Skip to main content
. 2023 Jul 31;55:56. doi: 10.1186/s12711-023-00825-y

Table 5.

Results on the Korean native cattle data with different combinations of deepGBLUP components: (1) Deep learning networks b^deep, (2) additive GBLUP b^a, (3) dominance GBLUP b^d, (4) epistasis GBLUP b^e

Component CWT BF EMA MS
b^deep b^a b^d b^e
0.746 ± 0.017 0.661 ± 0.009 0.722 ± 0.014 0.622 ± 0.011
0.753 ± 0.015 0.673 ± 0.009 0.744 ± 0.016 0.666 ± 0.012
0.748 ± 0.017 0.659 ± 0.01 0.725 ± 0.014 0.623 ± 0.011
0.747 ± 0.016 0.671 ± 0.009 0.734 ± 0.016 0.646 ± 0.012
0.755 ± 0.016 0.672 ± 0.009 0.746 ± 0.016 0.666 ± 0.012
0.751 ± 0.015 0.673 ± 0.009 0.744 ± 0.017 0.672 ± 0.012
0.748 ± 0.016 0.669 ± 0.009 0.736 ± 0.016 0.647±0.011_
0.725±0.016_ 0.639±0.01_ 0.722±0.019_ 0.665 ± 0.014
0.752 ± 0.016 0.673 ± 0.009 0.746 ± 0.017 0.672 ± 0.012

The absence of a checkmark indicates that the corresponding component is excluded from the phenotype prediction. We highlight the best results in italic and the worst results in underline