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Abstract

The wide availability of multi-dimensional genomic data has spurred increasing interests in 

integrating multi-platform genomic data. Integrative analysis of cancer genome landscape can 

potentially lead to deeper understanding of the biological process of cancer. We integrate 

epigenetics (DNA methylation and microRNA expression) and gene expression data in tumor 

genome to delineate the association between different aspects of the biological processes and 

brain tumor survival. To model the association, we employ a flexible semi-parametric linear 

transformation model that incorporates both the main effects of these genomic measures as well as 

the possible interactions among them. We develop variance component tests to examine different 

coordinated effects by testing various subsets of model coefficients for the genomic markers. A 

Monte-Carlo perturbation procedure is constructed to estimate the null distribution of the proposed 

test statistics. We further propose omnibus testing procedures to synthesize information from 

fitting various parsimonious sub-models to improve power. Simulation results suggest that our 

proposed testing procedures maintain proper size under the null and outperform standard score 

tests. We further illustrate the utility of our procedure in two genomic analyses for survival of 

glioblastoma multiforme patients.
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1 Introduction

With advances in high-throughput biotechnology, genomic studies with a wide range of 

platforms have been performed to identify disease susceptibility loci or biomarkers for 

various phenotypic traits. Successful examples include gene expression microarray studies, 

genomewide association studies (GWAS) and epigenome-wide association studies (EWAS). 
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Despite the success of existing single-platform based studies, significant amount of genomic 

information is lost if one focuses only on a single platform. A new hypothesis has been 

advocated that the biological process of complex phenotypic traits such as cancer survival 

can be better characterized by multiple types of genetic, epigenetic and genomic alterations, 

and each platform provides a different and complementary view of the phenotype [1, 2].

This paper is motivated by The Cancer Genome Atlas (TCGA), a research project with a 

rich collection of multiplatform genomic data to map the tumor genomes in many types 

of cancers. We focus on a genomic study of glioblastoma multiforme (GBM), in which 

the association between DNA methylation and gene expression profile in the GRB10 
gene and the overall survival of GBM patients was reported [3]. It was also established 

that GRB10 gene is the target of microRNA, miR-633 [4]. Both DNA methylation and 

microRNA consist of epigenetic regulation of gene expression and have been found to 

be associated with gene expression [3, 5]. The example suggests that multiple genomic 

data are interrelated, e.g., DNA methylation-microRNA-gene expression and may jointly 

affect cancer survival, illustrated as a causal diagram [6] in Figure 1. We are interested 

in 1) the effect of DNA methylation of GRB10 gene on GBM survival mediated through 

mRNA expression of the gene (the dashed path in Figure 1), 2) the effect of DNA 

methylation mediated through microRNA expression (the solid path), and 3) the effect of 

DNA methylation on cancer survival independent of mRNA or microRNA expressions and 

perhaps through other biological mechanisms (the dotted path).

Hypothesis testing methods of multiple genetic markers on the survival outcome have 

been developed [7, 8]. These methods largely focus on a single genomic platform such as 

genetic markers. Moreover, these methods examine the overall effect and are not able to 

decompose the overall effect into separate components, as illustrated in Figure 1. With the 

rich collection of tumor genomic data such as TCGA, there has been a pressing need of 

analyzing multiplatform genomic data to understand their respective contribution to cancer 

survival. Statistical methods have been proposed under the mediation framework [9, 10, 

11, 12] to integrate multiplatform genomic data where the outcome is dichotomous [13, 

14]. It has also been shown that the three pathways illustrated in Figure 1 correspond to 

different sets of coefficients in regression models, and a hypothesis testing method has been 

developed to examine their effect on dichotomous outcomes [15]. However, the current 

integrated methods are not able to analyze the time-to-event data due to the challenge of 

censoring and require additional development prior to applying to the TCGA data. To bridge 

those gaps, we develop in this paper a new testing procedure for survival data that integrates 

multi-platform genomic data.

Cox proportional hazards (PH) model is the most popular model for analyzing survival 

data [16, 17]. Efficient estimation and testing procedures have been developed under the 

PH model [18]. However, since the PH assumption may be violated in real applications, 

alternative survival models such as proportional odds (PO) model [19] can be useful for 

such applications. Both the PH and PO models are special cases of a broader class of 

linear transformation models, which relates a nonparametric transformation of the failure 

time to covariates and a parametric random error in a linear form [18]. Various estimating 

procedures have been proposed for linear transformation models [20, 21], and Zeng and 
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Lin further proposed a non-parametric maximum likelihood estimator for a more general 

setting [22]. As most existing work focused primarily on the estimation problem, Tzeng et 
al. recently proposed an efficient testing procedure to examine effects of multiple genetic 

markers [8]. Although Tzeng’s method also concerns multivariate testing, their method, 

however, is not readily applicable to our motivating example. First, it is not clear how to 

use the existing method to analyze multi-platforms genomic data. It has been shown that the 

single platform method is subject to power loss as it fails to account for signals from other 

platforms [13]. Second, by focusing on the overall effect, the current method is not able to 

examine specific effects illustrated in Figure 1. Third, it is not clear how to balance between 

robustness against model misspecification and statistical power while incorporating potential 

interactions among various platforms. To address these limitations, we propose a testing 

procedure based on estimating equations that extends Tzeng et al.’s work to integrative 

genomics.

The rest of the paper is organized as follows. In Section 2.2, we introduce a semiparametric 

linear transformation model for DNA methylation, microRNA and gene expression jointly 

on failure time, and propose a variance component score testing procedure for an arbitrary 

set of regression coefficients. We also construct an omnibus test to accommodate different 

underlying disease models. In Section 3, we provide mechanistic interpretation for various 

subsets of coefficients in the joint survival model. In Section 4, we conduct numerical 

studies to examine path-specific effects. In Section 5, we illustrate the utility of our methods 

with two data applications. We conclude with discussion in Section 6.

2 A multivariate test for the transformation model

2.1 The model

Our overall goal is to understand whether and how a survival time T  depends on a p
dimensional DNA methylation markers S within a gene, a microRNA expression M, and a 

gene expression G, after adjusting for a q dimensional vector of covariates X. We assume a 

fixed number of DNA methylation markers p, but p may not be small relative to the sample 

size n in a finite sample. Due to censoring, T  is only observable up to a bivariate vector (T ∗, 

δ), where T ∗ = min(T , C), δ = I(T ≤ C) and C is the censoring time. Suppose data for analysis 

consists of n independent and identically distributed random vectors {(T i
∗, δi, Zi

T), i = 1, …, n}, 

where i indexes subjects and Zi = (Gi, MiGi, GiSi
T, MiGiSi

T, Xi
T, Si

T, Mi, MiSi
T)T.

We model the relationship through a flexible semi-parametric transformation model 

allowing for interactions among S, M and G:

H∗(T i) = − γTZi + ϵi
∗, ϵi

∗ ⊥ Zi (1)

where γ = (βG, βMG, βSG
T , βSMG

T , βX
T , βS

T, βM, βSM
T )T is the unknown regression parameters 

representing the effects of the covariates, genomic markers along with their interactions, 

ϵi
∗ has a specified parametric distribution, and H∗( ⋅ ) is an unspecified strictly increasing 

smooth transformation function. The advantage of our proposed model is that after 

transformation H∗( ⋅ ), of survival time T , the survival model is a linear model: the outcome 
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H∗(T ) relates to the predictor in a linear form. Under the model (1), the survival function 

given Z is

ST(t, Z) ≡ P(T ≥ t ∣ Z) = Sϵ(Λ(t)eγTz),

where Sϵ( ⋅ ) is a survival function of ϵ = eϵ∗
 and Λ( ⋅ ) = eH∗( ⋅ ). It follows that the 

cumulative hazard and hazard functions, respectively are Λ(T ∗ ∣ Z) = G{eγTZΛ(T ∗)} and 

dΛ(T ∗ ∣ Z) = G′{eγTZΛ(T ∗)}eγTZdΛ(T ∗) where G( ⋅ ) = − log Sϵ( ⋅ ). We denote dΛ(T i
∗) = Λi

′. 

A noteworthy feature of our proposal is that we start from a very general model that 

incorporates all possible interactions among genomic markers, but then accommodate other 

parsimonious models later to improve power of the proposed tests.

2.2 Testing procedure for an arbitrary subset of regression parameters

We develop a variance component score-based testing procedure for an arbitrary set of 

regression coefficients in model (1). We also provide mechanistic interpretation of various 

subsets of regression coefficients under the framework of causal mediation modeling in 

Section 3. For illustration, we focus on the testing of whether gene expression G is 

associated with survival given other markers. This corresponds to testing the hypothesis

H0 : β ≡ (βG, βMG, βSG
T , βSMG

T )T = 0, (2)

but note that testing for any arbitrary set of regression coefficients can be developed 

similarly. Since β corresponds to the effect of V = (G, MG, GST, MGST)T, containing all 

contributions from G, testing (2) can be used to assess the total effect of G on survival.

2.2.1 Derivation of the test statistic—To test for H0 in (2), we first rewrite the model 

(1) as

H∗(T i) = − (Xi
Tα + Vi

Tβ) + ϵi
∗, (3)

where Xi
T = (Xi

T, Si
T, Mi, MiSi

T) and αT = (βX
T , βS

T, βM, βSM
T ). Components of V may be highly 

correlated with each other due to correlation within S and among G, M and S. The 

conventional approach such as likelihood ratio test or Wald test may not work well due 

to the instability in fitting model (1) that has a large number, 4p + 3 + q, of potentially 

highly correlated predictors, especially when p is not small. Alternatively, one may employ 

a standard score test, which only requires fitting the null model. However, the type I error 

of the standard score test is not protected according to our stimulation studies in Section 4, 

probably due to the relatively large DF, 2p + 2.

To overcome the problem, we propose a score test for β by imposing a working assumption 

that the parameters {βSGj, j = 1, …, p} and {βSMGj, j = 1, …, p} are 2p independent zero-mean 

random variables with var(βSGj) = τSG and var(βSMGj) = τSMG. The hypothesis test for the null 
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(2) becomes jointly testing for the variance components (τSG and τSMG) [23] and two scalar 

regression coefficients (βG and βMG):

H0 : τSG = τSMG = βG = βMG = 0 . (4)

By assuming βSGj ∼ F(0, τSG) where F  is any arbitrary distribution, one can largely reduce the 

degree of freedom, i.e., H0 :βSG1 = … = βSGp = 0 vs. H0 : τSG = 0. The score vector for βSG, UβSG, 

is a p-variate normal asymptotically; and the standard score test based on UβSG is a p-DF 

test. The score test for τSG based on UτSG = ‖UβSG‖2, which follows a mixture of chi-square 

distribution under the null, has an effective DF typically much lower than p. In finite sample, 

the distribution of UτSG can be better approximated than that of UβSG. One can show that the 

scores for τSG, τSMG, βG and βMG are:

UτSG = UβSG
2 = n−1∑

i
κiGiSi

2, UτSMG = UβSMG
2 = n−1∑

i
κiMiGiSi

2,

UβG = n−1∑
i

κiGi, UβMG = n−1∑
i

κiMiGi,

where

κi = δi
G′′(eαTXiΛ(T i

∗))

G′(eαTXiΛ(T i
∗))

− G′(eαTXiΛ(T i
∗)) eαTXiΛ(T i

∗) + δi,

UβSG
2 = ∑j = 1

p UβSGj
2 , UβSGj = n−1∑i = 1

n κiGiSji, UβSMG
2 = ∑j = 1

p UβSMGj
2

UβSMGj = n−1∑i = 1
n κiMiGiSji. To combine informations from UτSG, UτSMG, UβG and UβMG, we 

propose a composite score statistic by taking a weighted sum of UτSG, UτSMG, UβG
2  and UβMG

2

Q = n(w1UβG
2 + w2UβMG

2 + w3UτSG + w4UτSMG) = n−1 ∕ 2∑
i

κiVwi
2, (5)

where Vwi
T = ( w1Gi, w2MiGi, w3GiSi

T, w4MiGiSi
T). Different weighting schemes for 

{w1, w2, w3, w4} can be implemented to reflect the prior knowledge regarding the relative 

contributions of various genomic effects. If no such knowledge is available, we propose 

to weight each term using the inverse of its standard deviation. The asymptotic variances 

for UτSG, UτSMG, UβG
2  and UβMG

2  can be estimated from a Monte-Carlo perturbation procedure 

described in Section 2.2.2. Equal weighting w1 = w2 = w3 = w4 is equivalent to testing 

H0 : τ = 0 where τ is a common variance of all elements in βT = (βG, βMG, βSG
T , βSMG

T ), which 

is still a valid test but may not be powerful in practice since the information from different 

genomic markers may not be comparable due to different scales.

To calculate Q, one needs to estimate α and Λ( ⋅ ) under H0 by fitting the null model:
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H∗(T i) = − Xi
Tα + ϵi

∗ . (6)

Estimating procedures to estimate α and Λ′ such as Expectation-Maximization (EM) 

algorithm to obtain the nonparametric maximum likelihood estimate (NPMLE) have 

been proposed [22]. However, a challenge remains in estimating α as its dimension is 

large (q + 1 + 2p). We use a ridge regression to stablize the estimation by introducing 

an L2 penalty on the coefficients corresponding to methylation related components. The 

penalized log-likelihood under the null model (6) is lp(ψ) = ln(ψ) − 1
2λβS

TβS − 1
2λβSM

T βSM

where ln(ψ) = ∑i = 1
n li(ψ), li is the unit log likelihood under the null model (6), λ is a 

tuning parameter and ψT = (αT, Λ′ T
). The estimation of ψ can be achieved by solving 

the estimating equation Uψ(ψ) − λI2ψ = 0 where Uψ
T(ψ) = (Uα

T, UΛ
T), Uα and UΛj are provided 

in Appendix, I2 is (q + 1 + 2p + m) × (q + 1 + 2p + m) block diagonal matrix with the top 

(q + 1 + 2p) × (q + 1 + 2p) block diagonal matrix being I(q + 1 + 2p) × (q + 1 + 2p) and the bottom m × m
block diagonal matrix being 0 with m being the number of events. For selection of the 

tuning parameter λ, we use generalized cross-validation (GCV) [24, 25] to estimate λ as the 

minimizer of the GCV function ln(ψ)
n{1 − n−1tr(H)}2 , where H = (∂Uψ

∂ψ + λI2)−1∂Uψ
∂β . λ is searched 

within a range of [0, n ∕ log(n)] to ensure λ = o( n), an assumption that we later use to 

derive the asymptotic distribution of Q, the estimate of Q. By plugging in the estimates of α
and Λ′, one can obtain Q = Q(ψ).

2.2.2 Distribution of Q(ψ)—Denote θT = (βT, ψT) and ψ0, β0( = 0) and θ0 to be true 

parameters under the null (4) for their counterparts ψ, β and θ. Q can be re-expressed as an 

L2 norm of the score for β:

Q = ‖n−1 ∕ 2Uβ(β0, ψ)‖2 .

Note that the weight w is involved in the test statistic. As expressed in Vwi, the weighting 

scheme can be conceived as a pre-determined variable standardization before fitting the 

model. We show in Appendix that

n−1 ∕ 2Uβ(β0, ψ) = n−1 ∕ 2AUζ(θ0) + op(1) ⋅ J . (7)

By continuous mapping theorem, asymptotic distribution of Q is a function of the estimating 

equation Uζ:

Q d ‖n−1 ∕ 2AUζ(θ0)‖2 . (8)

n−1 ∕ 2AUζ(θ0) can be approximated by a perturbation procedure [26, 27] using the estimating 

equation n−1 ∕ 2A∑i Uζi(ψ)Ni where N = (N1, …, Nn)T is a vector of n independent standard 
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normal random variables; A is the empirical version of A by plugging in ψ, the estimate 

under the null model (6) with L2 penalty; A = I2p + 2 × 2p + 2, ∂Uβ
∂ψ ψ∗ − ∂Uψ

∂ψ ψ∗ + λI2
−1

 with 

ψ∗ between ψ and ψ0; and ∂Uβ
∂ψ  ∂Uψ

∂ψ , Uζ = ∑i Uζi are provided in Appendix.

2.2.3 The omnibus test—While testing procedures derived under the three-way 

interaction model is robust to model misspecification, power may be compromised when 

the true underlying model does not involve certain interactions. Hence, it is desirable to 

develop a test that can accommodate different models to optimize statistical power. We 

propose an omnibus test that combines multiple p-values from testing under a range of 

models that incorporate different layers of interactions yet are all correct under the null. 

Specifically, we compute the minimum of these p-values from multiple models and compare 

the observed minimum p-value to its null distribution, approximated by a resampling 

perturbation procedure. The test statistic Q in (5) is derived under the outcome model 

(1), which assumes all possible two-way and three-way interactions. In this section, we 

denote the test statistic (5) as Q4. Suppose that the outcome Y  does not depend on the 

three-way interaction (βSMG = 0), or it does not depend on the three-way interaction, SNP-

by-methylation or the SNP-by-expression interaction βSMG = βSM = βSG = 0), or it depends 

only on the main effect of gene expression (βSMG = βSM = βSG = 0 and βMG = 0), then it is 

more powerful to test for H0 :βG = βMG = 0, βSG = βSMG = 0 using the test statistics Q3, Q2, 

and Q1, respectively, with corresponding Vwi
T = ( w1Gi, w2MiGi, w3GiSi

T), ( w1Gi, w2MiGi)
and ( w1Gi). Q1‐Q4 all provide valid tests under the null. Under those more parsimonious 

models, the test statistic Q4 loses power as it tests for unnecessary parameters. However, if 

the outcome model is truly determined by all two-way and three-way interactions as (1), 

Q1‐Q3 will lose power compared to Q4.

As shown in Section 2.2.2, the null distribution of Q can be estimated based on the 

empirical distribution of the perturbed statistics ‖n−1 ∕ 2A∑i Uζi(ψ)Ni‖2 conditional on 

the observed data. By generating independent N repeatedly, the perturbed realization 

of Q can be obtained, denoted by {Q(b), b = 1, …, B}, where B is the number of 

perturbations. The p-value can be approximated as the tail probability by comparing 

{Q(b)} with the observed Q. Hence one can calculate the p-values of the four candidate 

models by inputting Uθi with Vwi
T = ( w1Gi), ( w1Gi, w2MiGi), ( w1Gi, w2MiGi, w3GiSi

T)
and ( w1Gi, w2MiGi, w3GiSi

T, w4MiGiSi
T), respectively for Q1‐Q4, generating their perturbed 

realizations of the null counterpart for the candidate model k as {Qk
(b)}, and comparing them 

with corresponding observed values Qk (k = 1, …, 4). Note that for each perturbation b, the 

random normal perturbation variable N
(b)

 is the same across the four tests. Let P k = Sk(Qk)
be the p-value for the candidate model k, where Sk(q) = pr{Qk

(b) > g}. The null distribution 

of the minimum p-value, P min = minkP k can be approximated by the empirical distribution of 

P min
(b) = mink{Sk(Qk

(b))}, b = 1, …, B  given the observed data. The p-value of the omnibus test 

hence can be calculated by comparing P min with {P min
(b) }.
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3 Implication of testing a subset of coefficients

In this section, we provide mechanistic interpretation of our testing procedure. The effect on 

Y  contributed by G can be examined by testing all the parameters related to G, as null (2). 

Similarly, those contributed by S and M, respectively, can be evaluated by testing

H0 : βS = βSM = βSG = βSMG = 0
H0 : βM = βMG = 0, βSM = βSMG = 0 .

By testing different subsets of regression coefficients, we are able to examine the 

significance of various genomic effects on the survival outcome. The proposed integrative 

testing procedure helps identify useful biomarkers across multiple genomic data, which can 

also be potential therapeutic targets.

Furthermore, we can interpret the results under the framework of causal mediation 

modeling. In our data example, there are three path-specific effects (Figure 1): 1) the 

effect of DNA methylations on the outcome mediated through gene expression but not 

through microRNA, denoted by ΔS G Y; 2) the effect of methylations mediated through 

microRNA and possibly through gene expression, denoted by ΔS MY; and 3) the alternative 

effect of DNA methylations on the outcome, not through microRNA or mRNA gene 

expression, denoted by ΔS Y . With identifiability assumptions discussed in Supplementary 

Materials[28], it has been shown that under the structure that M is determined by S, G is 

determined by M, and G is also determined by S independent of M, ΔS G Y  corresponds to 

all regression coefficients for G: βG, βMG, βSG and βSMG; ΔS MY  corresponds to all regression 

coefficients for M and G: βM, βG, βMG, βSM, βSG and βSMG; ΔS Y  corresponds to all regression 

coefficients for S: βS, βSM, βSG and βSMG; the overall effect Δoverall corresponds to all regression 

coefficients: βS, βM, βG, βMG, βSM, βSG and βSMG[15]. With these results, the testing procedures 

in Section 2.2 can be used to examine path-specific effects and thus have mechanistic 

implication. For example, the test for H0 :βG = βMG = 0, βSG = βSMG = 0 is equivalent to that for 

H0 :ΔS G Y = 0; and the test statistic (5) assesses the effect of methylation S on the survival 

time T  mediated through gene expression G. More discussions on path-specific effects under 

mediation analyses can be found in Supplementary Materials.

4 Simulation

We have conducted extensive simulation studies to evaluate the performance of the proposed 

methods and compare with the conventional score test. We investigate p = 12 DNA 

methylation markers of GRB10, microRNA miR-633 and mRNA expression of GRB10 
in n = 271 simulated subjects. To mimic the motivating data example of the survival study 

for glioblastoma multiforme or GBM, we simulate the data focusing on GRB10 gene. 

We obtain 12 DNA methylation markers at GRB10 from 271 GBM patients of TCGA 

data and simulate microRNA miR-633 expression, mRNA gene expression of GRB10 and 

failure time based on the real methylation data. We assume cg25915982 at 50.85 Mb of 

chromosome 7 to be the causal methylation marker Scausal. MicroRNA miR-633 expression, 

mRNA expression of GRB10 and survival time are generated using the causal marker, but 

Huang et al. Page 8

Stat Med. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyses are based on all 12 methylation markers, assuming we do not know the causal 

marker. miR-633 expression value M is generated by a model: Mi = 5.75 + Scausal, i × δS + ϵM, i, 

where ϵM, i follows normal distribution with mean zero and standard deviation 0.05. mRNA 

expression of GRB10 G is generated by a model: Gi = − 10 + Scausal, i × αS + Mi × αM + ϵG ∣ M, i, 

where ϵG ∣ M, i follow standard normal distribution. Survival time T  is generated by a model: 

log T i = Scausal, iβS + MiβM + GiβG + MiScausal, iβSM + GiScausal, iβSG + MiGiβMG + MiGiScausal, iβSMG + ϵTi

where ϵTi follow standard normal. Censored time C is selected to control the censoring 

proportion at 70%. Observed follow up time T ∗ is the minimum of T  and C, and 

survival status is death if T ≤ C or censored if T > C. For G( ⋅ ) transformation in analyses, 

we consider Box-Cox transformation G(x) = (1 + x)ρ − 1
ρ  with ρ = 1.2. We also conduct 

simulation studies where data are generated with Box-Cox transformation with ρ = 1.2 or 

1.0 and analyses is performed with correctly specified model (see Supplementary Materials, 

Tables S2-S7).

By setting different configurations of δ’s and α’s, we are able to generate data according to 

different DNA methylation-microRNA-mRNA expression relationships illustrated in Table 

S1. But here we will focus on the first condition in Table S1: δS = 0.04, αS = 2.5 and αM = 2.0
since the testing procedures under other conditions are the same or just special cases. We 

study the performance of tests under various configurations of β’s. Empirical size and power 

are estimated as percentage of p-value < 0.05 in 2000 simulations.

4.1 Size and power of ΔS Y , ΔS G Y  and ΔS MY

Empirical size and power of testing H0 :ΔS Y = 0 are presented in Table 1. Empirical 

sizes are correct under different null models: all β’s are zero, all β’s are zero except 

βM ( = 0.3), all β’s except βG ( = 0.3) are zero. For settings under the alternatives, the test 

with correct model specification has optimal power, and the omnibus test can almost 

reach the optimal power across different settings. For example, under the setting with only 

main effects (βS = 0.4, βM = βG = 0.3), the proposed test focusing on main effects has the 

optimal power 86.5%; under the setting with main effects and two-way interactions (βS = 0.1, 

βM = βG = βMG = βSM = βSG = 0.3, βSMG = 0), the test under the correct model have the optimal 

power 67.2%; and omnibus tests are very close to the two optimal tests with power 80.4% 

and 55.1%, respectively (Table 1). Type I error of standard score test with 4p = 48 DF is 

largely inflated probably due to the DF and the high correlation among the markers.

Empirical size and power of testing H0 :ΔS G Y = 0 are presented in Table 2. Empirical sizes 

are correct under different null: all β’s are zero, all β’s except βS ( = 0.2) are zero, all β’s
except βM ( = 0.2) are zero. Under the alternatives, tests assuming the correct models perform 

the best and the omnibus test can almost reach the optimal power with limited power loss, 

similar to the results for ΔS Y . For instance, under the setting with βS = 0.2, βM = 0.2, βG = 0.3
and all other β’s to be zero, the test for main effects performs optimally with power 86.9%, 

and the omnibus test has power 80.7%. Type I error of the conventional score test with 

2p + 1 ( = 25) DF is again largely inflated.

Huang et al. Page 9

Stat Med. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similarly, type I error of our proposed methods for H0 :ΔS MY = 0 is protected under the 

null (Table 3). In contrast, type I error of the conventional score test with 3p + 3 DF is 

inflated. Under the alternatives, tests assuming the correct models perform optimally, and the 

omnibus test approaches the optimal power across a wide range of settings.

The test size is also protected at type I error rate of 0.005 and 0.0005 (Table S8). Additional 

simulation studies with multiple causal methylation loci (Tables S9-S14) and different 

combinations of sample size, the number of methylation markers and censoring proportion 

(Tables S15-17) are presented and discussed in Supplementary Materials (Section 2).

5 Data Applications

We present two data application examples, both assessing the genomic contribution to 

overall survival of GBM. GBM is the most common malignant brain tumor that is rapidly 

fatal with median survival time of 15 months [29]. Due to its poor prognosis and lack 

of well-established environmental risk factors, it is important to identify genomic markers 

for outcome prognostication, which also help understand the progression mechanism of 

this fatal disease. Multiple sets of genomic data as well as survival information have been 

archived on TCGA. Here we exploit the multi-platform genomic data to investigate the 

mechanism of epigenetic effect on GBM mortality.

5.1 GRB10 gene and GBM survival

We integrate epigenetic DNA methylation of GRB10, expression of microRNA miR-633 

and gene expression of GRB10 to jointly model overall survival of GBM. There are 271 

patients with complete level 3 data on methylation, microRNA and gene expression arrays. 

We combine 12 methylation loci at GRB10 from Illumina 27K array and its expression value 

on Agilent G4502A expression array as well as the expression of microRNA, miR-633, to 

perform a gene-based integrated analysis. We have shown that DNA methylation of GRB10 
gene is significantly associated with overall survival of GBM, and that GRB10 expression 

is regulated by its methylation [3], which is also supported by the existing literature [5]. 

We have found that two methylation sites of GRB10 are associated with the expression of 

miR-633 with p-value = 0.017 and 0.012, and the expression of miR-633 is also highly 

associated with expression of GRB10 with p-value = 0.0031 from Wald-type univariate 

hypothesis tests for least square estimators. Furthermore, literature has shown that GRB10 
gene is the target of miR-633 [4] and microRNA expression can be regulated by methylation 

[30]. Therefore, based on the evidence from literature and statistical analyses, we set up a 

model as Figure 1, with S, M and G being 12 DNA methylation loci of GRB10, miR-633 

and GRB10 expressions, respectively.

The results of the proposed integrated analyses for GRB10 are provided in Table 4. The 

effects of DNA methylation of GRB10 mediated through GRB10 expression (ΔS G Y: 

omnibus p-value=0.0045) or miR-633 (ΔS MY: omnibus p-value=0.0081) expression are 

prominent, compared to the effect independent of the two expression values (ΔS Y: omnibus 

p-value=0.14). The overall effect of methylation on survival is also significant (omnibus 

p-value=0.012). In contrast, likelihood ratio test (LRT) can not be performed due to failure 
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in convergence when fitting model (1), and score test does not protect the type I error, as 

shown in simulation studies. We conclude that GRB10 methylation has a significant effect 

on overall survival of GBM, which is mostly mediated by miR-633 expression or GRB10 
expression.

5.2 miR-223 and GBM survival

In the second example, we apply our proposed procedures to examine the effect between 

miR-223 and GBM survival, accounting for expression values of 16 mediation genes. Our 

previous work suggests that the prognostic effect of miR-223 expression is mediated by 

expression levels of the 16 genes [31]. We set up a integrated analysis illustrated in Figure 2. 

It can be viewed as a simplified case of Figure 1, with S being the scalar expression value of 

miR-223, M = G being the expression values of the 16 mediation genes. It follows that there 

are only two path-specific effects: ΔS G Y , the effect of miR-223 expression on the GBM 

survival, mediated through expressions of the 16 mediation genes, and ΔS Y , the effect of 

miR-223 expression independent of the 16 mediation genes.

There are 504 GBM patients with complete level 3 data on microRNA and gene expression 

arrays. Both path-specific effects of miR-223 are highly significant, as shown in Table 5. 

The omnibus p-value for the effect of miR-223 mediated through the 16 genes is < 10−6, and 

the p-value for the effect of miR-223 independent of the 16 genes is 0.0009. The p-value 

of the overall effect is 0.0008. We conclude that miR-223 may be a promising prognostic 

marker for GBM patients, and the mechanisms mediated through gene expression or other 

pathways are both highly significant and deserve further research.

6 Discussion

In this paper, we propose a testing procedure for path-specific effects of genomic markers 

on survival outcome through a semiparametric linear transformation modeling framework. 

We are able to decompose the genomic effect into molecule-specific components using 

the path-specific effect approach. In addition to shedding light on the mechanism of 

disease etiology, the path-specific effect may have translational utility. Epigenetic alterations 

such as microRNA expression and DNA methylation are potentially reversible [32, 33, 

34], and microRNA regulation has specificity in target genes. The findings from our path-

specific effect analyses provide more specific hypotheses and mechanisms for biologists 

to validate, compared to conventional epigenome-wide association studies. Furthermore, 

the path-specific effect can also highlight biomarkers where therapeutic devices may be 

developed. For example, we observe a significant effect of DNA methylation of GRB10 
mediated through miR-633 ΔS MY  and its mRNA expression ΔS G Y  (Table 4); one may 

thus design a gene-specific intervention on mRNA expression of GRB10 through miR-633 

or other small RNA to improve GBM survival even though there is little gene- or loci-

specific intervention is available on DNA methylation.

We note that carrying out the NPMLE and the resampling perturbation procedures is 

computationally intensive but not prohibitive. For the analyses of GBM survival data in 

Section 5.1 performed on a laptop with Intel i5-3380M 2.90 GHz CPU and 8.00 RAM, 
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the proposed testing procedure with 1000 resampling perturbation takes 3.95 seconds if 

the tuning parameter λ is pre-specified and 30.30 seconds if λ is selected via GCV. All 

simulation studies (n=271 and p=12; 1000 resampling perturbation and 2000 replicated) are 

performed using a computer cluster with 2 - 8core Intel Xeon CPUs running at 2.53 GHz, 

24.00 RAM and a Linux environment. The total time for completing each simulation is 2.58 

hours with pre-specified λ and 15.50 hours with GCV selected λ. The Matlab codes are 

available in Supplementary Materials.

The proposed test is a score test for the variance component of the parameters of interest. 

Instead of fitting a large model as shown in (1), one only needs to fit a model under the 

null, which makes the method numerically stable. The non-parametric maximum likelihood 

estimator, proposed by Zeng and Lin [22] for the null model using Newton-Raphson or EM 

algorithm requires iteration where we use α = 0 and Λ′ being the inverse of the number 

of events as initial values. In our simulation studies, the convergence rates are extremely 

high with 99.8% for ΔS G Y  and 100% for ΔS Y  and ΔS MY . One alternative would be to 

obtain initial parameters from a consistent estimator [20] to assure a better convergence and 

to stablize the estimating procedure. On the other hand, as the proposed method relies on 

a resampling-based perturbation procedure to approximate the tail probability, it remains 

difficult to precisely approximate a very small p-value in practice.

Our approach extends the previous work for genetic analyses [7, 8] to facilitate integrated 

genomic analyses, and the proposed omnibus test synthesizes information from various 

candidate models to boost statistical power as well as to preserve the robustness to model 

misspecification. The linear transformation model has also been extended to incorporate 

dependent failure time, repeated measurement as well as time-varying covariates [22]. Based 

on our current work, its flexibility may facilitate future directions for big data sciences. For 

instance, the model (1) can be easily extended to incorporate time-varying genomic markers. 

As the genomic profile is dynamic during cancer development, ‘time-varying integrative 

genomics’ may better reveal the biological mechanisms behind this fatal disease.

The estimate of α in (6) is biased using an L2 ridge regression. The bias is a function 

of the tuning parameter λ. We address this in our theoretical development as well as in 

numerical studies. It should be noted that here we focus on hypothesis testing rather than 

estimation, and our testing procedure is developed under the null. To ensure its validity, one 

has to derive the distribution of test statistic Q(ψ) that incorporates λ under the null. We 

show in Appendix 7.2 and Section 2.2.2 that with a bounded tuning parameter λ = o( n), 
the asymptotic distribution of ψ is a function of score Uζ and λ in (8). In real application, 

one still has to approximate A(ψ) and Uζ(ψ) in (8) by plugging in ψ = (αT, Λ′T)T. Therefore, 

we also evaluate the validity of our testing procedure in simulation studies with empirical 

estimates under finite sample. As shown in the first three columns of Table 2 (Null), our 

proposed testing procedures Q1‐Q4 and the omnibus test protect Type I Error at 5%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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7: Appendix

7.1 Estimating equation of model (1)

The log-likelihood can be written as ln = − ∑i {δi log dΛ(T i
∗ ∣ Zi) − Λ(T i

∗ ∣ Zi)}, where δi = 1 if 

subject i is death and 0 otherwise and Λ(T i
∗) = ∑j I(T j

∗ ≤ T i
∗)Λj

′. It follows that the score for γ
and Λj

′ are:

Uγ = ∑
i

δi
G′′(eγTZiΛ(T i

∗))

G′(eγTZiΛ(T i
∗))

− G′(eγTZiΛ(T i
∗)) eγTZiΛ(T i

∗)Zi + δiZi

UΛj′ = 1
Λj

′ + ∑
i

δi
G′′(eγTZiΛ(T i

∗))

G′(eγTZiΛ(T i
∗))

− G′(eγTZiΛ(T i
∗)) eγTZiI(T j

∗ ≤ T i
∗) .

The scores for γ and Λj
′ can be re-expressed as a set of estimating equations:

Uγ = ∑
i

Uγi, UΛj = ∑
i

UΛji, j = 1, …, m,

and

Uγi =
Uβi

Uαi
= δi

G′′(eγTZiΛ(T i
∗))

G′(eγTZiΛ(T i
∗))

− G′(eγTZiΛ(T i
∗)) eγTZiΛ(T i

∗) + δi Zi

UΛji = δi
G′′(eγTZiΛ(T i

∗))

G′(eγTZiΛ(T i
∗))

− G′(eγTZiΛ(T i
∗)) eγTZiΛ ∗ (j)(T i

∗) + δiI(T j
∗ ≤ T i

∗) .

where Λ ∗ (j)(T i
∗) = Λ(T i

∗)I(T i
∗ ≤ T j

∗) + Λ(T j
∗)I(T i

∗ > T j
∗). We can denote Uζ

T = (Uγ
T, UΛ

T) = (Uβ
T, Uψ

T)
and UΛ

T = (UΛ1, …, UΛm).

And the derivatives of the estimating equations are:

∂Uζ
∂θ =

∂Uγ
∂γ

∂Uγ
∂Λ′

∂UΛ
∂γ

∂UΛ
∂Λ′

=

∂Uβ
∂β

∂Uβ
∂ψ

∂Uψ
∂β

∂Uψ
∂ψ

.

The element of ∂Uζ
∂θ  can be expressed as follows:
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∂Uγ
∂γ = ∑

i
(d1iΛ2(T i

∗) + d0iΛ(T i
∗)) ZiZi

T,
∂UΛj

∂Λk
′ = ∑

i
(d1iΛ ∗ (j)(T i

∗) + d0iI(Tk
∗ ≤ T j

∗)) I(Tk
∗ ≤ T i

∗)

∂Uγ

∂Λj
′ = ∑

i
(d1iΛ(T i

∗) + d0i) ZiI(T j
∗ ≤ T i

∗), ∂UΛj
∂γ = ∑

i
(d1iΛ(T i

∗) + d0i) Λ ∗ (j)(T i
∗)Zi

T,

where d1i = G″′(eγTZiΛ(T i
∗))

G′(eγTZiΛ(T i
∗)

− G″(eγTZiΛ(T i
∗)

G′(eγTZiΛ(T i
∗)

2
δi − G″(eγTZiΛ(T i

∗)) e2γTZi and 

d0i = δi
G″(eγTZiΛ(T i

∗))

G′(eγTZiΛ(T i
∗))

− G′(eγTZiΛ(T i
∗)) eγTZi, and the (j, k)-th element of ∂UΛ

∂Λ′  is 
∂UΛj

∂Λk
′ .

7.2 Distribution of Q(ψ)
Denote α0, Λ0

′ , ψ0, β0( = 0) and θ0 are the true parameters under the null (4) for their 

counterparts α, Λ′ , ψ β and θ. A simple Taylor series expansion shows

n−1 ∕ 2Uβ(β0) = n−1 ∕ 2Uβ(β0, ψ) = n−1 ∕ 2Uβ(β0, ψ0) + n−1 ∕ 2 ∂Uβ

∂ψ ψ∗
(ψ − ψ0

),
(A. 1)

where ψ∗ is between ψ and ψ0. Another Taylor expansion can show that

0 = n−1 ∕ 2Uψ
λ (β0, ψ) = n−1 ∕ 2Uψ(β0, ψ) − n−1 ∕ 2λI2ψ

= (n−1 ∕ 2Uψ(β0, ψ0) + n−1 ∕ 2 ∂Uψ
∂ψ ψ∗ (ψ − ψ0) − n−1 ∕ 2λI2ψ

= n−1 ∕ 2Uψ(β0, ψ0) + n−1 ∕ 2(∂Uψ
∂ψ ψ∗ − λI2)(ψ − ψ0) − n−1 ∕ 2λI2ψ0,

where I2 is (q + m) × (q + m) block diagonal matrix with the top q × q block diagonal matrix 

being Iq × q and the bottom m × m block diagonal matrix being 0. Since λ = o( n), it follows 

that n(ψ − ψ0) = n−1 − ∂Uψ
∂ψ ψ∗ + λI2

−1
n−1 ∕ 2Uψ(β0, ψ0) + op(1) ⋅ J, where J is a vector of 

1’s with length the same as β. By plugging it in (A. 1), one can obtain

n−1 ∕ 2Uβ(β0, ψ) = n−1 ∕ 2Uβ(β0, ψ0) + n−1 ∕ 2 ∂Uβ
∂ψ ψ∗ − ∂Uψ

∂ψ ψ∗ + λI2
−1

Uψ(β0, ψ0) + op(1) ⋅ J

= n−1 ∕ 2 Uβ(β0, ψ0) + ∂Uβ
∂ψ ψ∗ − ∂Uψ

∂ψ ψ∗ + λI2
−1

Uψ(β0, ψ0) + op(1) ⋅ J,

Thus (A. 1) becomes

n−1 ∕ 2Uβ(β0, ψ) = n−1 ∕ 2AUζ(θ0) + op(1) ⋅ J . (A. 2)

Recall A = I2p + 2 × 2p + 2, ∂Uβ
∂ψ ψ∗ − ∂Uψ

∂ψ ψ∗ + λI2
−1

, and ∂Uβ
∂ψ , ∂Uψ

∂ψ , Uζ are provided in the 

above section
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Figure 1: 
Causal diagram of a set of DNA methylations (S), microRNA expression (M), gene 

expression (G) and outcome of interest (Y = H∗(T )). Three path-specific effects are in 

different line styles: ΔS Y , effect of methylation on outcome independent of microRNA and 

mRNA gene expression is in dotted line; ΔS G Y , effect of methylation mediated through 

gene expression but not through microRNA is in dashed lines; ΔS MY , effect mediated 

through microRNA is in solid lines.
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Figure 2: 
Causal diagram of microRNA miR-223 expression (S), 16 gene expression values (G) and 

outcome of interest (Y = H∗(T )). Two path-specific effects are in different line styles: ΔS Y , 

effect of miR-223 on outcome independent of 16 mRNA gene expression is in dotted line; 

ΔS G Y , effect of miR-223 expression mediated through mRNA expression of the p ( = 16)
genes is in solid lines.
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Table 1:

Empirical size and power (%) of testing ΔS Y . Q1: model with only main effects; Q2: model with main effects 

and microRNA-by-expression interaction; Q3: model with main effects and two-way interactions; Q4: model 

with main effects, two-way and three-way interactions; Omnibus: the omnibus test for Q1‐Q4; Score test: the 

classic score test for β’s.

Null Alternative

βS 0 0 0 0.4 0.2 0.4 0.6 0.1 0.1 0 0

βM 0 0.3 0 0 0.3 0.3 0.3 0.3 0.3 0 0

βG 0 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0 0

βMG 0 0 0 0 0 0 0 0.3 0.3 0 0

βSM 0 0 0 0 0 0 0 0.2 0.3 0 0

βSG 0 0 0 0 0 0 0 0.2 0.3 0 0

βSMG 0 0 0 0 0 0 0 0 0 0.5 1.0

Q1 4.10 3.90 3.85 89.3 25.8 85.0 99.9 4.25 3.85 5.90 7.00

Q2 4.10 4.20 3.85 89.3 26.5 84.9 99.9 4.20 4.10 6.25 8.50

Q3 3.65 3.95 4.35 70.5 14.3 59.6 95.8 19.7 55.8 7.10 19.8

Q4 2.95 3.30 3.25 62.1 11.0 49.4 91.9 16.1 46.5 61.9 95.6

Omnibus 3.90 4.10 3.75 83.4 21.3 78.0 99.6 13.2 43.4 45.7 90.0

Score test 48.3 49.9 51.9
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Table 2:

Empirical size and power (%) of testing ΔS G Y . Q1: model with only main effects; Q2: model with main 

effects and microRNA-by-expression interaction; Q3: model with main effects and two-way interactions; Q4: 

model with main effects, two-way and three-way interactions; Omnibus: the omnibus test for Q1‐Q4; Score test: 

the classic score test for β’s. The tuning parameter λ was chosen using GCV.

Null Alternative

βS 0 0.2 0 0 0.2 0.2 0.2 0.1 0.1 0 0

βM 0 0 0.2 0 0.2 0.2 0.2 0.1 0.1 0 0

βG 0 0 0 0.3 0.2 0.3 0.4 0.1 0.1 0 0

βMG 0 0 0 0 0 0 0 0.3 0.5 0 0

βSM 0 0 0 0 0 0 0 0.3 0.5 0 0

βSG 0 0 0 0 0 0 0 0.3 0.5 0 0

βSMG 0 0 0 0 0 0 0 0 0 0.5 0.8

Q1 4.70 4.40 4.65 90.2 56.2 88.5 98.8 6.30 3.35 7.55 11.3

Q2 5.85 4.95 4.90 82.5 44.3 81.1 97.0 9.60 8.45 9.60 13.4

Q3 5.00 5.20 5.00 73.5 36.8 72.8 94.1 60.5 93.5 10.9 20.7

Q4 5.10 4.90 4.60 66.9 31.6 66.7 91.5 53.3 88.7 63.8 88.7

Omnibus 5.35 4.70 4.80 84.1 47.2 82.8 97.6 45.8 85.1 45.2 78.5

Score test 45.3 45.0 48.3
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Table 3:

Empirical size and power (%) of testing ΔS MY . Q1: model with only main effects; Q2: model with main 

effects and microRNA-by-expression interaction; Q3: model with main effects and two-way interactions; Q4: 

model with main effects, two-way and three-way interactions; Omnibus: the omnibus test for Q1‐Q4; Score test: 

the classic score test for β’s. The tuning parameter λ was chosen using GCV.

Null Alternative

βS 0 0.4 0 0 0.3 0.3 0.3 0.1 0.1 0 0

βM 0 0 0.3 0 0.1 0.2 0.3 0 0 0 0

βG 0 0 0 0.3 0.2 0.2 0.2 0 0 0 0

βMG 0 0 0 0 0 0 0 0.3 0.5 0 0

βSM 0 0 0 0 0 0 0 0.3 0.5 0 0

βSG 0 0 0 0 0 0 0 0.3 0.5 0 0

βSMG 0 0 0 0 0 0 0 0 0 0.5 1.0

Q1 4.65 5.00 89.8 83.0 62.9 87.8 98.2 4.90 5.15 47.2 78.3

Q2 5.25 5.35 86.0 75.8 57.0 83.5 96.6 7.45 9.65 43.4 73.6

Q3 5.55 4.80 76.9 65.4 44.9 72.8 92.9 49.1 93.3 36.3 67.3

Q4 4.30 4.60 73.9 59.0 41.7 69.6 91.3 41.0 87.3 80.6 99.0

Omnibus 5.30 4.65 86.4 76.6 55.9 83.2 96.6 33.9 85.5 69.6 97.4

Score test 51.0 49.0
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Table 4:

p-values for three path-specific effects of GRB10 gene and miR-633 on GBM survival. Q1‐Q4 correspond to the 

models mentioned in Section 2.2.3.

ΔS Y ΔS G Y ΔS MY Δoverall

Q1 0.10 0.0047 0.0047 0.0142

Q2 0.09 0.0047 0.0052 0.0086

Q3 0.14 0.0035 0.0150 0.0163

Q4 0.21 0.0045 0.0170 0.0159

Omnibus 0.14 0.0045 0.0081 0.0119
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Table 5:

p-values for two path-specific effects of miR-223 (S) and 16 mediation genes (G) on GBM survival. Q1

corresponds to the main-effect model, and Q2 corresponds to the model with both main and interactive effects.

ΔS Y ΔS G Y Δoverall

Q1 0.0007 < 10−6 0.0045

Q2 0.0052 < 10−6 0.0009

Omnibus 0.0009 < 10−6 0.0008
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