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ABSTRACT
◥

Lineage plasticity has longbeendocumented inboth small cell lung
cancer (SCLC) and neuroblastoma, two clinically distinct neuroen-
docrine (NE) cancers. In this study, we quantified the NE features of
cancer asNE scores and performed a systematic comparison of SCLC
and neuroblastoma. We found neuroblastoma and SCLC cell lines
have highly similar molecular profiles and shared therapeutic sensi-
tivity. In addition, NE heterogeneity was observed at both the inter-
and intra-cell line levels. Surprisingly, we did not find a significant
association between NE scores and overall survival in SCLC or

neuroblastoma. We described many shared and unique NE score–
associated features between SCLC and neuroblastoma, including
dysregulation of Myc oncogenes, alterations in protein expression,
metabolism, drug resistance, and selective gene dependencies.

Implications: Our work establishes a reference for molecular
changes and vulnerabilities associated with NE to non-NE trans-
differentiation through mutual validation of SCLC and neuroblas-
toma samples.

Introduction
Small cell lung cancer (SCLC) and neuroblastoma are two very

different cancer types with respect to their etiology, mutation spec-
trum/load, classification scheme, therapeutic strategy, and prognosis.
SCLC, accounting for 13% of lung cancers, is predominantly found in
heavy smokers, with almost ubiquitous comutation of RB1 and TP53,
and has a 5-year survival rate of 7% as the disease is highly metastatic.
SCLC staging typically follows the two-stage classification convention
established by the Veterans Affairs Lung Study Group (VALSG) in the
1980s. In the United States, two-thirds of patients with SCLC are
diagnosed at the extensive stage, with cancers that have spread beyond
the lung and nearby lymph nodes to other distant parts of the body.
SCLC bears much resemblance to pulmonary neuroendocrine (NE)
cells in theirmorphology and expression ofNEmarkers (1), but studies
from genetically engineered mouse models suggest that some SCLC
may also arise from other lung cell types (2). Neuroblastoma, account-
ing for 6% of childhood cancers in the United States, is derived from
sympathoadrenal progenitor cells within the neural crest (3), often
develops in and around the adrenal gland, exhibits frequent genetic

alterations in MYCN or ALK, and has a 5-year survival rate of 81%.
Despite these differences, both SCLC and neuroblastoma are NE
tumors, and NE markers are routinely used in IHC to facilitate the
clinical diagnosis of both cancer types. As one of the “small round blue
cell tumors” of childhood, undifferentiated neuroblastoma also highly
resembles SCLC histologically.

Interestingly, the ability to transdifferentiate from the NE to non-
NE lineage has been documented for both SCLC and neuroblastoma.
Over 35 years ago, “classic” (NE) and “variant” (non-NE) SCLC were
reported on the basis of distinct cellularmorphologies and biochemical
properties (4). In the recent decade, studies have shown that trans-
differentiation of SCLC gives rise to intratumoral heterogeneity and
mediates chemoresistance (5, 6). More recently, it was shown that
REST, YAP, and NOTCH mediate NE transition in both SCLC and
normal lung (7). For neuroblastoma, morphologically distinct cell
types from cell lines established from the same patient tumor were
observed over 50 years ago (8). Distinct biochemical properties and the
ability to interconvert have been reported for isogenic cell sub-
clones (9). In two more recent studies, the “sympathetic noradrener-
gic” (NE) and “neural crest cell-like” (non-NE; ref. 10), or “adrenergic”
(NE) and “mesenchymal” (non-NE; ref. 11). Neuroblastoma cell states
have been shown to exhibit distinct epigenetic and transcriptomic
profiles. It has also been shown that NOTCH regulates transcription
factor (TF) networks to drive NE transition in neuroblastoma and
contribute to the development of chemoresistance in neuroblasto-
ma (12). These independent studies converged on similar NOTCH-
mediated mechanisms in NE lineage switch and suggest shared NE-
associated properties across different cancer types. However, the
extent of such similarity is still unclear. In this study, we reanalyzed
the molecular and clinical data generated from SCLC and neuroblas-
toma cell lines and tumors to compare their associations with NE
heterogeneity side-by-side, to reveal the concordance and idiosyncrasy
in the landscape of NE state–associated features in both cancer types.

Material and Methods
Clustering of cell lines by multiomics, drug sensitivity, and
dependency data

For the clustering of cell lines based on RNA sequencing (RNA-seq)
data, we first conducted a principal component analysis for genes with
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a standard deviation larger than 0.4. The top 10 principal components
accounted for 41% of the total variance and were used for hierarchical
clustering. For the clustering of reverse phase protein array (RPPA)
andmetabolomics data, we used all available features and did not filter
the input features or perform principal component analysis.

Compared with the molecular profiling data, functional screening
data tend to be noisier due to variations in experimental design or lack
of differential sensitivity among the cell lines (13). Therefore, for
clustering dependency and drug data, we filter the input drug and
dependency features by their consistency across multiple datasets. We
collected nine compound screening datasets and three functional
genomics datasets and conducted all possible combinations of pairwise
correlations within the drug datasets and the dependency datasets,
respectively. For example, for a specific drug profiled by four datasets,
C(4,2) ¼ 6 interstudy pairwise correlation would be available, with
each interstudy pairwise correlation assessing the measurement con-
sistency for the same set of cell lines in two datasets. We then
summarized these interstudy pairwise Pearson correlations by
meta-analysis to generate consistency measures for each compound
and gene (13). For the clustering analysis in this study, we selected
consistent dependency data features with r > 0.4, and for drug data, we
selected consistent features with multiple comparison adjusted
P values < 0.05. All hierarchical clustering was performed using Ward
minimum variance method.

NE score computation
The original SCLC NE signature based on microarray gene expres-

sion data was described by Zhang and colleagues (14). Here, we used
the updated signature generated from RNA-seq expression (15). A
quantitative NE score can be generated from anNE signature using the
formula NE score¼ (correl NE� correl non-NE)/2, where correl NE
(or non-NE) is the Pearson correlation between the expression of the
50 genes in the test sample and expression/weight of these genes in the
NE (or non-NE) cell line group. This score ranges from �1 to þ1,
where a positive score predicts NE and a negative score predicts non-
NE cell types. The higher the score in absolute value, the better the
prediction.

Comparison between bulk RNA-seq and single-cell RNA-seq
data

Bulk RNA-seq data (CCLE_depMap_19Q1_TPM.csv) from cancer
cell line encyclopedia (CCLE) and scRNA-seq data (GSE157220_CPM_
data.txt.gz; ref. 16) downloaded from Gene Expression Omnibus (GEO)
were used to compute the NE score for cell lines as well as single cells
within cell lines using the above approach. For the single-cell RNA
sequencing (scRNA-seq) data, the average NE score per cell line was
calculated. A total of 191 cell lines were shared between the two datasets,
including four SCLC and two neuroblastoma cell lines. Pearson corre-
lation between the bulk RNA-seq NE scores and average scRNA-seq NE
scores was used as a measure of agreement between the two profiling
approaches.

Data availability
Cell line datasets

Copy number, RNA-seq, miRNA, histone post translational
modification (PTM), metabolomics, and RPPA data were downloaded
from dependency map (DepMap). Compound sensitivity data
for “CCLE” (17), “CTRP” (18), “GDSC1,” and “GDSC2” (19),
“PRISM_1st,” and “PRISM_2nd” (20), and gene dependency data for
demeter (RNAi; ref. 21) and achilles (ref. 22; CRISPR) were down-
loaded from DepMap and processed as described previously (13). The

cell line names and compound names were unified, and the datasets
were processed to ensure that the lower value in each dataset always
corresponded to a higher sensitivity. The processed data, lists of
consistent compounds, and dependencies were downloaded from
https://lccl.shinyapps.io/FDCE/. The scRNA-seq data for cell lines
were downloaded from the GEO repository GSE157220 (16).

Additional SCLC datasets
The following SCLC transcriptomic datasets “UTSW SCLC cell

line,” “Drapkin_2018” [patient-derived xenograft (PDX)] (23), tumor
datasets “Rudin_2012” (24), “George_2015” (25), “Jiang_2016” (26),
and “Cai_2021” (15) were processed as described previously (15). The
processed data are available in our previous publication (15). SCLC
scRNA-seq data were downloaded from the HTAN portal (27).

Additional neuroblastoma datasets
In addition to theCCLERNA-seqdata, additional neuroblastoma cell

line transcriptomic and associated sample phenotype data were down-
loaded from GEO using R package GEOquery (28) with the following
accession numbers: GSE28019, GSE89413 (29), and GSE90683 (10).
For neuroblastoma patient tumor datasets, we included two partially
overlapped neuroblastoma datasets from Therapeutically Applicable
Research to Generate Effective Treatments (TARGET; https://ocg.
cancer.gov/programs/target) initiative, phs000467 (30). “TARGET_
microarray”was downloaded from theTARGETDataMatrix, whereas
“TARGET_RNA-seq” was downloaded from the UCSC Toil RNAseq
Recompute Compendium (31). Additional neuroblastoma tumor
datasets were downloaded from GEO with the following acces-
sion numbers: GSE120572 (32), GSE3446 (33), GSE19274 (34),
GSE73517 (35), GSE85047 (36), GSE62564 (37), GSE16476 (38),
and GSE3960 (39).

Results
Neuroblastoma and SCLC cell lines are molecularly similar

We have previously established an NE score calculation method for
SCLC samples based on a gene expression signature generated from
SCLC cell line transcriptomic data (14, 15). This method takes the
expression data of 25 NE genes and 25 non-NE genes as inputs and
assigns a score ranging from �1 (non-NE) to 1 (NE) to each sample.
From the pan-cancer study CCLE/DepMap (40) RNA-seq dataset, we
averaged the expression of these 50 genes by different cancer lineages
and performed hierarchical clustering (Fig. 1A). Among cancer types
in the subcluster with high expression of NE genes, SCLC and
neuroblastoma had the highest number of cell lines in the CCLE
collection. This allowed us to leverage the multidimensional profiling
data from CCLE and DepMap for an in-depth comparison between
SCLC and neuroblastoma.We computedNE scores for the pan-cancer
cell lines and clustered the cell lines based on transcriptomic, func-
tional proteomic (based on RPPAs), metabolomic, gene dependency,
and drug sensitivity features (Fig. 1B–H).We observed tight clusters of
SCLC and neuroblastoma cell lines with high NE scores in each
clustering analysis. These results suggest that SCLC and neuroblas-
toma cell lines are highly similar in these molecular aspects.

NE heterogeneity can be observed at inter- and intra-cell line
levels for both SCLC and neuroblastoma

WeassessedNEheterogeneity in SCLCandneuroblastoma cell lines
by ranking the cell lines in the CCLE panel based on their NE scores.
While most of the SCLC and neuroblastoma cell lines had positive NE
scores and were enriched in the top, a few cell lines had negative NE
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Figure 1.

The molecular similarity between neuroblastoma and SCLC. A, SCLC NE signature gene expression across different cancer lineages. The expression of NE (left
half) and non-NE (right half) genes were averaged by cancer lineages and plotted as a heat map. The number of cell lines per lineage are visualized as bars
plotted right to the heat map. Note that SCLC and neuroblastoma are the two cancer types with the highest number of cell lines in the cluster with high
expression of NE genes. B–H, Hierarchical clustering of cell lines by omics and functional screening datasets. The number of cell lines and number of features
used for clustering are as follows: 1,165 cell lines by expression of 19,159 genes (B), 897 lines by 214 RPPA features (C), 926 lines by 225 metabolites (D), 688
lines by CRISPR effect score of 509 genes (E), 648 lines by RNAi effect score of 375 genes (F), 624 lines by 208 compounds from GDSC (G), and 794 lines by
168 compounds from CTRP (H). Note the clustering for RNA-seq data was based on the top 10 principal components, RPPA and metabolomics clusterings were
based on all available features; dependency and drug clusterings were based on selected consistent features as previously summarized. Each leaf on the
dendrogram represents a cell line. The inner rim right outside the dendrogram signifies the cancer lineage and the outer rim indicates the NE score of the cell
line.
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scores, revealing inter-cell line NE heterogeneity (Fig. 2A). We also
examined the expression of SCLC NE score signature genes in SCLC
and neuroblastoma cell lines. Although the signature was established
in SCLC cell lines, it was also highly differentially expressed in
neuroblastoma cell lines (Fig. 2B). Four key transcription factors
(ASCL1, NEUROD1, POU2F3, and YAP1) have been proposed to
define the four molecular subtypes of SCLC. We described their
relationshipwith SCLCNE scores in our previous study (15). Although
these transcription factors have not been used to classify neuroblas-
toma samples, when we examined their expression in neuroblastoma
cell lines, we observed a pattern of segregation by NE score similar to
SCLC—while high-NE-score neuroblastoma lines were found to have
high expression of ASCL1 or NEUROD1, low-NE-score neuroblasto-
ma lines had high expression of YAP1. However, no neuroblastoma
line was found to express high levels of POU2F3, a tuft cell regulator
(ref. 41; Fig. 2B). These results suggest that similar transcriptional
regulations are involved in driving NE heterogeneity in SCLC and
neuroblastoma cell lines.

To exploreNEheterogeneity at the intra-cell line level, we compared
scRNA-seq–based average NE scores to bulk RNA-seq–based NE
scores for 191 cell lines [using scRNA-seq data available for a panel
of pan-cancer cell lines (16)] and found a strong correlation (Fig. 2C).
We also observed that some SCLC and neuroblastoma cell lines had
broader NE score distributions than others (Fig. 2D). Using scRNA-
seq data from SCLC patient tumors, we further observed the coexis-
tence of high-NE-score and low-NE-score SCLC cells within tumors
that exhibited highly variable NE scores (Supplementary Fig. S1A–
S1C). Similarly, upon examining NE and non-NE gene expression
across single cells in the SCLC cell lineNCI-H1048 and neuroblastoma
cell line SKNAS, we also observed the coexistence of high-NE-score
and low-NE-score cells within the same cell line (Fig. 2E and F).
Notably, within these cell lines, cells with lower NE scores also had
higher mesenchymal and IFN-response program scores, as annotated
previously (16). In addition, low-NE-score cells from SCLC cell line
NCI-H1048 had higher epithelial senescence–associated program
scores, although this association was not statistically significant in
neuroblastoma cell line SKNAS because neuroblastoma is not epithe-
lial (Supplementary Fig. S1D). These findings indicate that the lineage
heterogeneity observed in patient tumors is preserved both among cell
lines and within individual cells from the same cell line.

NE scores do not associate with overall survival in SCLC or
neuroblastoma

Next, we tested whether NE scores were associated with disease
outcomes in SCLC and neuroblastoma. As most patients with SCLC
are diagnosed at an extensive stage, surgical resection of SCLC primary
tumors is rare in practice. A recent study that profiled biopsied
metastatic SCLC samples found no association between NE score and
outcome (42). We also investigated the prognosis association in a
previously published dataset generated from 81 surgically resected
SCLC tumors, of which 30 are stage III–IV samples (25). We also did
not find a significant association between the NE scores and overall
patient survival (Fig. 3A). With multiple neuroblastoma tumor data-
sets available, we performed a meta-analysis to assess the association
between NE scores and overall survival in neuroblastoma.We also did
not observe a consistent and significant result (Fig. 3B). In the
neuroblastoma datasets, we investigated, the previously reported
prognostic factors—age, MYCN amplification, and INSS stage 4
disease—were consistently associated with worse overall survival
(Supplementary Fig. S2A–S2C), but we did not observe a significant
difference in NE scores in groups stratified by these factors (Supple-

mentary Fig. S2D and S2F). A small effect size was observed for NE
score difference by relapse/progression status (Supplementary
Fig. S2G); however, when comparing paired na€�ve and relapse samples
from the same patient in two independent neuroblastoma studies, we
did not identify a statistically significant difference in NE scores
(Fig. 3C). These findings suggest NE scores are not associated with
prognosis in SCLC or neuroblastoma.

Myc oncogenes are differentially activated by NE states in SCLC
and neuroblastoma

As members of the Myc oncogene family (MYC, MYCN, and
MYCL) have been implicated in SCLC and neuroblastoma oncogen-
esis (43, 44), we attempted to dissect their relationship with the NE
state. First, we examined copy-number alterations of Myc oncogenes
(Fig. 4A). We found thatMYC andMYCL were enriched in high-NE-
score SCLC lines, whereasMYCN amplification was enriched in high-
NE-score neuroblastoma lines. As MYCL is located on chromosome
1p, a frequently deleted region in neuroblastoma, MYCL loss appears
to be frequent in neuroblastoma lines (Fig. 4A). Examination of the
gene expression data showed that the patterns for MYCL and MYCN
agreed well with the copy-number data (Fig. 4B). Having made these
observations in cell lines, we further examined the transcriptomic data
from multiple SCLC and neuroblastoma studies. For SCLC, we
included our in-house cell line RNA-seq data (UTSW cell lines), PDX
dataset (Drapkin_2018), and four tumor datasets (Fig. 4C). For
neuroblastoma, we included three more cell line datasets along with
the CCLE RNA-seq data (Fig. 4D) and assembled 11 tumor datasets
(Fig. 4E). Meta-analyses with these datasets verified that the NE score
associationswithMyc oncogeneswere consistent betweenmultiple cell
lines (Fig. 4B) and patient tumor datasets (Fig. 4F). Combined
analysis of copy number, gene expression, and NE scores in the CCLE
cell line dataset revealed upregulation of MYC expression in the low-
NE-score lines without copy-number gain, suggesting the transcrip-
tional activation ofMYC expression in the non-NE state for both SCLC
and neuroblastoma (Fig. 4G). We retrieved MYCN amplification
status from eight neuroblastoma tumor datasets and assessed the
association betweenNE score andMYCN expression while controlling
for MYCN amplification (Fig. 4H). Much stronger associations were
observed across multiple studies in this multivariate linear model
(Supplementary Fig. S3), suggesting the transcriptional activation of
MYCN expression in theNE state neuroblastoma tumors. In summary,
SCLC and neuroblastoma exhibit not only differential copy-number
gains but also differential transcriptional regulation for Myc family
genes with regard to their NE status, with MYC transcriptionally
upregulated in the non-NE state, MYCL preferentially amplified in
high-NE-score SCLC, and MYCN preferentially amplified and tran-
scriptionally upregulated in high-NE-score neuroblastoma.

Consistent proteomic and metabolic changes are associated
with NE-to-non-NE transition in SCLC and neuroblastoma

We performed NE score correlations with 12 sets of data from the
CCLE/DepMap studies (Supplementary Tables S1 and S12). These
include four sets of omics data (miRNA, histone PTM, RPPA, and
metabolomics), six sets of compound screening data (CCLE, CTRP,
GDSC1, GDSC2, PRISM_1ST, and PRISM_2nd), and two sets of gene
dependency screening data (Demeter for RNAi and Achilles for
CRISPR). The overall NE score association concordance was quite
good for the omics datasets (Supplementary Fig. S4).

In Fig. 5A and B, we provide side-by-side comparison of the NE
score-associated features in SCLC and NBL. In the RPPA associations
(Fig. 5A), we foundmost of theNE score–associated features identified

Cai et al.

Mol Cancer Res; 21(8) August 2023 MOLECULAR CANCER RESEARCH798



Figure 2.

Inter- and intra-cell line NE heterogeneity. A, Inter-cell line NE heterogeneity. NE scores for CCLE pan-cancer cell lines were ranked from high to low. SCLC and
neuroblastoma lines were highlighted by colors. Although most of the SCLC and neuroblastoma lines have high NE scores, a few of them also have low NE scores.
B,Consistent gene expression pattern for SCLCNE signature genes observed for SCLC and neuroblastoma cell lines. Cell lines are in columns. Red/blue column left to
the heat map annotates the correlation between the gene expression and NE score; the expression of SCLC driver TFs and NE scores was annotated above the heat
map. SCLC lines were further classified into four TF classes. C, Average NE scores from scRNA-seq data align well with NE scores from bulk RNA-seq data for pan-
cancer cell lines. D, Distribution of NE scores for lung cancer and neuroblastoma cell line–based scRNA-seq data. Intra-cell line NE heterogeneity. High- and low-NE
score cells are found to coexist within the same SCLC cell line NCI-H1048 (E) or neuroblastoma cell line SKNAS (F). Single cells are in columns. Because of the high
dropout rate of scRNA-seq data, only the top abundantly expressed genes are visualized.
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in SCLC cell lines could also be observed in neuroblastoma cell lines.
Among the exceptions, Rb protein is decreased in the high-NE-score
SCLC, leading to an increase in cyclin E2 but this was not observed in
neuroblastoma lines (Fig. 5C), which could be explained by the
frequent RB1 loss that occurs in SCLC but not neuroblastoma.
Although a previous study suggests RB1 loss is highly enriched in
YAPoff small-cell/neuro/NE cancer lineages (45), the absence of RB1
mutation in neuroblastoma suggests the existence of an Rb-
independent mechanism for YAP inactivation in neuroblastoma.
Interestingly, in both SCLC and neuroblastoma, cyclin-dependent
kinase–interacting protein/kinase inhibitory protein (CIP/KIP) p21
is upregulated in the low-NE-score lines whereas another CIP/KIP p27
is downregulated, suggesting that the NE state–specific cell-cycle
regulators are still consistent in these two cancer types despite differ-
ences in the upstream Rb loss. In the low-NE-score lines of both
SCLC and neuroblastoma, we observed higher levels of receptor
tyrosine kinases and their phosphorylation (EGFR, EGFR_pY1068,
HER2_pY1248, and VEGFR2), higher levels of Hippo signaling com-
ponents (YAP, YAP_pS127, and TAZ), proinflammatory proteins
(p62, NF-kB-p65_pS536, PAI-1, and annexin 1), ribosome biogenesis
markers (S6_pS240_S244 and S6_pS235_S236), and cell adhesion
proteins (paxillin and CD49b). In the high-NE-score lines of both
SCLC and neuroblastoma, we found higher apoptotic machinery
components (Smac, Bcl-2, Bim, andBax), DNA repair proteins (MSH2
and MSH6), translation inhibitor 4E-BP1, and microtubule regulator
Stathmin. Unique to SCLC, we observed higher epithelial junction
proteins (Claudin-7 and E-cadherin) in the high-NE-score lines, these
epithelial markers were however not expressed in the neuroblastoma
lines (Fig. 5A). We also examined the metabolomic associations and
observed similar consistency between SCLC and neuroblastoma lines
(Fig. 5B). In particular, many cholesteryl esters were found to have
higher levels in the low-NE-score SCLC lines; a weaker but similar
trend was observed in neuroblastoma lines. We also found that both

SCLC and neuroblastoma low-NE-score cell lines exhibited higher
levels of citrate, aconitate, and isocitrate, three interconvertible meta-
bolites, through the action of aconitase (Fig. 5B and D).

Consistent andunique therapeutic vulnerabilities inNEandnon-
NE subtypes of SCLC and neuroblastoma

The SCLC versus neuroblastoma concordance for NE score–drug
sensitivity associations was poorer than the omics data (Supplemen-
tary Fig. S4). We have previously demonstrated that drug screening
data are more consistent for compounds directed against functionally
important targets that are differentially expressed in a panel of cell
lines (13). For many of the compounds included in the screens, their
targets may not be functionally important in the small panel of cell
lines tested, which may explain the overall lower consistency. We
reviewed the results (Supplementary Tables S5 and S10) to identify the
most consistent associations across the multiple compound screens.
Nine classes of compounds with different mechanisms of action
(MOA) were selected. For each MOA class, we compared the NE
score associations for different compounds in neuroblastoma and
SCLC (Fig. 6A). We also used meta-analysis to generate a summary
correlation coefficient for each class of compounds from the SCLC and
neuroblastoma assessments (Supplementary Figs. S5). We found that
in both SCLC and neuroblastoma, cell lines with higher NE scores
were more resistant to drugs that target MEK, mTOR, XIAP, LCK,
HSP90, and Abl but were more sensitive to BCL inhibitors, which
inhibit anti-apoptotic B-cell lymphoma-2 (Bcl-2) family of proteins.
We also observed that higherNE scores were associatedwith resistance
to microtubule inhibitors in SCLC, but not neuroblastoma cell
lines, whereas higher NE scores were associated with resistance to
bromodomain (BRD) inhibitors in neuroblastoma, but not SCLC lines
(Fig. 6). Notably, although we identified differential therapeutic
sensitivity within SCLC and neuroblastoma panels relative to their
NE lineage, this does not tell us about the dynamic ranges of compound

Figure 3.

NE score is not associatedwith overall survival in SCLCor neuroblastoma.A, Survival association analysis for SCLCbased on 79 patients from theGeorge_2015 study.
NE score is not significantly associatedwith overall survival in univariateCox regression or amultivariatemodel controlling for sex andTNMstage.B,Meta-analysis for
neuroblastoma based on seven studies and 1,531 patients. The result is also not statistically significant although significant results could be observed for individual
studies, the trend was different. C, NE scores are not significantly altered in neuroblastoma relapsed samples. Paired samples from the same patients in two
independent studies were compared.
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Figure 4.

NE score association with members of the Myc oncogene family in SCLC and neuroblastoma. Copy number (A) and RNA expression (B) of Myc family genes in
SCLC and neuroblastoma cell lines. Note that although MYC amplification was higher in the high-NE-score SCLC cell lines, its gene expression was higher in the
low-NE-score cell lines for both SCLC and neuroblastoma lines. Frequent MYCL loss was found in neuroblastoma because MYCL is located in a frequently
deleted region (chromosome 1p) in neuroblastoma. C, NE score versus Myc gene member expression in SCLC studies. “UTSW cell line” is a cell line dataset;
“Drapkin_2018” is a PDX dataset; “Rudin_2012,” “George_2015,” “Jiang_2016,” and “Cai_2021” are all patient tumor datasets. NE score versus Myc gene
member expression in neuroblastoma cell line datasets (D) and tumor datasets (E). Note that some of the same cell lines were profiled in multiple studies.
F, Forest plots visualizing meta-analysis of NE score association with Myc family genes. MYC expression is consistently associated with lower NE scores in
SCLC and neuroblastoma samples (left). MYCL expression positively correlates with NE scores in SCLC but not neuroblastoma samples (middle). MYCN
expression positively correlates with NE scores in neuroblastoma but not SCLC samples. G, Relationship between MYC copy number and gene expression in
neuroblastoma and SCLC cell lines. Note that MYC amplification is only observed in SCLC cell lines. H, MYCN gene expression positively correlate with NE
scores while controlling for MYCN amplification status in neuroblastoma patient tumors.
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sensitivity in SCLC and neuroblastoma. In some cases, the dynamic
range of compound sensitivity remains different between SCLC and
neuroblastoma. For example, SCLC cell lines are the most resistant
to MEK inhibitors, whereas neuroblastoma cell lines exhibit inter-
mediate sensitivity over a broader range (Supplementary Fig. S6A–
S6C). In other cases, we observed a similar overall sensitivity of
SCLC and neuroblastoma cell lines. For example, both SCLC and
neuroblastoma cell lines were more resistant to the HSP90 inhibitor
17-AAG, but more sensitive to the BCL inhibitor ABT-199, com-
pared with the other cancer lineages (Supplementary Fig. S6D and
S6E). In summary, our results revealed that the relative differential
drug sensitivities associated with NE-to-non-NE transdifferentia-
tion in SCLC and neuroblastoma were similar.

Identification and comparison of SCLC and neuroblastoma-
specific gene dependencies

We observed very poor overall concordance between the RNAi and
CRISPR dependency data for their association with NE scores in SCLC
and neuroblastoma (Supplementary Fig. S4). We rationalized that this
is because most genes were not selectively essential in the relatively
small panel of SCLC or neuroblastoma cell lines assessed. Hence, we
adopted a set of criteria for selecting cancer-specific gene dependen-
cies. We looked for genes with RNAi versus CRISPR gene effect scores
positively correlated, as an indication of high reproducibility from
independent dependency screening experiments, as well as negative
correlations between RNAi or CRISPR gene effect scores and RNA-seq
expression data on the premise that genes of selective functional

Figure 5.

NE score–associated protein and metabolic features are largely consistent in SCLC and neuroblastoma cell lines. Heat maps visualizing the relationship between NE
scores and selected functional proteomic feature (A) ormetabolites (B). In each heatmap, the left-side columndenotes the Pearson correlation between the selected
feature on the row and the NE score. The top colored rows denote NE scores and SCLC TF expression. The featureswere selected on the basis of NE score correlation
from the SCLC cell lines, adjustedP value (P.adj)<0.05was used to select RPPA features andP.adj <0.1was used to selectmetabolic features. Note that although the
selection was made from SCLC cell lines, a very similar pattern could be observed in neuroblastoma cell lines. Scatterplots visualizing the relationship between
selected RPPA (C) and metabolic (D) features and NE scores in neuroblastoma and SCLC cell lines.
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importance aremore highly expressed in the cells that depend on them,
such that these cells also have more negative gene effect scores that
indicate higher dependence. These measures from the SCLC and
neuroblastoma panels were assembled to prioritize the SCLC-
specific vulnerabilities (Supplementary Table S13). Indeed, when we
examined these correlations, the known SCLC subtype drivers and the
most common neuroblastoma driver genes all met this set of criteria
(Fig. 7A and B). We further closely examined genes with high RNAi
versus CRISPR correlation, and high anticorrelations between RNA
expression and the gene effect scores as selected vulnerabilities
(Fig. 7C). Among the SCLC-selected vulnerabilities, along with
ASCL1, we found several other NE lineage transcription factors
(SOX11, FOXA2, NKX2-1) were more selectively essential for high-
NE-score cell lines, whereas several genes involved in cell adhesion and
motility (VCL, PXN, ACTR3, and RAC1) were found to be more
selectively essential for low-NE-score cell lines; we also found genes
frequently amplified in SCLC (IRS2, CCNE1, and NFIB; ref. 46)
although these genes do not have gene effect scores significantly
correlated with NE scores. Interestingly, among these SCLC-selected
vulnerabilities, we also identified genes that are well characterized for
their roles in neuroblastoma, such as the ciliary neurotrophic factor
CNTF (47) and S-phase kinase-associated protein 2 (SKP2; ref. 48).
Among the very few vulnerabilities selected from both SCLC and
neuroblastoma, we identified BCL2, a well-characterized gene in both
cancer types. Consistent with our observation in the therapeutic
sensitivity analysis, high-NE-score cell lines from both SCLC and
neuroblastoma were more sensitive to BCL2 depletion (Fig. 7D
and E). As only nine neuroblastoma cell lines were included in the
RNAi dependency screen, the reliability of our neuroblastoma-
selected vulnerabilities might have been undermined by the under-
powered input datasets. Nevertheless, we were able to identify a few
genes known to be important for neuroblastoma, such as GATA

binding protein 3 GATA3 (49), complement decay-accelerating
factor CD55 (50), forkhead box R2 FOXR2 (51), and breast cancer
antiestrogen resistance protein 1BCAR1/p130Cas (52). Among these,
selective essentiality forGATA3was only observed for high-NE-score
neuroblastoma cell lines but not SCLC cell lines (Fig. 7F and G),
whereas BCAR1 appears to be a shared vulnerability for low-NE-score
cell lines in both neuroblastoma and SCLC (Fig. 7H and I). Overall, we
observed unique and shared gene dependencies between SCLC and
neuroblastoma cell lines, some of which also exhibited NE/non–NE
lineage–specific selectivity.

Validations in additional cancer types
Given the distinct differences in etiology, risk factors, andmolecular

mechanisms between SCLC and neuroblastoma, we sought to validate
our findings by analyzing cell lines from other cancer types. To this
end, we identified lineage subtypes with at least two cell lines that
exhibited positive NE scores based on transcriptomic data (Supple-
mentary Fig. S7A) and selected cell lines from medulloblastoma,
prostate adenocarcinoma, Ewing sarcoma, and non–small cell lung
cancer (NSCLC) for further investigation.

We confirmed that the original SCLC NE signature genes were
differentially expressed by NE subtype in these cell lines (Supple-
mentary Fig. S7B). We also examined the RPPA and metabolomics
features that were associated with NE scores in SCLC, finding good
agreement with these features in the four additional cancer types
(Supplementary Fig. S7C and S7D). Furthermore, we explored the
relationship between Myc gene family members’ copy number and
RNA expression and NE scores in the four cancer types. However,
we observed no consistent pattern (Supplementary Fig. S7E).
Notably, while c-Myc expression was anticorrelated with NE scores
in SCLC and neuroblastoma, we found a strong positive correlation
in medulloblastoma.

Figure 6.

Similar anddistinctNE score–associated therapeutic sensitivity in SCLCandneuroblastomacell lines.A,Correlation betweenNE scores and therapeutic sensitivity for
drugs with selected targets. Therapeutic sensitivity data were previously harmonized such that a higher value represents more resistance in each study. For each of
the nine selected targets, all compoundswith the same targetwere identified frommultiple studies. Pearson correlation coefficient r from correlating compounddata
with NE scores were calculated for neuroblastoma lines (x-axis values) and SCLC lines (y-axis values), respectively and visualized as a scatter plot, with colors
annotating the source of data, and transparency annotating the statistical significance. B, Meta-analysis–summarized correlation between drug therapeutic
sensitivity and NE scores in neuroblastoma (x-axis) and SCLC (y-axis) cell lines. Note that high NE scores are associated with resistance to inhibitors of LCK, MEK,
XIAP, mTOR, HSP90, and Abl, and sensitivity to BCL inhibitors. NE scores are associated with resistance to BRD inhibitors in neuroblastoma but not SCLC whereas
microtubule inhibitors resistance correlates with high NE scores in SCLC but not neuroblastoma cell lines.
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Figure 7.

Similar and distinct NE score–associated gene dependencies in SCLC and neuroblastoma cell lines. Selection of SCLC (A) and neuroblastoma (B) vulnerabilities based
on the consistency (positive correlation) between CRISPR and RNAi data, and anticorrelation between dependency data and gene expression data. Pearson
correlation coefficients from RNAi-CRISPR (left), RNAi-RNA expr (middle), and CRISPR-RNA expr (right) correlationswere computed for all genes. The distributions
of these coefficients are plotted as diagonal panels; pairwise correlations among these three sets of correlation coefficients were visualized as scatter plots in the
lower triangular panels and the Pearson correlation coefficients are printed in the upper triangular panels. The four SCLC subtype driver TFs and the neuroblastoma
oncogenic driver MYCN all have high consistency between CRISPR and RNAi data and high anticorrelation between dependency data and gene expression data.
Areas with r > 0.4 from RNAi-CRISPR correlation, and r < �0.4 from RNAi-RNA expr and CRISPR-RNAi correlation were demarcated by light gray squares.
C, Correlation between NE scores and effect scores of selected dependencies in SCLC and neuroblastoma. The upper part of the heat map displays selected
vulnerabilities for SCLC and was ordered by correlations between NE scores and the effect scores in SCLC cell lines; likewise, the lower part of the heat map displays
selected vulnerabilities for neuroblastoma. Genes with magenta arrows are showcased in D–I. Cell lines are ordered by their NE scores and annotated with NE score
and SCLC driver TF expression. D–I, Comparison of selected gene dependencies in SCLC and neuroblastoma. In each plot, variable names are shown in the diagonal
boxes, and scatter plots display relationships between each pairwise combination of variables. Lower triangular plots are colored by NE scores whereas upper
triangular plots for SCLCfigures are coloredbyTF classes. Pearson correlation coefficients areprovided in lower triangular boxes for SCLCandupper triangular boxes
for neuroblastoma. Refer to legends in C for color annotations.
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Because of the very limited number of cell lines available for drug
sensitivity profiling in medulloblastoma, prostate adenocarcinoma,
and Ewing sarcoma, we only compared SCLC andNSCLC for their NE
score–associated drug sensitivity. Our results indicated agreement for
MEK and BCL inhibitors (Supplementary Fig. S7F). However, this
finding is not entirely robust, as NSCLC has few NE-positive cell lines,
and even fewer were profiled for drug sensitivity.

Discussion
Different cancers of the NE lineage have historically been investi-

gated as separate entities, owing to their distinct clinical presentations.
The commonNotch-mediated NE lineage plasticity and the adjacency
of SCLC and neuroblastoma in cancer cell line clustering by multi-
omics datasets (Fig. 1) prompted us to perform a systematic com-
parison of these two cancer types. In this article, we identified
numerous common molecular associations with NE states in both
cancer types.Most of the proteomic andmetabolic features observed to
associate with NE states in SCLC could be validated in neuroblastoma
(Fig. 5). NE score–associated transcriptomes are also highly similar
between SCLC and neuroblastoma. We previously reported cell-
autonomous immune gene repression in SCLC and pulmonary NE
cells in the NE state and transdifferentiation into the non-NE lineage
releases the repression of immune genes (15). Recently, similar
observations have been reported for neuroblastoma (53). Besides
immune genes, many other genes also are differentially expressed by
NE status in both SCLC and neuroblastoma. Although our omics
analyses in this study do not include large-scale transcriptomics
comparison, this topic is explored in greater depth in a companion
article (54).

In the cell line cluster generated by RNA-seq, RPPA, metabolomics,
drug sensitivity, and gene dependency data, we observed neuroblas-
toma and SCLC lines cluster tighter with each other in RNA-seq and
RPPA data (Fig. 1B–H). There may be several potential reasons. It is
possible that while gene and protein expression patterns are hardwired
by lineage specificity, the cell metabolism and functional liabilities
are subjected to many additional feedback regulations. For exam-
ple, chromosome instability may not be related to NE transdiffer-
entiation, but the resulting replication stress could modulate
nucleotide biosynthesis metabolism (55) and alter a cell’s response
to DNA-damaging drugs. Another contributing factor may be the
insufficient coverage of metabolome and the drug targets of the
drug screening panels may not adequately capture the functions
differentially regulated by NE transdifferentiation. It is also worth
noting that drug and gene dependency datasets are generally
noisier than molecular profiling data (4), which may explain their
poor NE score correlation agreement between SCLC and neuro-
blastoma (Supplementary Fig. S4), as well as their less robust
clustering of the SCLC and neuroblastoma cell lines.

Our investigation of Myc family members in Fig. 4 revealed that
MYCN amplification is enriched in high-NE-score neuroblastoma cell
lines, MYCL amplification is enriched in high-NE-score SCLC cell
lines, whereas increasedMYC gene expression is observed in low-NE-
score cell lines and tumor samples of both SCLC and neuroblastoma.
Interestingly, MYCN has been shown to drive NE prostate cancer
initiation (56), as it can epigenetically activate neural lineage gene
expression in prostate cancer (57). A similar mechanism may also
apply to neuroblastoma, where the dependence on MYCN to epige-
netically sustain NE lineage could explain the high MYCN levels
observed in samples with high NE scores. On the other hand, in a
SCLC mouse model, it has been shown that c-Myc can activate Notch

to drive the loss of NE fate (58). Upon c-Myc activation, SCLC cells
undergo a transition from Ascl1-positive state to Neurod1-positive
state (59), and eventually to Yap1-positive state (58). In another
mouse model of SCLC, it has been shown that loss of Ascl1 can revert
SCLC to a more neural crest–like fate (60). In neuroblastoma, while
the ASCL1-high adrenergic-type (NE) cells are committed to the
adrenergic lineage, the ASCL1-low mesenchymal-type (non-NE)
neuroblastoma cells are also known to resemble neural crest–
derived precursor cells (12). Therefore, the interplay between Myc
family members, ASCL1, Notch signaling, and other factors in
regulating NE plasticity in cancer may be reflecting their roles in
driving cell fate toward NE or non-NE lineage during normal tissue
development. However, whether these findings can be generalized to
other cancer types remained to be verified. As shown in Supple-
mentary Fig. S7E, some medulloblastoma cell lines with high MYC
expression still exhibit high NE scores, indicating that c-Myc
activation does not always result in the loss of NE fate. In addition,
loss of NE fate may occur upon Notch activation regardless of c-Myc
status (7). Furthermore, it is important to note that different types of
cancer may involve distinct factors in the regulation of NE trans-
differentiation. For example, NE prostate cancer driven by MYCN is
highly dependent on Rb deletion (61), while high MYCN expression
in neuroblastoma does not coincide with Rb deletion. Therefore, the
specific factors that collaborate to regulate NE fate in different
cancer types may impact the generalizability of MYC-dependent
NE fate modulation. Further research is needed to fully understand
the role of Myc genes and others in the complex regulation of NE
transdifferentiation in different types of cancer.

Our comparison of SCLC and neuroblastoma therapeutic vul-
nerabilities revealed similar NE score associations for several
classes of compounds with shared MOA. Interestingly, individual
studies in SCLC or neuroblastoma have also reported many of
these associations, such as MEK inhibitors for neuroblastoma (62),
HSP90 inhibitors for SCLC (63) and neuroblastoma (64), and BCL2
inhibitors for SCLC (65) and neuroblastoma (66). We also iden-
tified cancer-unique vulnerabilities that have been previously
reported, such as BRD inhibitors and GATA3 essentiality for
neuroblastoma (67, 68). Our findings suggest that NE plasticity
may serve as a venue for therapy resistance in both SCLC and
neuroblastoma for such drugs, as long-term monotherapy targeting
cells of one lineage may create a selective pressure that shifts the
population toward the other lineage. Importantly, our systematic
investigation has mapped out the lineage-specific vulnerabilities in
the NE and non-NE states. Coupled with our observation that high-
NE-score and low-NE-score cells can coexist within the same SCLC
or neuroblastoma cell line (Fig. 2), it would be interesting for future
work to devise combinatorial therapies with drugs that target both
NE and non-NE states and compare the efficacy with monotherapy
using cell lines or cell line–derived xenografts as preclinical models.
Although we did not experimentally validate the NE lineage–
specific therapeutic vulnerabilities identified in this study, we have
used five compound screening datasets and two gene essentiality
screening datasets to choose features based on agreement across
multiple datasets to maximize result reliability. Therefore, we
believe that the generated results are credible and offer valuable
insights for future work.

Compared with the omics analyses, relatively fewer similarities were
observed at the functional liability levels. Several reasonsmight explain
this discrepancy. First, functional data are much noisier than -omics
data (13). Second, fewer SCLC and neuroblastoma cell lines were
included in the functional screening datasets and this compromised
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the statistical power for target discovery (Supplementary Fig. S4). As
our concordance-based approach requires examining data from com-
mon cell lines between two datasets, this further reduces the available
sample size for analysis. Finally, the unique vulnerabilities for SCLC
and neuroblastoma may stem from cancer drivers that act orthogo-
nally to NE status. One such example is NFIB, which has been
characterized as a metastatic promoter in SCLC (69).

In summary, our study provides a comprehensive molecular ref-
erence for features and vulnerabilities associated with NE-to-non-NE
lineage transitions in SCLC and neuroblastoma. We also identified
unique features that require further investigation in the context of
each cancer type. While our focus was on SCLC and neuroblastoma,
which are known for their NE-to-non-NE transitions, we discov-
ered that many molecular features associated with NE scores in
SCLC are also relevant to other cancers, such as prostate cancer and
NSCLC, which exhibit non-NE-to-NE transitions to develop resis-
tance to therapy (see Supplementary Fig. S7). Overall, our findings
can guide the development of combinatorial therapies targeting
lineage plasticity in SCLC, neuroblastoma, and other cancers that
display NE heterogeneity.
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