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Abstract

Electronic health records (EHR) are collected as a routine part of healthcare delivery, and have 

great potential to be utilized to improve patient health outcomes. They contain multiple years of 

health information to be leveraged for risk prediction, disease detection, and treatment evaluation. 

However, they do not have a consistent, standardized format across institutions, particularly in the 

United States, and can present significant analytical challenges– they contain multi-scale data from 

heterogeneous domains and include both structured and unstructured data. Data for individual 

patients are collected at irregular time intervals and with varying frequencies. In addition to the 

analytical challenges, EHR can reflect inequity– patients belonging to different groups will have 

differing amounts of data in their health records. Many of these issues can contribute to biased 

data collection. The consequence is that the data for under-served groups may be less informative 

partly due to more fragmented care, which can be viewed as a type of missing data problem. For 

EHR data in this complex form, there is currently no framework for introducing realistic missing 

values. There has also been little to no work in assessing the impact of missing data in EHR. In 

this work, we first introduce a terminology to define three levels of EHR data and then propose 

a novel framework for simulating realistic missing data scenarios in EHR to adequately assess 

their impact on predictive modeling. We incorporate the use of a medical knowledge graph to 

capture dependencies between medical events to create a more realistic missing data framework. 

In an intensive care unit setting, we found that missing data have greater negative impact on the 

performance of disease prediction models in groups that tend to have less access to healthcare, or 

seek less healthcare. We also found that the impact of missing data on disease prediction models 
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is stronger when using the knowledge graph framework to introduce realistic missing values as 

opposed to random event removal.
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1. Introduction

In 2009, the Health Information Technology for Economic and Clinical Health (HITECH) 

act was passed to promote the adoption of health information technology in the United 

States [12]. For more than a decade, the use of Electronic Health Records systems has 

increased tremendously, enabling the availability of patient health histories for analysis. 

EHR are the digital version of a patient’s paper medical chart. The patient record contains 

detailed medical history, diagnoses, medications, treatment plans, laboratory test results, 

among other health information necessary for understanding a patient’s health status as well 

as their engagement with care providers within the inpatient, outpatient, and ambulatory 

care settings. Therefore, EHR data have been leveraged to address a variety of use cases 

including clinical research, quality improvement, clinical decision support, and population 

health. To support these use cases, computational methods are applied to lower-level tasks 

e.g., extracting medical events that can inform higher-level tasks, e.g., disease prediction 

[24]. As of December 2019, there are slightly under 2.1 million papers published on 

EHR for biomedical research [23]. By harnessing the power of EHR, we could improve 

early-stage disease detection, risk prediction, and treatment evaluation; thus leading to a 

significant reduction in patient costs and improvement in patient outcomes. Table 1.

In the context of applying machine learning to solve problems for risk prediction, disease 

detection, and treatment evaluation, EHR pose many challenges– they do not have a 

consistent, standardized format across institutions particularly in US, can contain human 

errors and introduce collection biases. In addition, some institutions or geographic regions 

do not have access to the technology or financial resources necessary to implement EHR, 

thus resulting in vulnerable and disadvantaged communities not being electronically visible 

[23].

1.1. Defining levels of information complexity for EHR data

EHR data come in a variety of forms; however, to our knowledge, there is no terminology 

to delineate the levels of complexity. For example, raw data in EHR is very different from 

EHR data that have been heavily pre-processed and curated to generate a matrix form 

with a priori selected and well-defined features. To describe different levels of EHR data, 

we suggest the following terminology: Level 0 data refers to the raw data that resides in 

EHR systems without any pre-processing steps. Level 1 data refers to data after limited 

data pre-processing steps including harmonization, integration and curation. Level 2 data 

refers to EHR data in matrix form that includes variables/features extracted through chart 

reviews, or other mechanisms (see Fig. 1 for an example). Level 0 data lack structure or 

standardization (e.g., narrative text, non-codified fields). Level 1 data are complex – they 

Getzen et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oftentimes come in the form of a sequence of events with heterogeneous structure (e.g., 

templated text, codified prescriptions and diagnoses, lab tests, vitals mapped to standard 

terminologies and vocabularies). In addition, data for individual patients are collected at 

irregular time intervals and frequencies. These challenges prevent researchers from being 

able to directly apply classical statistical and machine learning methods for analysis of 

Level 1 data. While Level 2 data is amenable to such analyses, there is significant time 

spent pre-processing such as feature extraction/engineering through chart review or other 

means, and there may be substantial information loss from Level 1 to Level 2 EHR data. 

This information loss can be a result of data that are non-conformant or non-computable 

becoming “missing” or lost. Thus, for machine learning models to be adopted in a clinical 

setting, it is highly advantageous to build models that can use Level 1 data directly. Note that 

in this setting, our time series windows are denoted by medical visits (or encounters) where 

measurements may be summarized for a single visit in order to predict a future disease (See 

Fig. 1). However, there are other scenarios in which time windows can be defined differently 

(for example, hourly windows to predict complications within a single hospital admission).

Individual patients typically have varying amounts of data in their EHR for a variety 

of reasons such as lack of collection / documentation, less medical visits [26]. Many 

issues can contribute to biased data collection, particularly with regard to trends in health-

decision making of different patients. For example, studies have found that individuals from 

vulnerable populations (e.g., immigrants, low socioeconomic status, psycho-social issues) 

are more likely to visit multiple healthcare institutions to receive care– this leads to data 

fragmentation, which appears as “missingness” to end users. In addition, low socioeconomic 

status patients may receive fewer diagnostic tests and medications for chronic disease 

[8]. Racial and ethnic minority groups have sub-optimal access to healthcare, with Black 

Americans in particular facing disparities in terms of health status, mortality, and morbidity 

[10]. It has also been found that male patients tend to seek healthcare less than female 

patients [15]. Age also plays a role in health-seeking behaviors – studies found that adults 

65 years or older tend to have more consultations with family physicians and undergo an 

annual health check [3]. The barriers that exist for young people seeking healthcare include 

discontinuities in care, lack of payment for transition support, and lack of preparedness 

for an adult model of care [16]. The consequence is that less data and information are 

documented in EHR for patients belonging to certain groups due to fragmented care [18].

Machine learning models trained on data where certain groups are prone to have less data 

may exhibit unfair performance for these populations [7]. This can be viewed as a missing 

data problem. There is a growing recognition that ubiquitous missing data in EHR, even 

when analyzed using powerful statistical and machine learning algorithms, can yield biased 

findings and unfair treatment decision, further exacerbating existing health disparities [8,18]. 

Furthermore, when it comes to EHR use for research, oftentimes investigators search for 

patients whose data are complete enough for analytical purposes [25], more likely excluding 

patients from under-served populations.
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1.2. Assessing impact of missingness on EHR data

Strategies for dealing with missing data tend to rely on assumptions about the nature of 

the mechanism that causes the missingness. As such, missing data are typically categorized 

into one of three classes: Missing Completely at Random (MCAR), Missing at Random 
(MAR), and Missing Not at Random (MNAR). MCAR, a term coined by [20], describes 

data where the probability of being missing is the same for all cases, thus implying 

that the cause of missingness is unrelated to the data itself. An example could be a 

lab technician forgetting to input data points into a patient’s health record, regardless 

of any attributes that describe a patient. The second class, Missing at Random (MAR), 

describes data in which missingness depends on the observed data. For example, a patient’s 

demographic characteristics which are recorded are associated with seeking less healthcare 

and therefore having sparser medical records. MAR is more general and realistic than 

MCAR in practice. When data are MCAR or MAR, the response mechanism is termed 

ignorable, or a researcher can ignore the reasons for missingness in the analysis and thus 

simplify model-based methods [11]. If neither MCAR nor MAR holds, the missingness 

is categorized as Missing Not at Random (MNAR). This means that the probability of 

being missing may depend on missing values [2]. This type of missingness can also be 

classified as non-ignorable if a patient’s unobserved underlying condition (e.g., undiagnosed 

depression) prevents them from traveling to see a healthcare provider [22].

There is a growing body of work on handling missing data in health records, and as such 

there exists current methods for simulating missingness based on the three mechanisms. 

[1] outlined considerations for dealing with missingness in EHR data based on their own 

numerical experiments. For their MAR simulations, missingness in a feature depends on 

another feature value. For MNAR simulations, missingness in a feature depends on its own 

value being in a selected quartile. [13] conducted simulation studies to compare phenotyping 

methods to their Bayesian latent class approach. For MAR, missingness was simulated with 

a Bernoulli distribution based on patient-specific missingness probabilities varying based on 

age, race, and body mass index (BMI). For MNAR, missingness probabilities depended on 

Type 2 Diabetes Mellitus status. Both papers simulate missingness in Level 2 EHR data, or 

EHR data contained in a matrix with a priori defined features. Again, from Level 1 EHR 

data to Level 2, there is a sizable loss of information in addition to the labor-intensive 

process of manually and/or automatically converting to Level 2 data. More notably, none 

of the existing works account for dependencies between EHR events when artificially 

generating missing data in their experiments. An example of dependency is the relationship 

between diabetes and insulin. Most of the time, insulin is used to treat diabetes. Thus, if an 

instance of diabetes is removed, the insulin prescription should also be removed most of the 

time to reflect a realistic clinical scenario.

1.3. Modeling medical event relatedness using knowledge graphs

To determine the relatedness between medical events, one mechanism might be to train a 

knowledge graph. Its information could then be leveraged to simulate realistic missingness. 

Knowledge graphs have previously been very useful in the analysis of electronic health 

records. Goodwin and Harabagiu [9] automatically constructed a graph of clinically related 

concepts and presented an algorithm for determining similarity between medical concepts. 
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Santos et al. [21] developed a knowledge graph that integrates proteomics and clinical 

data in order to assist with clinical decision-making. Rotmensch et al. [19] also developed 

knowledge graphs that link symptoms and diseases directly from electronic health records. 

They developed three types of graphs based on logistic regression, naïve Bayes classifier, 

and a Bayesian network using noisy OR gates. The constructed knowledge graphs were 

evaluated against Google’s manually-constructed knowledge graph and against physician 

opinions. They found that the noisy OR model produced a high quality graph that 

outperforms the other models. None of these methods have been applied for the purpose of 

accounting for event dependencies when simulating realistic missing data. We use the noisy 

OR-gate model from Rotmensch et al. [19] in our experiments due to its high performance 

compared to naïve Bayes and logistic regression approaches, its flexible assumptions, and 

ease of use.

There is currently no framework for introducing realistic missing values in Level 1 EHR 

data. There is also a gap in investigating the effects of missing data with regard to these 

data. As stated previously, Level 1 EHR represent a sequence of events with heterogeneous 

structure with features that are not well-defined. This also includes repeated measures at 

different time points for different patients. Events are oftentimes coded multiple times in a 

single patient medical visit, and frequently there exists causal pathways between medical 

events in the patient’s record. As a result, we cannot rely on traditional methods to simulate 

realistic missing data in EHR and assess their impact.

In this work, we develop an innovative framework to simulate missingness under the 

three mechanisms (namely, MCAR, MAR, and MNAR) that mimic real-life situations and 

health-seeking behaviors of various groups of patients for Level 1 EHR. We account for 

dependencies between medical events through the use of a medical knowledge graph. We 

create models for Level 1 EHR for predicting future diagnoses at a patient’s next medical 

visit and quantify the extent to which prediction performance is affected by missing data 

under MCAR, MAR, and MNAR by the amount of missing data and by health-seeking 

behaviors that may lead to health disparities.

2. Materials and methods

An overview of our methodology is presented in Fig. 2.

2.1. Data

We choose to simulate missing data in the MIMIC-III (Medical Information Mart for 

Intensive Care III) dataset [14]. The MIMIC-III dataset consists of de-identified health-

related data of patients who stayed in critical care units at the Beth Israel Deaconess Medical 

Center between 2001 and 2012. It is important to note that the MIMIC-III data is from the 

intensive care unit (ICU) and thus may be different from EHR from outpatient and primary 

care providers. Once a patient has been admitted to the ICU, access to care likely would 

have less of an impact on the quantity and quality of data collected. However, in simulating 

scenarios where patients have less access to healthcare, a dataset less likely to already reflect 

issues in access to care makes more sense to work with. This dataset is a good Level 1 
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candidate for simulating missing data because the numbers of medical events are evenly 

distributed across most groups of interest (see Table 2).

2.2. Simulating realistic missing data within patient groups

We extract the sequence of structured and codified events in the MIMIC-III database for 

each patient. Structured and codified events represented include prescriptions (p_(drug 

names and NDC codes)), lab tests (l_(identifiers associated with lab measurements; LOINC 

codes)), conditions (c_ICD-9 codes), symptoms (s_ICD-9 codes), and diagnoses (d_ICD-9 

codes). For example, d_250 represents diagnosis (d) of diabetes mellitus with an ICD-9 

code of 250. Because we are evaluating a prediction tool to assist physicians with future 

diagnoses, we define the patient’s medical history in two ways: for patients with the 

diagnosis of interest in their records, we modeled the events in the medical visits prior 

to the current visit that contains the diagnosis of interest. For patients that do not have the 

diagnosis of interest, events in the visits prior to their most recent visit are used (see Fig. 3). 

In this data structure, oftentimes structured and codified events are coded multiple times in 

the same visit.

2.3. Simulating missing data under MCAR, MAR, MNAR

When data are Missing Completely at Random (MCAR), missing values are independent 

of both observed and unobserved data, and occur at random. In mathematical notation, we 

write this as:

P M ∣ Y o, Y m = P(M)

where M refers to the missing indicator, Yo refers to the observed data, and Ym refers to 

unobserved data. To induce realistic MCAR missingness, we mimic an EHR situation in 

which a lab tech forgets to input data points. This means that even if a structured event is 

coded multiple times in the patient record, one instance of that event being removed does 

not affect the other instances. In our simulations, the number of patients that have clerical 

errors in their medical records (Xi) follows a binomial distribution with probability 0.75 (Xi 

~ Bin(N, 0.75)). For patients selected for clerical errors, we vary the proportion of events 

removed from each medical record from 0 to 0.75.

When data are Missing at Random (MAR), the events that lead to missingness are dependent 

on the observed data. In mathematical notation, we write this as:

P M ∣ Y o, Y m = P M ∣ Y o

In our experiments, we explore variables such as sex, age, race, and insurance status (to 

infer socioeconomic status). We use a logistic regression model to simulate these conditional 

probabilities. In mathematical notation, this is:

P M = 1 ∣ Y o = 1
1 + exp −Y o * β
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where Yo now refers to our observed predictors (sex, age, insurance status, race) and β 
represents the coefficients for the predictors.

We define younger patients (age 17–54), patients of color (Asian, Hispanic, Black, multi-

racial, Middle Eastern, Hawaiian), male patients, and patients on government insurance as 

“data-lacking“ groups as we would expect there to be more missing data in medical records 

from primary care providers and other types of EHR due to either less access to care or 

seeking less care. We define older patients (age 55–70 +), female patients, patients on 

private insurance, and White patients as “data-rich” groups due to such groups either having 

more access or seeking more care. The racial categories of American Indian and Alaska 

Natives were not included in the dataset. Note that in the experiments conducted in Section 

3.1, we include all non-white patients. In the 2nd set of experiments in Section 3.2, we 

examine only Black vs White comparisons. The reason for this is because the biggest health 

disparities exist between these groups. For age, The cut-off point was chosen to ensure that 

the mean and median number of records would be evenly distributed among groups.

Since it has been shown that male patients are less likely to visit a healthcare provider than 

females, we select a β coefficient that reflect this difference in probabilities for sex. For 

insurance status, we separate patients on government insurance (Medicare, Medicaid) from 

patients with private insurance to represent lower and higher socioeconomic status. For race, 

we stratify Black and White patients. The βsex coefficient is chosen such that P(M|Male) = 

0.88 for male patients, and P(M|Female) = 0.35. We use the same β coefficient to determine 

probabilities for insurance status (with patients on government insurance having the higher 

probability for missing data), race (with non-white having the higher probability for missing 

data), and age (< 55, >= 55). Our model creates these differences in probabilities for these 

groups. Since there is no prior data on what these differences should be, we chose values 

that would demonstrate the potential impact on the data and predictive validity.

When neither MCAR nor MAR hold, the data are Missing Not at Random (MNAR). This 

means that after accounting for available observed information, the missingness still depends 

on unobserved data. In mathematical notation, this is:

P M ∣ Y o, Y m = P M ∣ Y o, Y m

A realistic MNAR scenario in EHR data is a patient’s unobserved underlying condition 

preventing them from going to health-related appointments (such as chronic pain, 

depression). For each diagnosis that we try to predict in the next medical visit, we select 

three other conditions / diagnoses to be “underlying conditions“. To select these “underlying 

conditions”, we first isolate medical events that have a cosine similarity > 0.7, and manually 

investigate whether or not they could realistically be responsible for missing appointments. 

For example, if we are predicting a future diagnosis of Diabetes, we might find that ‘d_357’ 

(Inflammatory and toxic neuropathy) has a cosine similarity of 0.843 and ‘c_V5867’ (Long-

term insulin use) has a cosine similarity of 0.854. It is more likely that toxic nerve damage 

would prevent an individual from attending a medical visit due to the fact that it involves 

pain as opposed to long-term insulin use.
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Table 3 displays diagnoses that we will predict in our numerical experiments, their 

accompanying “underlying conditions”, and corresponding cosine similarity.

We use the same logistic regression model used in the MAR experiments with an added 

covariate for the “unobserved” underlying condition to determine probabilities for a patient 

to have missing data, or P(M | Yo, Di) where Di is an indicator for having one of the 

specified underlying conditions. D1 corresponds to having at least one underlying condition 

in the medical history, and D0 corresponds to having no underlying conditions in the medical 

history. P(M | D1) = 0.88 and P(M | D0) = 0.35 in our model.

2.4. Applying a knowledge graph to induce realistic missingness

To account for dependencies between EHR events, we employ the use of a knowledge graph 

based on the noisy OR-gate model [19]. Noisy OR is a conditional probability distribution 

that describes causal mechanisms by which children nodes are affected by parent nodes. 

Parent nodes can be defined as diseases; children nodes can be defined as symptoms. In a 

deterministic noise-free setting, the presence of a disease would always cause symptoms to 

be observed, but in real life the process is less deterministic. The model deals with inherent 

noise in the process by introducing failure and leak probabilities. For example, the presence 

of a disease yj might fail to turn on its child symptom xi with probability fij. The leak 

probability li denotes the probability that a symptom is on even if all parent diseases are off.

The probability of a child being present is defined as

P ci = 1 ∣ y1, …, yn = 1 − 1 − li ∏fij
yj .

Then the importance measure is defined as

IMPTnoisy−or = 1 − fij,

due to the fact that higher importance indicates that a disease is more likely to turn on 

or generate an observed corresponding symptom. Model parameters are learned using 

maximum likelihood estimation. The importance measure is derived from the conditional 

probability distributions, and thus no assumptions about the prior distribution of parent 

nodes are made. This model was shown in numerical experiments to outperform naïve 

Bayes and logistic regression models. Unlike other models, such as naïve Bayes and logistic 

regression, it does not make any assumptions about the prior distribution of outcomes. This 

is important since patients present with multiple types of medical events in their records.

In our experiments, we have five different event categories: diseases, abnormal lab tests, 

prescriptions, symptoms, and conditions. We determined that conditions would not be 

included in the knowledge graph due to the variety of non-clinical events that can be 

classified as a ‘condition’ in the MIMIC-III data set (for example, organ donor status). Thus, 

we learn four different noisy OR-gate models with each event category considered to be the 

parent node, and all other event categories considered to be the children nodes (see Fig. 4). 

We verified the knowledge graph through a few relationships and what we would expect 
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from their relatedness. For example, Diabetes and Insulin had an importance measure of 

0.65, while Diabetes and ECG test had an importance measure of 0.10.

Because the MCAR experiments are based on clinical errors and do not capture any 

clinically meaningful situations, we do not use the knowledge graph for the MCAR event 

removal process. Instead, in the patients that are selected to have missing data, we simply 

remove events at random up to a certain proportion of data denoted by p, where p =[0.0, 

0.2, 0.4, 0.6, 0.75] of events in a medical record if a patient is selected for missingness. This 

allows us to see the impact of missing data at various proportions. See Fig. 5 for the MCAR 

event removal process.

For the MAR experiments, a patient might miss a medical visit or have less diagnose/

medication data due to having less access to or seeking less care. We first remove entire 

medical visits from the patient’s record up to a desired proportion. In each of the remaining 

visits, we remove individual medical events up to a desired proportion. The total amount of 

data removed from visits and from medical events in the remaining visits should be equal 

to p as defined above. In this type of situation, if a patient misses a lab test, the subsequent 

diagnosis and prescription that would have resulted from that abnormal lab test should also 

be removed. We utilize the knowledge graph to account for these dependencies.

Rather than determining a threshold on the importance measure to learn an edge for a 

knowledge graph, we take a more probabilistic approach for event-removal. The process for 

removing events is as follows: If event A is chosen for removal, we use the noisy OR-gate 

model that treats event A’s category as the parent node (for example, event A is a diabetes 

diagnosis, and thus we choose the model that treats diagnoses as the parent nodes, and 

treats prescriptions, lab tests, and symptoms as the children nodes). From there, each event 

in the patient’s record has a failure probability associated with it. The importance measure 

described above is calculated for each event (the likelihood that the diabetes diagnosis will 

“turn on” the event). We treat each corresponding importance measure as the probability that 

the corresponding event will also be removed with event A. Of the events removed using this 

method, the event with the highest importance measure is chosen as the new parent node and 

its corresponding importance measures for the remaining medical events are calculated and 

the process repeats. If no additional events are removed, a random medical event is chosen 

and the process repeats. This occurs until reaching a certain threshold of events removed. 

See Fig. 6 for the MAR event removal process using the medical knowledge graph.

We also use the knowledge graph for removing events in the MNAR experiments.

2.5. Modeling disease prediction based upon medical histories

In our numerical experiments, we focus on assessing the impact of missing data in EHR 

on prediction accuracy. To build disease prediction models using EHR data, we applied a 

two-step approach. In the first step, we generate an embedding for the medical history of 

each patient by leveraging word embedding algorithms [4,6]. Word embedding algorithms 

can be extremely useful in the analysis of Level 1 EHR data. These algorithms convert 

words to vectors of real numbers such that the cosine distance between two vectors reflects 

the similarity of two words. In using the structured and codified data from Level 1 EHR data 
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for word embedding, one can think of a “word” as a medical event in the patient record, 

and a “sentence” as the chronological sequence of all events in a patient record. We use 

the algorithm Word2Vec [17] to generate embeddings for medical events. Word2Vec has 

two training mechanisms: continuous bag of words (CBOW) and skip-gram. CBOW utilizes 

the surrounding context (other words around the target word) to predict a target word, and 

skip-gram uses a single word to predict a target context. The hidden layer following training 

contains the vectors that correspond to each word (Fig. 7).

2.6. Developing and evaluating disease prediction models

In the second step, we build three models for predicting a diagnosis of interest in a future 

medical visit, including diabetes (prevalence = 0.318), chronic kidney disease (prevalence 

= 0.203), heart failure (prevalence = 0.371), hypertensive chronic disorder (prevalence = 

0.180), and lipid metabolism disorder (prevalence = 0.275). The ICD-9 codes are coarsened 

to the disease category.

Once we generate embeddings for individual events in a patient’s medical history, we 

derive an embedding for the patient’s entire medical history by multiplying each individual 

embedding by a temporal factor and summing up the vectors in the patient record. The 

equation that represents this process is as follows:

∑V i × eλ × (i − n + 1)/n

∑eλ × (i − n + 1)/n

where Vi is the embedding of event i in a patient’s medical record, λ is the time decay 

factor, and n is the total number of events in the record. For our experiments, a decay factor 

of 5 is used. Fig. 8 is useful for visualizing this process.

We develop and evaluate prediction models using three approaches: patient diagnosis 

projection similarity (PDPS), lasso (least absolute shrinkage and selection operator) 

regression, and artificial neural network.

Patient Diagnosis Projection Similarity [4] involves projecting patient sequences into the 

vector space while accounting for the temporal impact of events, as described previously. 

The cosine similarity between the patient vector and the diagnosis of interest is used to 

predict whether or not a patient is at risk for developing that disease. One of the main 

benefits of the method is its ability to predict risks for multiple diseases simultaneously. We 

apply PDPS to evaluate the effects of missingness on results (see Fig. 9).

As an alternative approach, we also leverage the patient vectors to build disease-specific 

prediction models by using lasso (least absolute shrinkage and selection operator) regression 

and deep learning based on a three-layer artificial neural network with mean-squared error 

loss. Each coordinate in a patient vector can be viewed as a feature used for the prediction of 

a medical outcome. Fig. 10 displays an example of this data structure: each row in the matrix 

corresponds to a patient vector, and each column corresponds to a coordinate feature. The 

last column indicates whether or not the patient is labeled as positive or negative for having 

a diagnosis of interest in a future medical visit.
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We evaluate model performance by area under the operating curve (AUC) at various 

missingness proportions for the patients selected to have missing data by their given model. 

There are two scenarios for this. In the first scenario, we only remove medical events 

from the training data and leave the testing data complete. This is a useful approach 

because it provides a consistent benchmark to compare results at different missingness 

proportions; however, it does not reflect a realistic situation in which the training and testing 

data come from similar populations. In the second scenario, we remove medical events 

from patients in both the training and testing data. Evaluating with different testing sets 

means that the subsequent results are not directly comparable; however, the changes in 

prediction performance would reflect more of a real-life situation where models are trained 

and evaluated with missingness incorporated.

In each experiment, we report the results that are averaged over 200 Monte Carlo datasets. 

We present our experiments evaluated with the neural network in the main results (Figs. 

10–17). Since the results for lasso regression were nearly identical, we do not include them. 

PDPS performed very poorly (AUC averaging at 0.5 for all diagnoses), possibly due to the 

fact that in this work we remove visits that contain the target diagnosis in the patient history. 

For this reason, we do not present these results.

3. Results

We outline the key findings of disease prediction accounting for three types of missingness: 

MCAR, MAR, and MNAR among data-lacking and data-rich patient groups.

3.1. Assessing data missingness across disease types

In the first set of results, we look at five disease prediction models (diabetes, chronic 

kidney disorder, heart disease, hypertensive chronic disorder, lipid metabolism disorder). 

The models are evaluated at increasing proportions of missingness in patients selected 

to have missing data in their medical records. We look at two scenarios: medical events 

removed only from the training set, and medical events removed from both the training and 

testing data. The former has the advantages of being able to evaluate on the same test set 

each time; however, the latter reflects a more realistic scenario in terms of evaluating the 

impact of missing data on underserved populations.

In the MCAR experiments, we randomly choose 78 percent of patients to have missing 

data to determine the extent of the impact of missing data on prediction results. If a patient 

is chosen to have missing data, we remove events at random from their medical history. 

The model performances when missingness is only induced in the training data does not 

diminish very much. When missingness is simulated in both the training and testing data, we 

observe a slight gradual decline in AUC for predicting all diagnoses at increasing levels of 

missingness (Fig. 11).

In the MAR experiments, we use a logistic regression model with four covariates (age, 

sex, insurance status, race) to determine whether or not a patient is selected to have 

missingness simulated in their medical record. ~ 78 percent of patients overall were selected 

for missingness based on this model. Missingness is induced by removing visits and unique 
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events at random for selected patients. If a patient is selected to have a visit removed, and 

they only have one visit in their history, they are removed from the analysis. However, 

their data is factored into the proportion of missing data. We first assess the impacts of 

missingness on all patients in our data. We see a stronger decline in performance as the 

proportion of missing data increases when we remove events from both the training data and 

test data as opposed to just the training data (see Fig. 12). We also see a slightly stronger 

decline in performance as we increase the proportion of missing data for MAR experiments 

compared to MCAR.

In the MNAR experiments, we use the same model as MAR, but include an additional 

covariate that accounts for an “unobserved underlying condition”. We choose a β coefficient 

such that P(M) = 0.88 for patients with a selected underlying condition, and P(M) = 0.35 

for patients without. If a patient is selected for having missing data and the conditions are 

present in the record, the conditions are also subsequently removed after missing data is 

simulated. The overall effect looks similar to the MAR experiment, with declines in model 

performance as proportion missing in those selected for missingness increases (see Fig. 13) 

The declines are stronger than in the MCAR experiments.

For the complete test set experiments, we see that model performance remains more 

constant across different levels of missingness if missingness is not simulated in the test 

set, compared to when it is. A possible reason for this could be the fact that multiple similar 

medical events are used to predict a future diagnosis, and these events would always be 

present in the test set. For the incomplete test set experiments, we see stronger decreases in 

model performance for each missingness mechanism.

In the incomplete test data MCAR experiments, we do not observe as notable of a decrease 

as we do for MAR and MNAR. This is expected because events can be coded multiple 

times in an EHR record, so to remove an event at random does not necessarily mean it 

does not exist elsewhere in a patient’s record. Dependencies are also not removed and 

thus likely help improve prediction performance since similar events probably have similar 

vector representations. In the MNAR models, the model performances across various levels 

of missingness look very similar to the MAR model performances. Thus, it appears that 

the addition of an underlying condition covariate does not contribute to further declines 

in disease prediction performance. This is surprising due to the fact that the underlying 

conditions were chosen such that they would be associated with the diagnosis of interest that 

we were trying to predict.

3.2. Assessing the impact of data missingness for data-lacking groups

Because we are interested in assessing the impact of missingness on populations with less 

access to healthcare or behaviors leading to less engagement with the healthcare system 

(data-lacking groups), in the next set of numerical experiments for MAR, we stratify by 

demographic group by splitting the testing data to evaluate each group separately. All 

patients begin with an average of 15 percent of their data missing. Patients that belong to 

a particular data-lacking group will have this average increase in increments. Patients that 

belong to the data-rich group will have this average stay at 15 percent. Thus, it is important 

to note that the differences shown in Fig. 18 are a result of only increasing the amount of 
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missing data in the data-lacking group. We do three different versions of this to look at 

the effects of insurance status, age, and race independently. In these experiments, we only 

present experiments where the events are removed from both the training and the test set 

(see Fig. 18).

First, we stratify our test set by insurance status. In the logistic regression model, we chose 

a β coefficient such that P(M) = 0.35 for patients on private / self insurance and P(M) 

= 0.88 for patients on government insurance to reflect less access to healthcare. We see 

initial disparities for patients on government insurance in predicting all diagnoses except 

for chronic kidney disease, noting that this could be due to the fact that end stage renal 

disease uniquely qualifies for government insurance. As proportion of data missing increases 

for patients on government insurance, we see a stronger decline in model performance at 

the various increments. We also stratify our test data by younger patients (< 55) and older 

patients (>= 55). We see that initially the AUC is higher for predicting all diagnoses for 

younger patients as opposed to older patients. As missingness in younger patients increases, 

we see declines in model performance, but it only leads to worse performance in predicting 

lipid metabolism disorder at the highest proportion of missing data. Lastly, we stratify by 

White patients vs Black patients to see how race plays a factor in impact of missing data. We 

see strong initial disparities in predicting hypertensive chronic disorder for Black patients. 

We see very strong declines in model performance for predicting Diabetes as the proportion 

of missing data increases. We do not see these declines when predicting heart disease and 

lipid metabolism disorder.

When assessing the impact of missing data on data-lacking groups, we observe that for most 

diagnoses, model performance for such groups are negatively impacted by missing data. 

Notably, some model performances for certain diagnoses are more affected by missing data 

than others. Models for diabetes, chronic kidney disease, and hypertensive chronic disorder 

are all more affected by missingness than models for heart disease. One possible explanation 

for this phenomenon could be that there are fewer types of events at smaller frequencies 

that are predictive of diagnoses like diabetes, chronic kidney disorder, and hypertensive 

chronic disorder. On the other hand, there could be many events at high frequencies that are 

predictive of heart disease, thus causing the model to not be as affected by missing data. 

We also see that certain data-lacking groups are more affected by missing data than others 

(for example, the decline in performance for younger patients as missingness increases is 

not as strong as the decline in performance for Black patients for certain diagnoses). Due to 

differences in quality of care, it is possible that Black patients have less predictive events for 

these diagnoses as well.

3.3. Comparing event removal with and without a knowledge graph

Next, we directly compare scenarios where all patients are selected for missingness 

and either have events removed at random (like in the MCAR experiments) or events 

removed using the knowledge graph (removing clusters of related events together). In these 

experiments, all patients have missing data. We vary the proportion of the amount of missing 

data in each patients’ record to assess the impact as we did before. In these experiments, 

entire visits are not removed as they are in the MAR experiments. We simply use the 
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knowledge graph event-removal methodology from section 2.3 to remove random clusters of 

dependent events from each medical record.

We observe that in both scenarios (removing events from only the training data and 

removing events from all data), there are notably stronger declines in model performance as 

the proportion of data missing increases if events are removed using the medical knowledge 

graph, compared to without using the medical knowledge graph. When events are randomly 

removed without using the medical knowledge graph, it is likely that among a set of 

clinically related events (say, diabetes diagnosis and insulin prescription), some of them 

(say, diabetes diagnosis) are removed but some (say, insulin prescription) are not. Then, 

the information from the remaining events (say, insulin prescription) can still be used in 

downstream learning tasks such as prediction.

4. Discussion

In this work, we propose a novel approach for simulating realistic missing data in Level 1 

EHR and evaluate the impact of such missing data on downstream leaning tasks through 

the use of prediction models that use the entire patient history. This general approach 

can be adapted and refined further. For example, we used the noisy OR-gate model to 

obtain a knowledge graph for medical events in our numerical experiments. Alternatively, 

we can use knowledge graphs from other existing databases for medical events to capture 

dependencies and pathways for simulating missing data or other research purposes. In our 

work, we observe diminished model performance as a result of all types of missingness, 

and this diminished performance is more subtle in some scenarios (MCAR) as opposed to 

others (MAR, MNAR). We also see that disease prediction performance for data-lacking 

groups is more significantly impacted by missing data. Lastly, we find that for the same 

amount of missing data, accounting for relatedness of medical events and concepts in EHR 

leads to greater impact on model performance. Overall, however, we do observe that to 

detect meaningful differences in model performance, missingness needs to be quite high 

(70–75 percent missing). Thus, it is positive to see that these models are fairly robust to 

missingness.

Our results indicate that disproportionate missing data in patients in certain demographic 

groups does impact disease model performance in a negative way. What this means is that 

the same disease prediction model may not be as effective for patients that have less data 

in their medical records. This has real implications for patients in under-served populations, 

particularly patients of lower socioeconomic status and patients of color – as advances in AI 

are incorporated into the clinic, these groups could get left behind from progress in early 

disease detection and risk prediction that these technologies afford. The divide in health 

outcomes with regard to attributes such as socioeconomic status and race is already wide. 

If we were to naively implement and integrate these models into the clinic, the gap could 

widen even more. Thus, it is of utmost importance to address missing data in EHR for 

under-served populations when applying powerful ML methods. As scientists and engineers, 

it is our responsibility to ensure that our contributions do not leave people behind.
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Dependencies exist between EHR events in the real world. Diagnoses typically happen 

as a result of abnormal lab tests, and prescriptions typically occur to treat a diagnosis. 

We observe that removing events via knowledge graph results in more of an impact on 

prediction performance as opposed to random removal. Although we cannot know the 

exact causal pathways between these events, we can do a better job in accounting for 

these correlations when simulating missing data in Level 1 EHR. The difference in results 

when we simulate missing data via knowledge graph compared to random event removal 

displays the importance of generating realistic missing data. When our simulations more-so 

mimic situations that happen in the real world, we observe a stronger decline in model 

performance. This allows us to see more clearly the impact that missing data might have on 

underserved populations, whereas without this mechanism in place we might not have seen 

as much evidence of disparities.

One limitation of this work is the imprecise characterization of the actual causal pathways 

that occur in medical data. We remove clusters of related events as a proxy for these causal 

pathways, but in reality this may not accurately capture how missing data truly happens in 

practice. For example, a diagnosis might never occur without a certain abnormal lab test, 

and a prescription might never occur without a certain diagnosis. Thus, the causal pathway 

might be lab test → diagnosis → prescription. In all of our experiments, however, there is 

no direction in the pathways. We do not account for the fact that the probability of removing 

the lab test upstream in the causal pathway should yield a higher probability of removing 

the prescription downstream. Additionally, using the noisy OR-gate knowledge graph does 

not allow for the generation of failure probabilities relating events of the same type (such 

as two diagnosis events). Dependencies between events of the same type are still accounted 

for through their relationships with other events, but the method would be better if this were 

more explicit. Another limitation that exists in the work is despite the fact that groups may 

have similar events in the dataset, the data quality might differ as well (there may be less 

diversity of medical codes for data-lacking groups even after accounting for differences in 

healthcare utilization). This is something that we did not account for in this work.

For future work, we might consider enlisting the help of clinicians that can identify general 

causal pathways that exist between medical events to further refine the knowledge graph 

and remove events in a more realistic way. We also might consider finding a way to map 

our EHR events to existing databases that detail such relationships, such as the Google 

Health Knowledge Graph or the PennTURBO Knowledge Graph [5]. It is also of interest 

to account for missingness by developing novel imputation methods that can handle Level 

1 EHR and incorporate relatedness of medical concepts and events. There is a large body 

of literature on imputing missing data in EHR, but little work on imputation models that 

can incorporate relatedness of medical concepts and events. Additionally, we might also 

explore the relationship between illness severity, access, and healthcare utilization. We 

would expect to see that healthier patients with less access to healthcare have more missing 

data than sicker patients with less access. Finally, given the importance of intersectionality in 

healthcare analysis, there is a need for future work to focus on intersectional differences (for 

example, white patients on government insurance vs black patients) to learn more about the 

impact of disproportionate missing data in disease prediction models using EHR data.
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Fig. 1. 
Different levels of EHR data. a) displays Level 0 EHR data (i.e., data still in EHR system 

without any pre-processing). b) displays Level 1 EHR data after having been extracted from 

the EHR system and after minimal processing such as curation and harmonization. Each box 

in the figure represents a single medical event in the patient history. Note that Level 1 EHR 

data are in sequential form with structured, codified, and unstructured data and no explicit 

missing values. c) displays Level 2 EHR data that have been pre-processed into matrix 

form. Going from Level 1 EHR data to Level 2 EHR data requires significant effort spent 

pre-processing such as feature extraction/engineering through chart review or other means 

and may lead to substantial information loss. There are explicit missing values in Level 2 

data due to its matrix form.
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Fig. 2. 
Overview of the methods section. We begin by using either our MCAR model, MAR model, 

or MNAR model to choose which patients will have missing data simulated into their 

medical records. From there, we describe how data are removed under each missingness 

mechanism, and we take our adjusted input data and build disease prediction models using 

NLP methods.
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Fig. 3. 
Sequence of structured and codified events used for prediction. Left panel refers to the 

events in the patient history, right panel refers to events in the next medical visit. Prefixes: c 

= condition, d = diagnosis, p = prescription, l = laboratory result.
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Fig. 4. 
Noisy OR model example with diagnoses as the parent nodes and all other events as the 

children nodes.
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Fig. 5. 
Clerical error simulation example. Events are removed at random up to desired proportions 

p, regardless of whether or not they appear multiple times in the record.
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Fig. 6. 
Event removal process for MAR experiments that incorporate the use of the noisy OR-gate 

knowledge graph. Visits and clusters are removed such that the total data removed from the 

record reaches desired proportions p.
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Fig. 7. 
Training mechanisms for FastText – CBOW (left) and Skip-Gram (right). CBOW trains by 

using a context to accurately predict a target word, Skip-Gram trains by using each word to 

predict its target context.
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Fig. 8. 
Patient vector generation process– embeddings are generated for each medical event in a 

sequence. Each embedding is multiplied by a function of its ordering, such that more recent 

events have more importance, and the temporally adjusted embeddings are summed to create 

an overall patient vector.
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Fig. 9. 
Patient Diagnosis Projection Similarity by [4]. Patient vectors and target diagnosis vectors 

are projected into the vector space. Prediction is based on cosine similarity between vectors.
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Fig. 10. 
Sample patient vector data matrix. Each row in the matrix corresponds to a 100-dimensional 

patient vector. Each coordinate can be used as a feature for prediction of a future diagnosis 

(Diabetes in this example).
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Fig. 11. 
Impact of MCAR missing data on disease prediction model performance as the proportion 

of missing data (p) varies. Top figure corresponds to complete test set experiments, bottom 

figure corresponds to incomplete test set experiments.
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Fig. 12. 
Impact of MAR missing data on disease prediction model performance as the proportion 

of missing data (p) varies. Top figure corresponds to complete test set experiments, bottom 

figure corresponds to incomplete test set experiments.
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Fig. 13. 
Impact of MNAR missing data on disease prediction model performance as the proportion 

of missing data (p) varies. Top figure corresponds to complete test set experiments, bottom 

figure corresponds to incomplete test set experiments.
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Fig. 14. 
Assessing the impact of missing data on data-lacking groups. Proportion missing for patients 

on private insurance is held constant while proportion missing for patients on government 

insurance is varied.
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Fig. 15. 
Assessing the impact of missing data on data-lacking groups. Proportion missing for older 

patients is held constant while proportion missing for younger patients is varied.
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Fig. 16. 
Assessing the impact of missing data on data-lacking groups. Proportion missing for White 

patients is held constant while proportion missing for Black patients is varied.
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Fig. 17. 
Impact of knowledge graph in event removal as the proportion of missing data (p) varies. 

Events are only removed from the training data. On the left, we assess the impact of 

removing medical events at random. On the right, we assess the impact of removing medical 

events using the knowledge graph.
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Fig. 18. 
Impact of knowledge graph in event removal as the proportion of missing data (p) varies. 

Events are removed from both the training data and testing data. On the left, we assess 

the impact of removing medical events at random. On the right, we assess the impact of 

removing medical events using the knowledge graph.
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Table 1

Statement of Significance.

Problem or 
issue

There is currently no framework for generating realistic missing data in electronic health records (EHR) and quantifying its 
impact on underserved populations.

What is already 
known

Although there are existing methods for simulating missing data in EHR, these methods rely on data that have well-defined 
features. They also do not take medical event dependencies into account.

What this paper 
adds

We propose a terminology for defining three levels of EHR data and develop a new framework for generating realistic 
missing data in EHR that can handle structured, sequential, codified data. Our framework incorporates event dependencies 
into the event-removal process via a medical knowledge graph, thus simulating more realistic missing data. This work also 
explores the impact of realistic missing data on performance of disease prediction models in groups that tend to have less 
access to healthcare or seek less healthcare-particularly patients of lower socioeconomic status and patients of color.
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Table 2

Distributions of medical events across various demographic groups. The data in this table correspond to 

MIMIC-III data that are unaltered (i.e. no missingness has been simulated). There are 3950 patients in the 

training set and 1692 patients in the test set. The mean number of medical events for each patient is 315, with 

a minimum of 7 and maximum of 3463. Across all patients, there are a total of 994,320 medical concepts. 

Mean and median number of medical events per patient record are evenly distributed across age groups. There 

are more older patients than younger patients in the training data. We also see that mean and median number 

of medical events per patient record are evenly distributed across sex. Proportions of male-to-female patients 

are relatively even in the training data.

Age Mean Events Median Events Standard Deviation Proportion of Patients

17–54 336 252 310 0.254

55–70+ 315 261 221 0.716

Sex

Male 323 261 236 0.541

Female 317 258 258 0.428

Insurance Type

Government 323 262 251 0.706

Private or Self 313 250 239 0.263

Race

Black 355 280 325 0.119

White 317 259 228 0.722
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Table 3

“Underlying conditions” for MNAR prediction models.

Target diagnosis “Underlying condition” Cosine similarity

Diabetes Toxic Nerve Damage 0.843

Fluid / Acid-Base Disorder 0.817

Anemia 0.782

Chronic Kidney Disease Glomerulosclerosis 0.877

Nephritis 0.855

Impetigo 0.771

Heart Failure Chronic Pulmonary Disease 0.885

Cardiomyopathy 0.868

Mitral Valve Disorder 0.843

Hypertensive Chronic Disorder Toxic Nerve Damage 0.720

Fluid / Acid-Base Disorder 0.720

Chronic Pulmonary Disease 0.719

Lipid Metabolism Disorder Hypothyroidism 0.831

Gout 0.826

Fluid / Acid-Base Disorder 0.800
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