoba dataset and the breast tumors from
Whites in TCGA SNV dataset. For the significant COSMIC mutation
signatures identified in our dataset, we performed two-sidedWilcoxon
rank-sum tests among the three datasets to test whether the signature
was enriched in Mexican patients.

Figure 2.

Tumor mutational burdens and somatic mutational profiles. A,Mutation plot of nine significantly mutated genes in the 146 tumors. Different mutation classifications
are color coded. Numbers are shown where multiple mutations of the same classification were detected. Total mutational burden for each tumor is shown as a bar
chart on top. The mean variant allelic frequency is shown for each gene on the left. PAM50 subtype and mutation pattern for each tumor are shown at the bottom.
B, Lollipop plots of PIK3CA and GATA3 mutations within the 146 tumors. Mutation classifications are color coded and amino acid changes are specified for each
mutation.
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Figure 3.

Mutational signatures.A,Unsupervised clustered heatmap of contributions from eachmutational signature for the 146 tumors. Significant signatures are highlighted
in red. PAM50 subtype for each tumor is shown on top of the heatmap. B, Box plot comparisons of the contributions of the five significant mutational signatures
(Signature 1, 2, 3, 13, 16) across the PAM50 subtypes. Statistical significance levels are indicatedwithin the boxplots.C,Boxplot of signature 16 contributions in the 146
tumors from the Hispanic-Mexican cohort (COH), Romero-Cordoba study, and the non-Hispanic White tumors in TCGA dataset. Statistical significance levels are
indicated within the box plot. NS, not significant, P > 0.05; � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; Wilcoxon rank-sum test.
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Figure 4.

CNAs. A, Genomic regions of significant copy-number gain (left) and loss (right) identified by GISTIC2. Common oncogenes and tumor suppressor genes are in
parentheses next to the corresponding cytobands. The green vertical line marks the GISTIC2 q value of 0.05 (bottom x-axis). B,Outlying gene expression and copy-
number gain in four genes in 146 H/L breast tumor samples. Gene expression values on the y-axis are Z-scores estimated by robust standardization; the red dash line
of Z-score ¼ 3 and blue dash line of Z-score ¼ �3 are cut-off values for outliers of overexpression and underexpression, respectively.
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Germline–somatic interaction analyses: effect of germline SNP
variants on somatic mutations, copy-number changes, and gene
expression

To determine the potential effects of germline variants on
somatic events and gene expression, we performed limited associ-
ation test between the imputed SNP genotypes and a set of high-
priority somatic events because we were severely underpowered in
this dataset to perform genome wide searches for germline–somatic
interactions. Specifically, we focused on SNPs that may be associ-
ated with (i) somatic mutations in the genes identified as signifi-
cantly mutated by MutSigCV, (ii) the copy-number amplifications
identified as significantly amplified by GISTIC, which have known
driver genes, (iii) the top gene, KIAA0100, identified as significantly
different for gene expression across datasets between White TCGA
participants and our H/L dataset, (iv) the known APOBEC3A/B
SNP, rs12628403, in linkage disequilibrium with the germline
deletion associated with tumor mutational signatures. We restricted
these analyses to the germline SNP variants in cis, defined as 1 MB
upstream and downstream of the gene that is significantly mutated
or the presumed target gene. Logistic regression models were used
to test associations of somatic mutations (yes or no, outcome
variable) in genes with mutation rates > 5% and germline SNP
genotype (0, 1, and 2, primary predictor variable) adjusting for
covariates including somatic mutation rate [the number of non-
silent mutations per megabase (Mb)], tumor stage, and PAM50
subtype (41, 42). Logistic regression models also were used to test
associations between high-level gain (yes or no, outcome variable)
in known genes in the region of gain and germline SNP genotype
adjusting for covariates including somatic copy-number variation
(CNV) rate (the number of segments each sample has genome

wide), tumor stage, and PAM50 subtype. We also performed cis-
eQTL analysis for a gene (s) with frequency difference in expression
outliers between H/L and White tumors. We used a multivariate
linear model in which gene expression in tumor was the outcome
variable, germline SNP genotype was the primary predictor vari-
able, and covariates were batch variable in RNA-seq, tumor stage,
and PAM50 subtype (43). Benjamini–Horchberg (BH)-adjusted
P values (FDR) < 0.05 were considered significant associations.

Data availability
All tumor/normal WES and RNA-seq data and accompanying

phenotypic and clinical/histologic data are deposited in dbGAP
(dbGaP Study Accession: phs003218). TCGA RNA-seq and clinical
data are publicly available at http://firebrowse.org/?cohort¼BR
CA&download_dialog¼true. The Romero-Cordoba dataset (19)
was downloaded from their supplementary material publicly
available at https://doi.org/10.1038/s41467-021-22478-5. All other
raw data are available upon request from the corresponding author.

Results
Clinical/demographic data

The mean age at diagnosis was 48.7 years with a range from ages 31
to 75 years (Table 1). Nearly all of the 140H/Lwere ofmixed European
(Eur) and IA ancestry. The mean ancestry composition was 50.6%
Eur, 40.8% IA, 5.9% African, and 2.7% Asian although the range of
ancestry proportion varied widely from <1% to 96% IA at the
extremes (Fig. 1). As shown in the principal component analysis
plots in Fig. 1A, H/L samples are not well represented in TCGA. For
the six individuals with two primary tumors (in the contralateral

Table 2. Frequency difference in expression outliers drivenby copy-number gain between 146H/L tumors and452 TCGAWhite tumors.

Gene
GISTIC2
gain region

Specific to
H/La

GISTIC2
q value

No. of
outliers in
146 H/L

Frequency
of outliers
in 146 H/L

No. of
outliers in
452White

Frequency
of outliers
in 452 White

Fisher
exact
P valueb

BH-
adjusted
P value

KIAA0100 17q11.2 yes 7.85E-08 11 0.08 0 0 1.37E-07 2.93E-05
DSCC1 8q24.21 yes 1.18E-06 7 0.05 0 0 4.63E-05 4.95E-03
C4BPA 1q32.1 yes 6.24E-04 10 0.07 4 0.01 2.31E-04 9.88E-03
C4BPB 1q32.1 yes 6.24E-04 6 0.04 0 0 1.96E-04 9.88E-03
RNF169 11q13.5 yes 1.90E-05 12 0.08 6 0.01 1.41E-04 9.88E-03
POLDIP2 17q11.2 yes 7.85E-08 10 0.07 5 0.01 5.48E-04 1.95E-02
FOXJ3 1p34.2 yes 8.16E-03 7 0.05 2 0 1.05E-03 2.94E-02
MIR4728 17q12 no 1.02E-19 12 0.08 9 0.02 1.10E-03 2.94E-02
MYBPH 1q32.1 yes 6.24E-04 8 0.05 4 0.01 2.13E-03 3.95E-02
SAP30BP 17q25.1 yes 2.60E-04 10 0.07 7 0.02 2.22E-03 3.95E-02
SDF2 17q11.2 yes 7.85E-08 8 0.05 4 0.01 2.13E-03 3.95E-02
UBE2O 17q25.1 yes 2.60E-04 12 0.08 10 0.02 1.91E-03 3.95E-02
AHCTF1 1q44 no 1.16E-05 5 0.03 1 0 3.96E-03 4.71E-02
GSDMC 8q24.21 yes 1.18E-06 10 0.07 8 0.02 3.95E-03 4.71E-02
MTF1 1p34.2 yes 8.16E-03 4 0.03 0 0 3.44E-03 4.71E-02
PIGS 17q11.2 yes 7.85E-08 6 0.04 2 0 3.49E-03 4.71E-02
QSER1 11p13 no 3.38E-02 9 0.06 6 0.01 3.13E-03 4.71E-02
UNC13D 17q25.1 yes 2.60E-04 5 0.03 1 0 3.96E-03 4.71E-02

Abbreviations: GISTIC2, GISTIC2 algorithm for copy-number analysis; H/L, Hispanic/Latino; White, non-Hispanic White.
aGISTIC2 gain regions are identified in the 146 H/L samples but not in the 663 TCGA Caucasian samples based on GISTIC2 results published by Romero-Cordoba
and colleagues (19); the 8q24.21 region was identified in both groups; however, the wide-peak boundary for the 663 TCGA Caucasian samples (chr8:128657453-
128779930) was narrower than that for the 146 HW samples (chr8:114449162-130760646), therefore, DSCC1 and GSDMC are included in 8q24.21 from the 146 H/L
samples, but not in the 8q24.21 from the 663 TCGA Caucasian samples.
bFrequency difference in the number of expression outliers between H/L and White group was tested using the Fisher exact method.
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breasts), the tumors were considered independent tumors (Supple-
mentary Table S1), which was borne out by different somatic
mutation profiles. The majority of the women were diagnosed with
stage I (44%) or II (43%) tumors (Table 1). There were 22
recurrences and 10 deaths during the time of follow-up. Of the
146 tumors, 83% were ER positive (ERþ), 72% were PR positive, and
17% were HER2 positive (HER2þ) and these proportions were
similar to White women in TCGA (1).

Germline variant analyses
Germline pathogenic variants in breast cancer predisposition genes

were identified in six participants including one BRCA1 exon 9–12
deletion, fourCHEK2L236P, and oneNF1Y408X variant, of which the
BRCA1 and CHEK2 variants are of IA ancestry (44). Germline
APOBEC3A/B deletions were observed in 56 of 140 women (43
heterozygous and 13 homozygous deletions). The APOBEC3A/B
deletions were 3-fold more common in H/L than in TCGA White
tumors (25.2% vs. 8.4%, linear trend P value ¼ 1.76 � 10�11 from
logistic regression). The high frequency of APOBEC3A/B deletion was
significantly associated with both global IA ancestry (P ¼ 0.017,
logistic regression) and local IA ancestry (P ¼ 0.016, Spearman rank
correlation).

Somatic mutations
We observed a total of 4,510 true somatic mutations in 3,391 genes

in the 146 primary breast tumors (Supplementary Table S2). The
number of mutations per individual varied from 2 to 225. Using
MutSigCV, we found that mutations in PIK3CA, TP53, GATA3,
MAP3K1, CDH1, CBFB, PTEN, and RUNX1 were significant (FDR
< 0.05) cancer driver mutations. To identify additional, potentially
significantly mutated genes in H/L, wemerged themutation data from
our cohort with a previously published study of Mexican patients with
breast cancer (N¼ 135; ref. 19). Within the aggregated mutation data
of this combined cohort (N¼ 281), we re-ranMutSigCV and identified
onemore significantlymutated gene,AKT1, which only occurred twice
in our 146 primary breast tumors. Using the statistically significantly
mutated genes obtained from the aggregated cohort, we visualized the
mutational profiles within our cohort (Fig. 2A) and the variant
locations for PIK3CA and GATA3 (Fig. 2B). For MAP3K1 and
RUNX1, at least one tumor harbored multiple mutations in the same
gene. Furthermore, in GATA3, seven tumors had the identical splice
mutation (NM_001002295.2:c.925-3_925-2delCA) that affected
expression (data not shown). Other genes of interest that did not
meet the significance threshold (FDR < 0.05) but that have been
identified as significant in prior studies and were mutated in our
dataset included MLL3 (a.k.a KMTC2; 6%), PTPRD (3%), MAP2K4
(2%), PIK3R1 (2%), NF1 (1%), RB1 (1%), TBX3 (1%), FOXA1 (1%),
PADI4 (1%), CDKN1B (1%), CTCF (1%), and NCOR1 (1%). In
addition, we found mutations in MET (4.1%), which is not generally
considered a breast cancer gene but is a known driver in other cancer
types (45).

The frequency of mutations in genes known to be significantly
mutated in breast cancer, including PIK3CA, MAP3K1, GATA3,
CBFB, and MLL3/KMT2C, were not significantly different in
tumors from H/L compared with tumors from White women in
TCGA (FDR q > 0.05; Supplementary Table S3). Similar to tumors
from Whites, PIK3CA and TP53 were the most commonly mutated
genes. We identified AKT1 mutations in two of 146 tumors (1.4%),
including the E17K hotspot mutation, which was found to be
mutated in 8% of patients among Mexican women (19). For the
seven genes with mutation frequency >5% (Fig. 2A), there were no
significant associations with either global or locus-specific ancestry
(Supplementary Table S4). Of the seven individual mutations
observed in more than 2% of tumors, we observed nominally
significant higher frequency of the E545K hotspot mutation in
PIK3CA (13.7% vs. 7.5%, Fisher exact test P value ¼ 0.03) and a
nonsignificant trend toward higher frequency of the splice variant
in GATA3 (4.8% vs. 1.9%, Fisher exact test P value ¼ 0.07) in H/L
compared with TCGA Whites (Supplementary Table S5).

Mutational signature analysis
To investigate themutational processes inH/L breast cancer tumors

and the association between PAM50 subtypes andmutational patterns,
we adopted the non-negative matrix factorization approach as pro-
posed by Alexandrov and colleagues (46) for mutational signature
analysis of tumors. Signature calling revealed five major contributing
signatures in the 146 tumors corresponding to the COSMIC signatures
1, 2, 3, 13, and 16 (Fig. 3A; Supplementary Table S6). Signature 1 was
detected in all 146 tumors. The contribution of COSMIC signature 1
was greater in luminal A andB subtypes thanHER2 and basal subtypes
(P < 0.05, two-sided Wilcoxon rank-sum test; Fig. 3B). Signatures 2
and 13, attributed to activity of the AID/APOBEC family of cytidine
deaminases, were found in tandem in 16% (n¼ 23) of the tumors and
were more common in tumors with HER2 subtype compared with
luminal A and B subtypes (Fig. 3B). We found that 13 tumors were
homozygous and 43 tumors were heterozygous for a common 29.5 kbp
germline deletion spanning most of APOBEC3. Tumors with the
deletion had a higher proportion of COSMIC signatures 2 (P ¼
0.0005, Wilcoxon rank-sum test) and 13 (P ¼ 0.0008, Wilcoxon
rank-sum test). Signature 3, attributed to defects of homologous
recombination double-stranded DNA break repair, was found signif-
icantly more often in basal subtypes than the other PAM50 subtypes
(P < 0.05, two-sided Wilcoxon rank-sum test) including the tumor
with the germline BRCA1 exon 9–12 deletion. We observed a group of
tumors (N ¼ 40, 27.4%) with more than 5% COSMIC signature
16 contributions. There was no association of signature 16 with global
IA ancestry. Because this was not previously reported in other breast
tumor studies, we re-examined other datasets, using the same
analytic pipeline used herein. We found that signature 16 was
present in 20 (19.6%) tumors in a previous study of Mexican
patients with breast cancer (19), which was not significantly dif-
ferent than the proportion in our dataset (P ¼ 0.18, Fisher exact

Figure 5.
Expression outliers and copy-number gain in KIAA0100.A,Distribution of gene expression andGISTIC2-thresholded copy-number scores inKIAA0100 for 146 breast
tumor samples from H/L and 452 breast tumor samples from TCGA non-Hispanic Whites. The y-axis is standardized gene expression values (Z-scores) estimated
robustly based on the correctedMAD. Red and blue dashed lines represent Z-score of 3 and�3, respectively.B,Distribution of proportion of high-level copy-number
gain for 950 genes spanning the six amplified regions of 17q11.2, 17q12, 17q21.33, 17q23.1, 17q23.3, and 17q25.1. y-axis is the percentage of the 146 H/L samples with
GISTIC2-thresholded copy-number score of 2; x-axis is genomic boundaries (Chr17: 21431570 – 81188573, hg19) for the six significantly amplified regions determined
byGISTIC2. The vertical linesmark the genomic locations ofKIAA0100 (BCOX1, 17q11.2) at Chr17:26941457 – 26972177, ERBB2 (17q12) at Chr17: 37844336 – 37873910,
MIR4728 (microRNA 4728, 17q12) at Chr17: 37882747 – 37882814, ZNF652 (17q21.33) at Chr17: 47366567 – 47439476, PTRH2 (17q23.1) at Chr17: 57774666 –

57784959, DDX5 (17q23.3) at Chr17: 62494371 – 62503156, and UBE2O (17q25.1) at Chr17: 74385612 – 74449288.
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test). The proportion with this signature in tumors from TCGA
White women (N ¼ 75; 8.9%) was significantly lower than in our
dataset (P < 0.001, Fisher exact test; Fig. 3C) and in the Romero-
Cordoba and colleagues dataset (P < 0.0001, Fisher exact test). The
percentage of this signature was significantly higher in luminal A
and B subtypes compared with HER2 and basal tumors (P < 0.05,
two-sided Wilcoxon rank-sum test; Fig. 3B).

SCNAs
Using GISTIC2, we identified chromosome arm-level SCNAs that

were significantly (q< 0.05) amplified at 1q, 8q, 6p, 1p, 6q, 16p, 20q, 8p,
12q and deleted at 22q, 16p, 17p, 8p (Supplementary Table S7). In
addition to these broad SCNAs, we identified significantly (q < 0.05)
amplified or deleted focal regions including 29 peak regions of
amplification and 48 regions of deletion (Fig. 4A). Seven recurrently
amplified regions contain commononcogenes (FGFR1,MYC,CCND1,
MDM2, IGF1R, ERBB2, and ZNF217); one recurrently deleted region
contains TP53 (Fig. 4A). There were no significant associations with
either global or locus-specific ancestry (Supplementary Table S4). By
integrative analysis of RNA-seq gene expression data and copy-
number data, we observed that greater than 90% of expression outliers
(defined by robust Z-score greater than 3.0) in ERBB2, FGFR1, IGF1R,
andMDM2 were associated with copy-number gain (Fig. 4B). There-
fore, we sought to identify expression outliers from 1,121 genes
contained in the 29 copy-number amplification peak regions for
the 146 H/L breast tumor samples and 452 White TCGA breast
tumor samples. Of 1,121 genes in the 29 regions, over 90% of
expression outliers were associated with copy-number gain in
214 genes, including 88 genes from the 146 H/L samples, 62 genes
from the 452 TCGAWhite samples, and 64 genes from both sample
groups (Supplementary Table S8). Driven by copy-number gains, 18
of 214 genes had significant (FDR < 0.05) difference in frequency of
expression outliers between the 146 H/L and 452 TCGA White
tumor samples (Table 2 and the top 18 rows in Supplementary
Table S8). Expression outliers from those genes were more prev-
alent in the 146 H/L than in the 452 White tumors because we
focused on the 29 copy-number regions (Fig. 4A) found in H/L
(Table 2; Supplementary Table S8).

Using this combined copy-number and gene expression analysis
approach, we identified KIAA0100, also known as breast cancer
overexpressed gene 1 (BCOX1), as the top gene that was systematically
different between Whites (TCGA) and our H/L cohort (Fig. 5A).
Because this gene is within approximately 11 Mb of ERBB2 on
chromosome 17q, we investigated whether it was part of the ERBB2
GISTIC amplification peak. The peaks for the copy-number amplifi-
cations (Fig. 5B) were distinct for KIAA0100 and ERBB2, located at
17q11.2 and 17q12, respectively. Of the 11 tumors with outlying
expression of KIAA0100 in our H/L cohort, three also had outlying
expression of ERBB2 (P¼ 0.04, Fisher exact test). To account for the
partial correlation of overexpression between ERBB2 and
KIAA0100, we removed the 11 of 142 H/L samples and 30 of
452 TCGA White tumor samples that were categorized as expres-
sion outliers in ERBB2 and re-did the robust standardization of
KIAA0100 and compared the frequency difference. Eight of 135 H/L
and two of 422 TCGA White tumors had overexpression of
KIAA0100; the frequency difference is highly significant (P ¼
0.00029, Fisher exact test).

To examine potential mechanisms underlying the outlying
expression of KIAA0100, we first tested the association of KIAA0100
high-level copy-number gain and 920 germline SNP variants within
�1 Mb of this gene, adjusting for genome-wide CNV rate, tumor

stage, and PAM50 subtype. We identified marginal evidence of
association for a set of SNPs 30 of KIAA0100 (lowest P value ¼ 0.01
from logistic regression, FDR ¼ 0.33). Then, we performed cis-
eQTL analysis with the same 920 SNPs for KIAA0100 and observed
significant associations (lowest P value ¼ 8.61 � 10�5, beta coef-
ficient ¼ 0.245, and FDR ¼ 0.017) for the same set of 30 SNPs, while
adjusting for RNA-seq batch, tumor stage, and PAM50 subtype as
covariates (Supplementary Table S9). When including CNV as
an additional covariate, the associations were attenuated (lowest
P value ¼ 1.86 � 10�3, beta coefficient ¼ 0.137, and FDR ¼ 0.40;
Supplementary Table S9). There was no significant association
of global or locus-specific IA ancestry with the cis-eQTL SNPs,
KIAA0100 expression or copy-number gain.

Discussion
We analyzed tumor-germline sequencing data combined with

RNA-seq data from 146 tumors from 140 self-identified H/L
recruited from a single center in the Los Angeles region. As
expected, the majority were of mixed European and IA ancestries.
Because TCGA has extremely limited samples of breast cancer from
H/L and particularly of H/L of mixed IA ancestry, our report fills a
critical gap in the landscape of somatic mutations and CNAs in
this increasing U.S. population. Together, our analyses and the
recent article focused on Mexican women living in Mexico (19)
substantially enhance the data in the public domain for women of
H/L heritage.

The most commonly mutated gene in our population was PIK3CA,
which is the most commonly mutated gene in TCGAWhite samples.
For women with advanced ERþ/HER2� breast cancers, alpelisib is a
currently approved therapy, and our results suggest that this therapy
should be useful in a large fraction of H/L women. The Romero-
Cordoba and colleagues study identified a high frequency (8%) of the
E17K-activating AKT1mutation, indicating such women may benefit
fromAKT inhibitors.We only identified two tumors withmutations in
AKT1 and only one with the E17K mutation. The difference between
our results and those of Romero-Cordoba may be due to chance,
differences in selection criteria between the two cohorts, and/or
differences in environmental exposures between the two cohorts.
Because the ancestry of our population is similar, it is unlikely that
the differences we observed are due to germline-genetic differences
between the two cohorts.

We performed analyses of the somatic mutational signatures and
compared them to TCGA dataset. Our analysis identified COSMIC
signature 16 (contribution > 5%) in a significant fraction of tumors
(27.4%) in our dataset with similar rates in the data from Romero-
Cordoba and colleagues who analyzed breast tumors from Mexican
patients. Because Romero-Cordoba and colleagues used a contribution
cutoff in their mutation-signature-analysis pipeline, they did not
report this signature. However, in our analysis, we implemented the
non-negative matrix factorization algorithm and no contribution
cutoff was applied such that signature 16 was observed. There were
significantly lower rates of this signature in TCGAWhite women (P <
0.001). We do not believe our finding is a technical artifact from FFPE
because this signature was found in frozen tissue in the Romero-
Cordoba and colleagues data. No known genetic or environmental
exposures that predispose to this signature have been reported and
prior studies have not found thismutational signature in breast cancer,
although it has been reported to be common in liver cancers (46).

Other COSMIC signatures were the same as those previously
reported in TCGA. We found signatures 2 and 13 associated with
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APOBEC loss as a relatively common finding, associated with HER2-
amplified tumors and specifically with the germline APOBEC copy-
number variant similar to previous reports (47). The common APO-
BEC3A/B 29.5 kbp germline deletion (3-fold more common in H/L
breast cancer cases thanWhite breast cancer cases) results in the fusion
of APOBEC3A and the 30-UTR (untranslated region) of APO-
BEC3B (48). Consistent with these results, we also found that presence
of the deletion is more common in IA ancestry chromosomes among
the H/L women in our study. This fusion generates a more stable
APOBEC3AmRNA, resulting in increased expression of APOBEC3A,
higher overall mutation burden, and a higher OR of developing breast
cancer (49, 50). We also found signature 3, associated with defects in
HRR as a common signature, which is overrepresented in basal-like
tumors as reported previously (46, 51).

Our copy-number analyses identified copy-number gains, that is,
1q, 8q, 17q, which are common in breast cancer in other popula-
tions (1, 2). We also identified several known CNAs, which were
recurrently gained in our dataset. In combined analysis of CNAs and
gene expression, we identified KIAA0100 (BCOX1) as a recurrently
amplified region with high gene expression, which was more common
in tumors from H/L than tumors from White women in TCGA.
KIAA0100 was originally identified in a screen for genes that were
more frequently found in breast tumor than in normal breast tis-
sue (52) and increased expression was associated with poor progno-
sis (52, 53). Knockdown of KIAA0100 by siRNA in the breast cancer
cell line MDA-MB-231 reduced cell aggregation, reattachment, cell
metastasis, and invasion (54). Thus, KIAA0100 may be of interest for
further study in understanding the biology of tumors in H/L and
stratifying women for risk of recurrence. We investigated whether
genetic ancestry or SNPs at the locus were associated with expres-
sion and or genomic amplification. We found no association with
ancestry, but we did identify some SNPs in cis associated with both
expression and copy-number amplification. One interpretation of
these results is that the alleles associated with higher expression are
more likely amplified as that has a selective advantage for the tumor.
Such cis interactions have been detected in prostate cancer, for
example, where variants associated with increased TMPRSS2
expression are associated with TMPPRS2:ERG fusion (55). Testing
these hypotheses in larger datasets should help clarify the role of
KIAA0100 in breast cancer in H/L women.

The differences we observed between H/L andWhite breast tumors
with higher prevalence of signature 16 andmoreKIAA0100 amplifica-
tions with high levels of gene expression may be due to differences in
the genetic and/or environmental factors underlying breast cancer
susceptibility between White and H/L women. However, we cannot
rule out technical factors related to the sequencing or informatics or
cohort selection effects. We did not identify any association between
individual ancestry and either of these factors as might be expected if
the effect were related to genetic variants that aremore common in one
ancestral population. However, we note that the number of individuals
with signature 16 or KIAA0100 amplification and high expression is
small and we were likely underpowered to see associations with
individual ancestry. Associations with individual ancestry have been
observed with Her2 amplification among Latinas (18) and with EGFR
mutation in lung cancer among Latinos (7). However, the sizes in these
studies are both greater than 1,000 individuals and the somatic events
that they test are both common (>15%). Therefore, it is likely that
testing associations with individual ancestry and signature 16 and
KIAA0100 will require much larger sample sizes.

Expanding somatic profiling of breast cancer to H/L women
identified new potentially important somatic events including signa-

ture 16 and KIAA0100 overexpression. Although these events were
significantly more common in H/L women, the signature and/or
specific somatic mutation or aberration should be the focus of future
studies for effects on prognosis or targeted therapies. Similar to EGFR
in lung cancer, where ancestry is strongly associated with mutations,
the mutation is the key marker of response to EGFR targeted therapy
rather than ancestry (56).

Our study has several limitations.We included onlywomenwho did
not have neoadjuvant therapy prior to surgical resection.We chose this
subset of women to avoid effects possibly induced by neoadjuvant
chemotherapy such as new mutations and/or selection for resistant
subclones. However, because neoadjuvant therapy is more likely to be
given to patients with large tumors and/or tumors with poor prog-
nosis (57), tumors included in our study may have some differences in
comparison with prior studies due to these selection criteria. For
example, because most triple-negative breast tumors are first treated
with neoadjuvant therapy, the proportion of triple-negative tumors in
our study was lower than reported previously (58). Our analysis of
tumor CNAs was based onWES data. AlthoughWES and other forms
of targeted sequencing are used for CNAanalysis, itmakes it difficult to
conduct one-to-one comparisons with array-based or whole genome
sequencing–based analyses. Therefore, we limited our analyses to
copy-number events that also demonstrated gene expression differ-
ences across populations. Finally, although our study substantially
increases the number of tumors analyzed by WES in H/L, the overall
numbers are still substantially lower than in White women. In par-
ticular, we are likely underpowered to discover low frequency, ethnic
and/or ancestry-specific drivers that may be unique to this population.
There also were too few recurrences and deaths for statistical analyses.

In summary, we conducted a comprehensive characterization of
somatic mutations, CNAs, and gene expression in 146 breast tumors
from 140 H/L from Los Angeles County, California. We found that
COSMIC signature 16 wasmore common in our dataset and a recently
published dataset of Mexican women living inMexico, suggesting that
this signature may be important in self-reported H/L women and
potentially useful to understand differences at diagnosis and for
outcome. The frequency of APOBEC3A/B germline deletions was
significantly higher in H/L than Whites and associated with local IA
ancestry. Finally, our combined CNA and gene expression analysis
suggested that KIAA0100 may be a possible driver of breast cancer
aggressiveness in a subset of our sample. These results provide a better
understanding of the biology of breast cancer in H/L women.
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