Skip to main content
. 2023 Jul 31;55:56. doi: 10.1186/s12711-023-00825-y

Table 4.

Performance comparison of deepGBLUP with the other genomic prediction methods on the Korean native cattle dataset across different traits and training sizes

Train size Method CWT BF EMA MS
9000 GBLUP 0.729 ± 0.015 0.647 ± 0.009 0.726 ± 0.017 0.670 ± 0.014
DGBLUP 0.731 ± 0.016 0.639 ± 0.01 0.729 ± 0.017 0.668 ± 0.013
EGBLUP 0.724 ± 0.016 0.641 ± 0.01 0.721 ± 0.019 0.664 ± 0.014
BayesA 0.730 ± 0.015 0.658 ± 0.009 0.720 ± 0.016 0.667 ± 0.014
BayesB 0.746 ± 0.015 0.667 ± 0.009 0.723 ± 0.019 0.670 ± 0.013
BayesC 0.737 ± 0.015 0.662 ± 0.01 0.726 ± 0.018 0.668 ± 0.014
deepGBLUP 0.752 ± 0.016 0.673 ± 0.009 0.746 ± 0.017 0.672 ± 0.012
5000 GBLUP 0.682 ± 0.018 0.581 ± 0.009 0.679 ± 0.018 0.609 ± 0.012
DGBLUP 0.684 ± 0.018 0.576 ± 0.009 0.683 ± 0.019 0.610 ± 0.012
EGBLUP 0.678 ± 0.017 0.578 ± 0.01 0.676 ± 0.019 0.606 ± 0.013
BayesA 0.678 ± 0.018 0.581 ± 0.008 0.664 ± 0.017 0.602 ± 0.012
BayesB 0.697 ± 0.017 0.593 ± 0.009 0.677 ± 0.019 0.606 ± 0.012
BayesC 0.684 ± 0.018 0.586 ± 0.009 0.673 ± 0.019 0.607 ± 0.012
deepGBLUP 0.712 ± 0.018 0.607 ± 0.009 0.702 ± 0.018 0.619 ± 0.011
2500 GBLUP 0.631 ± 0.016 0.515 ± 0.011 0.627 ± 0.025 0.539 ± 0.01
DGBLUP 0.634 ± 0.016 0.514 ± 0.012 0.628 ± 0.024 0.539 ± 0.01
EGBLUP 0.629 ± 0.016 0.514 ± 0.012 0.625 ± 0.025 0.538 ± 0.01
BayesA 0.612 ± 0.016 0.500 ± 0.012 0.600 ± 0.022 0.525 ± 0.01
BayesB 0.635 ± 0.015 0.515 ± 0.012 0.615 ± 0.025 0.531 ± 0.009
BayesC 0.622 ± 0.016 0.508 ± 0.011 0.615 ± 0.025 0.534 ± 0.009
deepGBLUP 0.660 ± 0.016 0.544 ± 0.013 0.650 ± 0.023 0.552 ± 0.01
1000 GBLUP 0.532 ± 0.017 0.384 ± 0.02 0.528 ± 0.018 0.424 ± 0.014
DGBLUP 0.532 ± 0.017 0.381 ± 0.021 0.527 ± 0.018 0.424 ± 0.014
EGBLUP 0.532 ± 0.017 0.384 ± 0.02 0.527 ± 0.018 0.423 ± 0.014
BayesA 0.487 ± 0.018 0.361 ± 0.022 0.479 ± 0.018 0.404 ± 0.016
BayesB 0.502 ± 0.015 0.365 ± 0.019 0.496 ± 0.019 0.405 ± 0.014
BayesC 0.505 ± 0.015 0.365 ± 0.02 0.510 ± 0.018 0.402 ± 0.016
deepGBLUP 0.557 ± 0.018 0.432 ± 0.018 0.564 ± 0.019 0.438 ± 0.013

Each value in the cells are means and standard errors of the predictive abilities for 10-fold tests. We highlight the best results in italic