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Abstract

Oropharyngeal squamous cell carcinoma (OPSCC), largely fueled by the human papillomavirus 

(HPV), has a complex biological and immunologic phenotype. Although HPV/p16 status can 

be used to stratify OPSCC patients as a function of survival, it remains unclear what drives an 

improved treatment response in HPV-associated OPSCC and whether targetable biomarkers exist 

that can inform a precision oncology approach. We analyzed OPSCC patients treated between 

2000 and 2016 and correlated locoregional control (LRC), disease-free survival (DFS) and overall 

survival (OS) with conventional clinical parameters, risk parameters generated using deep-learning 

algorithms trained to quantify tumor-infiltrating lymphocytes (TILs) (OP-TIL) and multinucleated 

tumor cells (MuNI) and targeted transcriptomics. P16 was a dominant determinant of LRC, DFS 

and OS, but tobacco exposure, OP-TIL and MuNI risk features correlated with clinical outcomes 

independent of p16 status and the combination of p16, OP-TIL and MuNI generated a better 

stratification of OPSCC risk compared to individual parameters. Differential gene expression 

(DEG) analysis demonstrated overlap between MuNI and OP-TIL and identified genes involved in 

DNA repair, oxidative stress response and tumor immunity as the most prominent correlates with 

survival. Alteration of inflammatory/immune pathways correlated strongly with all risk features 

and oncologic outcomes. This suggests that development of OPSCC consists of an intersection 

between multiple required and permissive oncogenic and immunologic events which may be 

mechanistically linked. The strong relationship between tumor immunity and oncologic outcomes 

in OPSCC regardless of HPV status may provide opportunities for further biomarker development 

and precision oncology approaches incorporating immune checkpoint inhibitors for maximal 

anti-tumor efficacy.
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INTRODUCTION

Human papillomavirus (HPV) infection with high-risk (HR) types has been linked to 

delayed development of oropharyngeal squamous cell carcinoma (OPSCC)1–4. This has led 

to an epidemic rise in incidence for OPSCC a disease formerly associated with significant 

tobacco exposure and relatively low prevalence in the United States5,6. Currently, HPV-

associated OPSCC (HPV + OPSCC) has overtaken cervical cancer as the most common 

HPV-associated malignancy in the United States and incidence continues to rise. Despite 

increasing rates of vaccination, HPV + OPSCC is unlikely to begin to plateau for at least 

2–3 decades based on disease latency post initial exposure7.

Development of precision oncology approaches requires matching tumor biology to 

treatment intensity in order to minimize the risk of both over- and under-treatment. This 

is particularly challenging in the context of OPSCC for several reasons. First, although HPV-

based stratification can generally differentiate low-risk (LR) disease (treatment responsive) 

from HR OPSCC disease (treatment refractory)8, it remains a biologically incomplete 

descriptor of the disease. This is manifested by the deleterious effect of tobacco exposure on 

OPSCC treatment response and survival initially identified by Ang et al. and subsequently 

reproduced across multiple cohorts, including most recently by our group in 20208–11. 

Tobacco exposure has now been linked to an altered tumor immune microenvironment 

(TIME) by Foy et al. in oral cavity cancer (reduced CD3, CD4, CD8 and PDL1 

expression via immunohistochemistry (IHC)) and our group in OPSCC (reduced CD3, CD8 

expression via IHC) which may account for its effects on treatment response and oncologic 

outcomes12,13. Although clinically useful, stratification of OPSCC solely on the basis of 

HPV may fail to account for smoking-mediated immune modulation, along with other yet 

unclear mechanisms of aggressive tumor behavior and reduced treatment response in a 

subset of patients.

Second, a subset of HPV + OPSCC tumors demonstrate aggressive behavior (distant 

metastasis) and reduced treatment response even in the absence of tobacco exposure. The 

drivers of this phenomenon remain unclear, although low tumor mutational burden, reduced 

E7 and p16 levels14, differential transcription of E1 and E4 and associated dysregulation 

of PI3kinase signaling15 have all been linked to differential survival. Third, HPV itself at 

this time remains a non-targetable biomarker, in contrast to targetable oncogenic events 

such as BRAF (melanoma) mutation and EGFR (lung) mutation or amplification16,17. For 

these reasons we believe it important to refine the clinical and biological description of 

OPSCC in a manner which appropriately reflects the differential risk profile of the target 

patient population and the molecular profile of individual tumors. In the current manuscript, 

we sought to determine whether the current clinical algorithm which combines clinical 

datapoints (e.g. T, N-classification) with p16 IHC can be augmented by leveraging neural 

network algorithms focused on evaluation of the TIME and aberrant tumor cell activity 

in order to predict treatment response and survival in a cohort of Veterans enriched for 

intermediate-risk OPSCC (defined as dual exposure to HPV and tobacco). We further 

sought to identify transcriptional markers of reduced treatment response and survival as 

an important step toward a precision oncology approach to OPSCC.
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MATERIALS AND METHODS

Clinical dataset

Following approval from Baylor College of Medicine and the Michael E. DeBakey Veteran’s 

Administration (MEDVAMC) Institutional Review Boards, we reviewed the records of 

Veterans with previously untreated OPSCC between January 1, 2000 and January 1, 2016. 

All collection and analysis of the current data was performed in a manner consistent with 

existing standards for clinical research (Declaration of Helsinki, US Federal Policy for the 

Protection of Human Subjects). Inclusion criteria included: (1) primary OPSCC, (2) tissue 

diagnosis at the MEDVAMC, and (3) treatment delivery at the MEDVAMC. Exclusion 

criteria included treatment at an outside institution and recurrent disease at presentation. 

Demographic information was recorded including age, gender, race, smoking history and 

alcohol consumption. Smoking history was collected at our institution at the time of initial 

diagnosis as “pack-years” consistent with current clinical practice at our institution. Clinical 

and pathologic features were collected including clinical stage according to the American 

Joint Commission on Cancer (Staging Manual 7th Edition) staging system. Results of 

diagnostic procedures including imaging results, biopsies, and fine needle aspirations as well 

as the treatments rendered and the associated dates were recorded. Note: For the current 

study we utilized the 7th Edition of the Staging Manual for two reasons. First, it accurately 

reflects the time period of patient diagnosis and treatment. Second, and more importantly, 

the 7th Edition is agnostic with respect to p16/HPV status. Since our goal is to evaluate a 

combined cohort of OPSCC enriched for dual exposure patients, and moreover to evaluate 

the value of p16 in the context of other parameters, it would be counterproductive to utilize 

the 8th Edition which itself includes HPV status in the staging of OPSCC.

p16 immunohistochemistry

All tissue analysis summarized in the current manuscript was performed using pre-treatment 

biopsy material from the primary tumor site (needle biopsies of nodal disease were excluded 

from the analysis). Formalin-fixed paraffin-embedded (FFPE) biopsy tissue blocks were 

retrieved from the archive maintained at the MEDVAMC Department of Pathology. Sections 

(5 μM) were cut from each FFPE block and mounted on positively charged slides. One 

section was stained with hematoxylin & eosin and reviewed by a surgical pathologist 

to confirm the original histopathological diagnosis and to ensure tumor adequacy. Slides 

were deparaffinized in Bond Dewax Solution (Leica Biosystems, Buffalo Grove, IL), 

and rehydrated in descending grades of 100, 90 and 70% ethanol. Endogenous peroxide 

activity was blocked by pretreatment with 3% hydrogen peroxide for 10 min, and antigen 

recovery was achieved by 20 min of heat-induced epitope retrieval. IHC stains were 

performed on an automated tissue-staining system using the Bond Polymer Refine Detection 

(Leica Biosystems, Buffalo Grove, IL) using the monoclonal antibody for p16, clone 

E6H4 (Ventana, Tucson, Arizona). Signal detection was performed using polymer reagent 

conjugated with horseradish peroxidase followed by the 3,3′-Diaminobenzidine (DAB) 

Chromogen Kit (Leica Biosystems, Buffalo Grove, IL). Areas of tumor were selected 

for analysis and confirmed by trained Pathologists (SL, WY). Representative images of 

tumor were captured using the Vectra3 scanner using the CRI multispectral camera using 

a ×20 UplanSApo objective (0.75 aperture) mounted on an Olympus microscope. (Akoya 
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Biosciences, Menlo Park, CA). Image analysis was performed with InForm 2.4 software 

(Akoya) using a training algorithm defined by the operator to segment features of tissue 

and cells. Tissue areas were segmented to define tumor from normal epithelium, connective 

tissue and lymphocytes. Cell nuclei were defined by the presence of hematoxylin stain 

and cytoplasm was defined as the area within 6 pixels of individual nuclei. Sampled cells 

were defined by the operator as positive or negative and inForm was trained on these 

criteria. inForm counted the number of positively stained features (nuclear or cytoplasmic) 

in representative fields for each tissue section. The cutoff threshold was set by the operator 

on a subset of images and then applied to all remaining images. The percent of positively 

stained features was calculated as the number of positive cells divided by the total number 

of cells in the tumor segmented areas. These ratios were averaged across all images for each 

tissue section (Supplementary Fig. 1). Clinical p16 data was defined using the most recently 

published guidelines from Lewis Jr. et al.18 of >70% strong nuclear and cytoplasmic staining 

as identified by the primary pathologist involved in the individual cases. Research p16 data 

was determined by re-analyzing tumor specimens using the algorithm outlined above and 

reporting p16 values as fraction of tumor cells with strong nuclear and cytoplasmic staining 

and using these values as continuous variable spectrum.

Computerized analysis of tissue specimens

Hematoxylin and eosin (H&E) stained slides were digitized by scanning using Ventana 

iScan HT at ×40 resolution (0.25 μm/pixel resolution). WSIs unsuitable for computational 

analysis due to blurriness, pen marking, resin bubbles were filtered out using a 

computational tool HistoQC19. Using a recently described algorithm20, we generated a 

multinucleation index (MuNI) characterizing the density of multinucleation (MN) events 

in epithelial (EP) regions. Briefly, two conditional generative adversarial networks (GAN) 

were utilized for MuNI calculation; (1) GANMN to segment MN events, and (2) GANEP to 

segment EP regions in the digitized images. Once the segmentation was done the MN events 

detected outside of EP regions were removed. MuNI was then calculated as a ratio of the 

total number of MN events to the total number of nuclei within EP regions. In parallel we 

performed a quantitative analysis of tumor-infiltrating lymphocytes (TILs) using a recently 

described algorithm21. First, all image nuclei were automatically segmented by employing 

a deep-learning-based model22. A support vector machine was then used to classify each 

segmented nucleus as either TIL or non-TIL based on visual features such as texture, shape, 

and color. Although non-TILs include cancer cells (majority), macrophages, fibroblasts, 

neutrophils, among other nucleated cells, in this study, they were not differentiated but 

treated as a single type. TIL and non-TIL clusters were built based on cell proximity (Fig. 

2). From the constructed clusters of TILs and non-TILs, multiple features related to density, 

architecture, and co-localization were extracted21. Finally, the top features, determined by 

least absolute shrinkage and selection operator, were used to train a Cox regression model 

that assigned a risk index to each patient23. The MuNI and OP-TIL indices were generated 

as continuous variables and were used to stratify the patients into LR and HR categories. 

Averages of the MuNI and OP-TIL associated risk indices in the training cohort were 

defined as thresholds for risk stratification. The thresholds were then applied on the MuNI 

and OP-TIL indices in the current cohort to obtain binarized labels for each patient. OP-TIL 

and MuNI risk indices were correlated to conventional IHC-based quantification of CD3 
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and CD8 infiltrating lymphocytes performed on the same specimens (serial-sections) as 

previously described by our group13.

Transcriptomic analysis

One hundred FFPE specimens underwent targeted transcriptomic analysis using the HTG 

EdgeSeq Oncology Biomarker Panel which contains 2567 probes including 4 negative and 

4 positive controls alongside human universal RNA control technical replicates. Sequencing 

was performed using the Illumina NextSeq Sequencer. Differential gene expression analysis 

was performed using the DESeq2 package (version 1.14.1) available from Bioconductor. 

The package provides methods for estimating and testing differential expression using 

negative-binomial generalized linear models. Empirical Bayes methods were used to 

estimate dispersion and log2(fold change) with data-driven prior distributions. Correction for 

library size was performed using the median ratio method and dispersions were estimated 

with the Cox Reid-adjusted profile likelihood method. Log2 fold change was calculated 

using Tikhonov/ridge regularization with a zero-centered normal prior distribution with 

variance calculated using the observed distribution of maximum likelihood coefficients. 

Overlap of gene expression signatures was calculated using a Venn Diagram tool (VIB/

UGent Bioinformatics & Evolutionary Genomics). Pathway analysis was performed using 

the Gene Ontology Resource- GO Enrichment Analysis (7/2/2021 release).

Statistical analysis

Endpoints included time to locoregional or distant recurrence and death. Imaging was used 

as a surrogate in the absence of a pathological report documenting recurrence. Locoregional 

control (LRC—date of diagnosis to date of locoregional recurrence (LRR), LRR—date of 

diagnosis to date of LRR), distant metastatic control (DM—date of diagnosis to date of 

distant metastasis), relapse-free or disease-free survival (date of primary diagnosis to date of 

recurrence or death; RFS/DFS) and overall survival (date of diagnosis to last documented 

hospital note or death note; OS) were calculated. Patients suspected of recurrence were 

restaged using clinical exam and imaging. Associations between clinical, biological and 

pathologic variables were determined by two-sided Fisher’s exact tests. Actuarial survival 

rates were generated using the Kaplan–Meier method, and comparisons between groups 

were made using log-rank statistics. Multivariate analysis was performed using Cox 

regression. Statistical calculations were performed with SPSS (IBM SPSS Statistics version 

25). For all statistics, p-values were considered to be statistically significant if below a 

threshold of 0.05 (two-sided). For individual statistical tests and/or correlations, details are 

provided in the following section after each specific analysis.

Machine learning approach to predict disease aggressiveness based on gene expression

Patients were dichotomized into HR and LR disease if they had a distant metastasis or 

death before 5 years. Differentially expressed genes (DEGs) were identified by performing 

multiple T-test corrected by the Benjamini–Hochberg procedure with an FDR of 0.1, using 

JMP 13.2.1 statistical software (SAS) and correlation between survival time in months and 

gene expression was also determined using JMP. Matlab statistics and machine learning 

toolbox was used to identify features (i.e., genes) using the univariate feature ranking 

function based on chi-square tests, or features were manually selected based on their ranks 
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following differential analysis of gene expression (DEG) or correlation as described above, 

with a fourth list comprised of genes in common following DEG and correlation. For 

training, 89/99 samples were randomly chosen so as to leave out 10 samples (5 aggressive 

and 5 non-aggressive) for subsequent validation. Three models were chosen from the Matlab 

menu for training and validation, which included Linear Discriminant Analysis, Logistic 

Regression (LR), and Support Vector Machine (quadratic SVM). For validation, sensitivity 

was defined as number of true aggressive tumors predicted divided by total number of true 

aggressive tumors, and specificity defined as true negatives predicted divided by all true 

negatives.

RESULTS

Patient, tumor and treatment characteristics

We analyzed data from 297 Veterans who were predominantly male, with a median age 

of 61, of which nearly 80% reported a tobacco use history in excess of 10 pack years 

(Table 1). A majority presented with T3–4 disease and nodal disease (Supplementary 

Table 1) and 84% of patients were slated for curative intent treatment of which concurrent 

chemo-radiation was the most commonly utilized (Supplementary Table 2). Among patients 

which received curative intent treatment 198 received chemotherapy and 51 did not. Of 

the patients which received chemotherapy, 153 received cisplatin monotherapy, 10 received 

carboplatin monotherapy, 6 received cisplatin and 5-fluorouracil and 21 received cetuximab 

monotherapy. The demographic characteristics of the patient population did not significantly 

change over the study period (Supplementary Table 3).

Clinical drivers of disease control and survival

For patients treated with curative intent median overall survival (OS) was 54.7 months 

(mean = 75.4 months); median disease-free survival (DFS) was 30.3 months (mean = 64.4 

months). T-classification impacted OS (p < 0.001) and DFS (p = 0.004) but the effect on 

LRC and distant metastasis (DM) did not reach statistical significance (p = 0.102, p = 0.366 

respectively). The presence of nodal disease was associated with improved OS (p = 0.031) 

and DFS (p = 0.046) (Supplementary Fig. 2) which although apparently paradoxical is 

driven by the strong relationship between nodal metastasis and p16 positivity. Patients who 

received chemotherapy had improved OS (p = 0.014) and DFS (p = 0.010) but the effect 

did not reach statistical significance for LRC (p = 0.097) or DM (p = 0.103). Patients who 

received cisplatin monotherapy trended toward improved OS (p = 0.078; DFS (p = 0.384) 

compared patients who received cetuximab monotherapy. Tobacco exposure impacted OS at 

both a 10 (p = 0.009) and 30 pack-year (p < 0.001) threshold (Supplementary Fig. 3) as well 

as DFS (p = 0.002, p = 0.001 respectively) and LRC (p = 0.004, p = 0.001 respectively) but 

not DM. Tobacco exposure levels decreased over the study period (Table 2). P16 positivity 

doubled over the study period from 32% to 64% of tumors (Table 2). The most dramatic 

shifts were a decrease in the frequency of tumors with minimal nuclear p16 staining and a 

doubling of the fraction of tumors with >70% of tumor cells demonstrating strong nuclear 

staining. These shifts in risk factor exposure were accompanied by an improvement in OS (p 
= 0.009) and LRC (p = 0.035) over the study time period (Supplementary Fig. 4).
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P16 positivity determined using the standard clinical definition correlated strongly with 

OS (p < 0.001) and LRC (p < 0.001) (Fig. 1). When p16 analysis was performed using 

the automated imaging algorithm, the fraction of positive nuclear staining impacted LRC 

and OS both for the entire cohort and for patients treated with curative intent (p < 0.001 

for all comparisons) (Fig. 1). We first used recursive partitioning analysis (using OS data) 

and identified the primary split (logworth 10.67) at 70% nuclear staining, coinciding well 

with the current clinical standard, and a second non-significant split (logworth 0.36) at 

52%. Using LRR data we generated a significant split (logworth 13.57) at 79% and a 

second non-significant split (logworth 0.95) at 25%. Based on this analysis we decided to 

analyze the oncologic outcomes for our patients using cutoffs of 70% and 25%. Patients 

with intermediate nuclear staining (25–70% of nuclei) demonstrated intermediate LRC, 

but OS comparable with p16- OPSCC patients. When accounting for nuclear staining, the 

degree of cytoplasmic staining had no significant impact on OS or LRC (all p-values > 

0.300). Among those patients with >70% p16 nuclear staining who received curative intent 

treatment tobacco exposure as a continuous variable (pack-years) had a significant effect on 

OS (p = 0.028, Exp (B) 1.009, 95% CI 1.001–1.017). The effect also became significant 

when tumors with 50–70% p16 nuclear staining were included in the analysis (p = 0.047, 

Exp(B) 1.007, 95% CI 1.000–1.015).

OP-TIL and MuNI association with oncologic outcomes

We recently showed that TILs correlate strongly with disease stage, p16 positivity and 

heavy tobacco exposure using conventional IHC13. Here we applied a high throughput 

computational algorithm which quantifies TILs using automated imaging as well as spatial 

tumor cell—immunocyte interactions. First, we tested 2 OP-TIL risk stratifiers (defined 

using a pre-existing training cohort) for correlation with OS and LRC. The OS risk stratifier 

correlated with OS when analyzed in the entire patient cohort (p = 0.030); the DFS risk 

stratifier trended toward significant correlation with LRC (p = 0.062) (Fig. 2). Second, using 

data from 138 patients for whom both CD3 and CD8 IHC data and OP-TIL data were 

available (from the same tumor specimens, serially sectioned), we analyzed the relationship 

between OP-TIL risk determination, conventional TIL IHC data, p16 and tobacco exposure. 

OP-TIL risk determination correlated with CD3/8 risk classification as previously reported 

by our group13, p16 and tobacco exposure (Table 3) in a relatively linear and quantitative 

fashion. Pearson bivariate analysis identified correlation between: (1) OSscore and CD8 

infiltration p < 0.001 (−0.441), (2) OSscore and CD3 infiltration p < 0.001 (−0.454), (3) 

DFSscore and CD8 infiltration p = 0.001 (−0.287) and (4) DFSscore and CD3 infiltration 

p = 0.003 (−0.353). MN was described in 2012 by Lewis Jr. et al. as a feature associated 

with OPSCC treatment response and patient survival24. MuNI was strongly correlated with 

LRC and OS (p < 0.001 for both parameters) (Fig. 3) and demonstrated partial correlation 

with p16 positivity (Pearson correlation of the binary values for each parameter (p < 

0.01 (−0.458)) or continuous variables (p < 0.01 (0.519)) and tobacco exposure (p < 0.01 

(0.196)).

We utilized the clinical and biological characteristics described above to determine whether 

patients with OPSCC can be stratified with respect to LRC and OS to a greater or equivalent 

degree than using p16 positivity. Using Cox regression for patients who received curative 
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intent treatment (Supplementary Table 4) we found that T-classification and p16 status 

correlated significantly with OS and N-classification and p16 status correlated significantly 

with LRC. Given the previously identified partial correlations between tobacco exposure, 

p16 status, MuNI and OP-TIL risk stratifiers we then conducted a secondary analysis. 

Median survival for patients with tobacco exposure <10 pack-years and >70% p16 staining 

was 85.95 months. Among these LR patients, a high MuNI score reduced survival to 72.86 

months. Patients with a high MuNI score and a low OP-TIL score demonstrated an even 

lower median survival of 55.77 months. The combination of dichotomized MuNI, OP-TIL 

and p16 scores generated a profound differentiation in survival between LR and HR patients 

for patients treated with curative intent (Fig. 4). At 5 years post treatment, ~90% of LR 

patients were without disease compared to ~20% of HR patients, a greater differentiation 

than for any of the classifiers alone (p = 0.001 for OS, p = 0.005 for LRC). Mean time to 

LRR for the LR patients was 102 months, whereas for the HR patients it was 36 months. 

The hazard ratio for p16-defined HR patients was 4.2 (95% CI 2.5–7.1) for LRC and 3.9 

(95% CI 2.6–5.8) for OS. The hazard ratio for combined classifier-defined HR patients was 

10.2 (95% CI 1.4–74.0) for LRC and 6.0 (95% CI 1.9–19.4) for OS.

Transcriptomic signature of OPSCC as a function of risk factors

A targeted transcriptomic analysis was performed on 100 specimens from patients treated 

with curative intent. To confirm that these specimens accurately reflected the larger cohort 

(Fig. 5A) and previously published clinical data we evaluated the interaction between 

tobacco exposure and p16 status with respect to OS and demonstrated a clear correlation 

with our previous publications and existing literature (Fig. 5B)13,25,26. We first dichotomized 

these specimens into LR and HR based on the 4 individual features outlined above: tobacco 

exposure (using a 10 pack year cutoff), p16 status, MuNI and OP-TIL. For each individual 

feature, we identified DEGs using an adjusted p-value <0.05 and a 1.5-fold change as 

the cutoffs for the analysis. For p16, 75 genes were downregulated in p16 LR tumors 

compared to p16 HR tumors, and 58 genes were upregulated (Supplementary Table 5). 

Of note, SLC7A11 (cysteine-glutamate transport), SLC7A8 (amino acid transport), PYGL 

(glycogen metabolism), ANPEP (peptide metabolism), SLC5A1 (glucose transport), ODC1 

(polyamine metabolism) were all significantly upregulated in p16 HR tumors. For tobacco 

exposure, 16 genes were downregulated in LR tumors compared to HR tumors, and 15 

genes were upregulated (Supplementary Table 6). Thirteen of sixteen genes downregulated 

in non-smokers were shared with p16 positive tumors and 8/15 genes upregulated in non-

smokers were shared with p16 positive tumors including CDKN2A. HR MuNI tumors 

demonstrated 530 downregulated DEGs and 98 upregulated DEGs compared to LR MuNI 

tumors (Supplementary Table 7). LR MuNI and LR p16 tumors shared 49 downregulated 

DEGs and 20 upregulated DEGs, a minority in both cases. A total of 15 DEGs were shared 

between all 3 features with 12 downregulated in LR tumors and 3 upregulated in LR tumors. 

GO analysis of these genes identified 6 pathways with FDR < 0.05 including regulation 

of immune system process (enriched 6-fold, FDR 0.037) and regulation of lymphocyte 

migration (enriched 63-fold, FDR 0.041). This suggests that p16, tobacco exposure and MN 

biologically converge at least partially on an immune OPSCC signature (Supplementary Fig. 

5).
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Since the OP-TIL algorithm relies primarily on immune infiltration and spatial interactions 

between immunocytes and tumor cells to predict treatment response and survival, we sought 

to measure the biological overlap between this feature and intrinsic OPSCC biological 

features. LR OP-TIL tumors demonstrated downregulation of 495 DEGs compared to 

HR OP-TIL tumors with upregulation of 47 DEGs (Supplementary Table 8). Thirty-eight 

DEGs were shared between p16 LR and OP-TIL LR tumors; 33 were downregulated, 5 

were upregulated. GO analysis revealed the following pathways enriched more than 100 

fold with a concomitant FDR < 0.01: positive regulation of immature T cell proliferation, 

positive regulation of dendritic cell antigen processing and presentation, positive regulation 

of prostaglandin biosynthetic process, fever generation and regulation of macrophage 

migration inhibitory factor signaling pathway. MuNI and OP-TIL features shared 447 

DEGs which were downregulated in LR tumors. GO analysis revealed enrichment in 

multiple immune/inflammatory pathways: positive regulation of metabolic process(enriched 

2.6-fold, FDR 10−40), positive regulation of macromolecule metabolic process (enriched 

2.6-fold; FDR 10−39), positive regulation of chronic inflammatory response (enriched 44.6-

fold, FDR 0.03) and positive regulation of chronic inflammatory response to antigenic 

stimulus (enriched 44.6-fold, FDR 0.04). We subsequently restricted the analysis to p16 

positive tumors and identified 12 genes which were upregulated in LR MuNI tumors: IL16 

(chemotaxis), IRF8 (interferon signaling, CD3D (TIL activity), RIPK3 (TNF signaling), 

CCR7 (chemotaxis), CXXC5 (DNA damage), DSC2 (migration), IL2RB (chemotaxis), 

MEF2C (lymphopoiesis), PIK3CD (immune response), SPINK5 (inflammation), SUSD3 

(migration). GO analysis of these genes demonstrated: lymphocyte activation (enriched 

26-fold, FDR < 0.001), lymphocyte differentiation (enriched 33.8-fold, FDR < 0.01) and 

mononuclear cell differentiation (enriched 29.4-fold, FDR < 0.01).

Transcriptomic signature of OPSCC as a function of oncologic outcomes

We then correlated gene expression levels (Supplementary Table 9) with 2 clinical outcomes 

most closely related to treatment failure, namely LRR and DM. Twenty two genes 

correlated with LRR with an FDR ≤ 0.1 (CES1 (xenobiotic processing), FGF19 (metastasis), 

BAP1 (DNA damage), IL6 (chemotaxis), TYK2 (interferon signaling), FANCL (DNA 

repair), NUP62 (replication), TCF7L1 (senescence), TCF3 (DNA binding), IRF3 (interferon 

signaling), PDK2 (metabolism), SMARCA4 (transcription), PNKP (DNA repair), FAF1 

(apoptosis), ALDH2 (oxidative stress), PRKX (differentiation), SMAD7 (TGF signaling), 

CD40 (inflammation), CDKN1B (proliferation), ABCD3 (fatty acid metabolism), ARID1B 

(proliferation), ITPKB (signaling)) and 1 gene correlated with DM with an FDR ≤ 0.1 

(CXCL5 (chemotaxis)). GO analysis of genes associated with LRR identified enrichment 

in pathways both intrinsic to tumor cells and pathways regulating the interaction between 

tumor cells and immunocytes including: regulation of DNA binding transcription factor 

activity (enriched 13.3-fold, FDR < 0.01), cytokine mediated signaling pathway (enriched 

8.4-fold, FDR < 0.05) and cellular response to cytokine stimulus (enriched 6.5-fold, FDR < 

0.05).

Finally, we dichotomized tumors into aggressive (A) OPSCC and non-aggressive (NA) 

OPSCC as a function of survival and/or distant metastasis at the 5-year mark which would 

be considered by most clinicians to be adequate to differentiate recurrent disease for a new 
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primary or define an oncologic “cure” (Fig. 5C). Next, we compared DEGs between A 

and NA tumors while ignoring p16 status (Supplementary Tables 10–12). We then utilized 

machine learning tools to determine whether expression levels for genes of interest could 

be used to predict whether a patient’s tumor was aggressive or non-aggressive; selected 

genes were limited to the top 10 differentially expressed or highly correlated ones or 

the intersection of these two lists. The RNA expression cohort was split to utilize 89 

randomly chosen samples for training using 3 different models, leaving 10 samples out with 

a 50% split between aggressive and non-aggressive classification for validation. Principal 

component analysis using expression of the 10 common genes (AHNAK2 (metastasis), 

ANPEP (metastasis), BCL2 (apoptosis), CES1 (xenobiotic processing), CXCL8 (IL-8; 

chemotaxis), FADD (apoptosis), FANCG (DNA repair), FGF19 (metastasis), FOSL1 

(proliferation) and IL1A (IL-1alpha; inflammation)) (Fig. 5) revealed that they were 

reasonably good at separating both p16+ and p16− aggressive tumors from non-aggressive 

p16+ tumors, but less robust distinguishing aggressive and non-aggressive tumors within 

p16-neg disease.

DISCUSSION

Although dichotomized into “low-risk” HPV-associated disease and “high-risk” non-HPV-

associated disease by the 8th Edition of the AJCC Staging Manual, there is now 

ample evidence that OPSCC biology occasionally defies this binary risk prediction. Our 

transcriptomic data link genes involved in 3 distinct processes with LRR: (1) DNA repair/

proliferation, (2) inflammation and (3) metabolic processing of oxidative stress. Although 

there is evidence linking HPV to differential DNA repair and activation of cell death 

cascades, in OPSCC the link to inflammation/immunity and metabolism remains relatively 

weak27. MN, a morphologic feature of tumor cells associated with reduced treatment 

response and aggressive behavior has now been shown to be prognostic of OPSCC 

treatment response independent of HPV status20,24. In the current study we confirmed that 

although MN and p16 status do correlate, this correlation is incomplete suggesting that 

HPV status alone does not fully capture the biology intrinsic to OPSCC tumor cells. This 

is consistent with recent studies which demonstrate substantial transcriptomic variability 

among HPV + OPSCC15 and is particularly relevant for genes involved in metabolic 

processing of exogenous or oxidative stress such as CES1, a target of Nrf2, a master 

regulator of oxidative stress response linked to cisplatin and radiation resistance in multiple 

solid tumor types28. Whether differential activation of metabolic and oxidative stress genes 

drives the development of MN irrespective of HPV status will require combining molecular 

manipulation of individual genes using preclinical OPSCC models with spatial genomic and 

transcriptomic analysis of patient tumors.

There is now clear evidence that intra-tumor processes including mechanism of cell death 

generate shifts in the TIME29–34. Both necrosis and apoptosis can release sufficient signals 

for immune activation and surveillance of solid tumors, and hyperactivation of programmed 

cell death cascades may in fact generate a sufficiently favorable TIME to impact treatment 

response and survival. There is reason to evaluate the DEG analysis summarized above using 

a holistic approach which considers shifts in DNA damage/repair and shifts in TIME to 

represent a mechanistically linked driver of treatment response and survival particularly in 
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light of recently published data indicating aggressive disease behavior in HPV + OPSCC 

with defective DNA repair and genomic instability35. This concept is supported by the 

dramatic overlap of DEGs in tumors with high levels of multinucleation (MuNI) and 

unfavorable interactions between TILs and tumor cells (OP-TIL) and the fact that 9/12 genes 

upregulated in tumors with low levels of MN are genes involved in inflammation/immunity. 

Multiple analyses of patient specimens and preclinical studies have linked both endogenous 

and exogenous shifts in tumor metabolism with alterations in TIME in multiple solid tumors 

including HNSCC36–39. Furthermore, there is now increasing evidence that oxidative stress 

response mechanisms such as Nrf2 can play a critical role in regulating tumor immunity 

suggesting that the transcriptomic shifts described here may be mechanistically related40,41. 

Finally, we and others have linked metabolic shifts in metabolite transport, especially amino 

acids with resistance to cisplatin and ferroptosis agonists which may generate secondary 

immunologically relevant signals42.

It is clear that p16 as a surrogate marker of HPV oncogenic infection remains a potent risk 

stratifier even in OPSCC patient cohorts with extensive tobacco exposure such as the one 

evaluated here6,8,9,25. Its clinical impact dominates all other clinical and biological stratifiers 

on multivariate analysis. It is therefore highly unlikely that another specific biomarker 

will replace p16 in the near future for clinical purposes. However, clinical and biological 

evidence from other investigators and our group indicates that additional information will be 

needed to separate “low-risk” and “intermediate-risk” OPSCC cohorts sufficiently in order 

to support safe, yet effective treatment de-escalation for OPSCC patients with favorable 

tumor biology. Previously reported institutional trials aimed at de-escalation relied heavily 

on p16/HPV testing to broadly define the study cohorts, but generally included other 

features of LR disease in the final inclusion criteria (e.g. low T-classification; lack of 

tobacco exposure)43,44. ECOG3311 also utilized additional risk features following surgical 

resection of HPV + OPSCC to stratify patients between arms of variable treatment intensity. 

Our data indicate that MuNI and OP-TIL may improve upon p16-based stratification. That 

p16 alone is an incomplete measure of favorable tumor immunity is borne out by multiple 

studies including our previous work which demonstrated that tobacco exposure is associated 

with ~40% reduction in CD8 + TILs even in p16 positive OPSCC tumors13. By combining 

intrinsic tumor cell features (e.g. p16 overexpression, MuNI) with direct measures of TIME 

(e.g. OP-TIL, or alternatively the newly developed inflamed T-cell gene expression profile 

(TGEP)45,46) we may be able to not only consistently identify the most appropriate OPSCC 

candidates for de-escalation, but also begin to define the patient population most likely to 

respond to ICIs. We believe that our data support a concept recently discussed by Fialova 

et al., namely the potential of tumor immunity as a prognostic tool either as standalone or 

combined with HPV status47.

Limitations of the current study include its size and built-in selection bias driven by its 

single institutional nature. An additional limitation is the potential for tissue sampling bias 

as previous studies have demonstrated variability in TIME between the core and periphery 

of solid tumors48, along with a limited validation cohort for the machine learning-based 

analysis of DEGs. Future studies have been designed to combine bulk transcriptomic 

measurements with newer techniques which allow us to generate transcriptomic data with 

spatial resolution directly from FFPE slides and correlate it closely with MuNI, OP-TIL and 
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conventional IHC data in order to reduce some of the inherent limitations of measuring 

gene expression across multiple cell types present in the same solid tumor. Strengths 

include a comprehensive clinical annotation of the chosen specimens which substantially 

surpasses what can be extracted from existing public databases and the combination of 

high throughput imaging-based risk stratification, with conventional clinical stratification 

strategies and a transcriptional analysis. The MuNI risk stratification algorithm has now 

already been validated across multiple HPV + OPSCC cohorts and thus represents a 

robust and consistent prognostic marker of OPSCC treatment response and survival20. The 

OP-TIL algorithm has also been validated in a multi-institutional HPV + OPSCC cohort 

and correlates well with our previously published CD3/CD8 classifier for intermediate-risk 

OPSCC13,21. Unlike multiplexed IHC/IF, both OP-TIL and MuNI can be rapidly applied to 

existing hematoxylin & eosin slides from diagnostic biopsies and thus be rapidly deployed 

in a manner minimally intrusive to existing clinical pathways for cancer diagnosis. By 

combining these algorithms with a more detailed transcriptomic analysis of OPSCC tumors 

we suggest 2 translational strategies deserve additional investigation. First, that response 

to conventional chemo-radiation strategies may reflect at least in part, an interaction 

between tumor cells and immunocytes. Second, TIME may be a prognostic biomarker 

of chemo-radiation response and ICI effectiveness regardless of HPV status. Between the 

newly defined inflamed T-cell gene expression profile (TGEP)45,46 that can be captured 

using targeted transcriptomics, quantitative IHC for cytotoxic CD8 + T cells as recently 

described by our group and the newly developed OP-TIL algorithm, it may be possible 

to define a sensitive and specific biomarker of treatment response in OPSCC which could 

more faithfully replicate the complex biological and immunologic reality and thus serve to 

develop a precision oncology approach to this complex disease.
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Fig. 1. Impact of p16 on overall survival (OS) and locoregional control (LRC).
Analysis performed using Kaplan–Meier analysis coupled to log-rank test.
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Fig. 2. Impact of OP-TIL risk on overall survival (OS) and locoregional control (LRC).
A Original H&E WSI of an OPC patient. B A representative high-power field. C 
Identification of cell types: TILs (blue) and non-TILs (green). D Cell subgraphs built by 

linking proximal nuclei of the same type. E Resulting clusters for each cell type obtained 

by drawing the convex hull of each subgraph. F OS analysis performed using Kaplan–Meier 

analysis coupled to log-rank test for the OP-TIL OS risk classifier.
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Fig. 3. Impact of MuNI on overall survival (OS) and locoregional control (LRC).
A A representative high-power field from the H&E image of an OPC patient with an overlay 

of automatically detected MN events by GANMN, shown by green boxes. Two of them are 

illustrated in enlarged views, where MN events are shown in blue and cancerous nuclei in 

green. B OS and LRC analysis performed using Kaplan–Meier analysis coupled to log-rank 

test for the MuNI risk classifier.
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Fig. 4. Impact of combined p16, OP-TIL OS and MN on overall survival (OS) and locoregional 
control (LRC).
Analysis performed using Kaplan–Meier analysis coupled to log-rank test. LR = patients 

with low-risk MuNI and OP-TIL scores and p16 positive tumors; HR = patients with 

high-risk MuNI and OP-TIL scores and p16 negative tumors.
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Fig. 5. Identification of genes associated with aggressive OPSCC.
A Relevant clinical characteristics of cohort chosen for focused transcriptional gene 

expression analysis. Aggressive (A) disease was defined as associated with death or distant 

metastasis within 5 years; non-aggressive (NA) disease was defined as no death or distant 

metastasis within 5 years. B Survival of the RNA cohort stratified by tobacco exposure 

and p16 status. C Survival of RNA cohort stratified by aggressive (A) vs non-aggressive 

(NA) classification and p16 status. D Validation results from machine learning models 

using different gene selection lists: Common= 10 genes in common between top 20 ranking 

differentially expressed and most correlated genes; Correl = top 10 most correlated genes 

with survival time; Diff. exp. = top 10 most significantly different genes between aggressive 

and non-aggressive tumors; Chi-sq = top 10 genes using univariate ranking function in 

Matlab. E Principal component analysis (PCA) using RNA expression from the 10 genes on 

the common list demonstrating the genes could separate A p16+ and p16-neg tumors from 

NA p16+ OPSCC tumors.
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Table 1.

Patient characteristics.

Mean Median

Age (years) 61.57 61

Income (zip code based) $65,181 $46,471

Distance from VA (miles) 85.54 31

Number %

Gender Male 295 99.33

Female 2 0.67

Race White 229 77.1

Black 65 21.89

Other 3 1.01

Tobacco use Yes 256 86.2

No 41 13.8

≥10 pack years 232 79.45

<10 pack years 60 20.55

Alcohol use Yes 247 84.88

No 44 15.12

Mean Median

Pack years 40.58 40
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Table 2.

Risk profile changes.

Fraction of patients

Pack-years 2000–2005 2006–2010 2011–2015

Tobacco exposure <10 0.2 0.16 0.28

≥10 0.8 0.84 0.72

<30 0.36 0.28 0.49

≥30 0.64 0.72 0.51

Mean 44.39 45.46 32.16

Median 40 41.5 30

p16—clinical Neg 0.68 0.48 0.36

Pos 0.32 0.52 0.64

p16—research 0–25 0.58 0.41 0.33

(% tumor cells with strong nuclear staining) 25–50 0.03 0.02 0.08

50–75 0.12 0.03 0.06

75–100 0.27 0.54 0.53
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