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Introduction
Disease diagnosis and health care services have long been of 
high demands and faced significant challenges. Cost, time, and 
location barriers limit the quality of service, and patients can-
not receive the services they acquire. Skin diseases affect 
approximately 1.9 billion people.1 These kinds of diseases need 
follow-up with dermatologists, and most last for a long time, 
which makes the aforementioned barriers more challenging. 
Technology plays a crucial role in providing smarter and pow-
erful solutions and can overcome the barriers. Artificial intel-
ligence (AI), machine learning (ML), and deep learning (DL) 
offer a wide range of robust solutions.2-4 Specifically, dermatol-
ogy conditions rely on morphological features and can be diag-
nosed throughout the patient’s images. This automated 
diagnosis is mainly based on recognizing visual patterns. Skin 
imaging tools and technology provide a variety of styles and 
designs that have become crucial for the clinical diagnosis of 
skin diseases.

AI has been developed in the last few decades for many dif-
ferent applications in medical science. It was developed as a 
rule-based induction for defined rules that are extracted from a 
set of observations and represent local patterns in the data. 
Medical image analysis is a crucial step in diagnosis. ML as a 
branch of AI has been utilized for the purposes of classification, 
object detection, segmentation, and image generation. Various 
methods and algorithms have been applied to medical image 
analysis, such as support vector machines (SVMs), decision 
trees, regression, and many other methods.5 Moreover, artificial 

neural networks (ANNs), as AI domains, have been utilized in 
the last few decades for various areas of medical science.4,6 
Although their use in the field of dermatology remains rela-
tively limited, ANNs and other ML models were mainstream 
for quite a long time until the emergence of DL.7-13

Deep learning is a subset of machine learning methods that 
consists of multiple layers to extract higher-level features from 
the raw input data. It is based on networks that are capable of 
learning unsupervised data that are unstructured or unlabeled. 
Therefore, it is called deep neural learning or deep neural net-
work.14 It has been used for a variety of domains, including 
medicine. Litjens et  al.15 discussed DL methods for medical 
image analysis and covered its concepts, techniques, and archi-
tectures. Tian and Fu16 reviewed 77 articles focused on DL in 
medical image classification, detection, segmentation, and gen-
eration. They divided it into supervised learning, weakly super-
vised learning, and unsupervised learning. They stated that the 
main difference between these 3 learning schemes is the pro-
portion and granularity discrepancy of the annotated labels 
that drive the models. Common deep neural networks are 
mainly represented by convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and generative adversarial 
networks (GANs).

According to most of the literature on this subject, there are 
several challenges and limitations in current DL models 
applied to dermatology. Cullell-Dalmau et al.17 mentioned the 
misclassification of images under process. A situation may 
occur if the image under process does not belong to any of the 
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training classes; then, the model will classify the image into one 
of the other categories. They also discussed the importance of 
considering detailed metadata of images, which adds more 
challenges if a large number of images are used for training. As 
they stated, this further imposes the development of a quality 
test to automatically assess whether an image respects such 
quality standards; this is also supported by Haenssle et  al.18 
Moreover, the quality of images and standardization of derma-
tological images affect the DL model performance since most 
dermatological diseases show common features that affect the 
quality of classification.

The rest of this paper is structured as follows. In Section 2, 
we present the DL techniques that have been used for skin 
cancer and some limited research on dermatological disorders. 
Section 3 describes the contributions of this work as we discuss 
the 6 main CNN architectures included in this analysis. 
Additionally, we describe our data used with the 6 CNN archi-
tectures. The method used for image enhancement and filter-
ing is also discussed in this section. Section 4 discusses the 
results obtained. Section 5 discusses the limitations and chal-
lenges and analyzes the results. Finally, Section 6 concludes the 
paper and presents an outlook for future research.

Related Works
Recently, deep learning has made considerable progress in skin 
tumor and skin cancer detection and classification.19,20 Brinker 
et al.21 reviewed CNNs that classify images of skin cancer and 
showed that the most common approach is to use a CNN pre-
trained by means of another large dataset and then optimize its 
parameters to the classification of skin cancers, which usually 
achieves the best performance with the currently available lim-
ited datasets. A significantly high proportion of studies in the 
field are concerned with skin cancer.14,22-24 Esteva et al.19 first 
called attention to DCNN and proved that it could be signifi-
cant in classifying skin disease, especially Keratinocyte carci-
noma and melanoma with a level of competence comparable 
with that of board-certified dermatologists. This extensive 
interest is due to the availability of large datasets of skin cancer 
that are available publicly. Additionally, superior performance 
is achieved in the detection of skin cancer because the lesion 
area can easily be detected in images.

However, there is limited interest in dermatological dis-
eases such as psoriasis, eczema, alopecia, and vitiligo. Most 
automated classification methods developed for dermatologi-
cal diseases are based on supervised techniques. These meth-
ods are well known for ground-truth data and difficult to 
generalize since skin images vary based on skin tone, type, 
color, image lighting, and image contouring.5 These difficul-
ties increase the limitations of adopting it for dermatological 
imaging diseases. Moreover, the image features vary in this 
type of image, and the existing methods and techniques 
require different levels of engineering and filtering to reach a 

well-fit model.25 However, convolutional deep learning meth-
ods have outperformed classical machine learning techniques 
for dermatological image classification. Yasir et al.26 proposed 
a method based on computer vision techniques and image 
processing algorithms for feature extraction. They used an 
ANN to identify the diseases after training and testing. This 
method detected 9 different types of skin diseases with an 
accuracy rate of 90%. Kumar Patnaik et  al.27 examined the 
effect of InceptionV3, Inception-ResNet-v2 and MobileNet 
on colored skin images, and the architectures successfully pre-
dicted skin disease based on maximum voting from the 3 net-
works. Sae-Lim et  al.28 used MobileNet for skin lesion 
classification and compared it with the proposed modified 
MobileNet. DenseNet and ResNet architectures have also 
been examined with images collected using mobile phone 
cameras, and the accuracy with the models reached 80%. Facial 
disorder detection has been examined by Goceri.25 
Dermatological disease classification problems using CNNs 
have been discussed recently in Liu et al.1 and Göçeri.8

Material and Method
Dataset

The dataset was collected from different sources. The first 
source is Dermnet, which was founded by Thomas Habif, MD, 
in 1998 in Portsmouth, NH. It is one of the largest independ-
ent photodermatology sources for the purpose of medical edu-
cation. It also provides descriptions of a wide range of skin 
conditions through innovative media. The second source is 
offered by the Department of Dermatology at the University of 
Iowa. They offer a repository of several disorders, such as cos-
metic dermatology, skin remedies, and both photo and retinoid 
therapies. Images with the following diagnosis were included 
in this study: eczema, atopic, and psoriasis. We focus on these 
diagnoses since they are most common in the Middle East and 
Saudi Arabia.29-32

Image Filtering and noise reduction

The dataset contains a total of 6723 images, and 1934 are 
used for testing. The images were labeled with 3 classifica-
tions: eczema, atopic, and psoriasis. The image filtering pro-
cess is important to note in image processing; therefore, the 
use of the original images affects the final results. Thus, image 
filtering is a crucial step in image processing, which may 
include modifying or enhancing the original images. In par-
ticular, filtering an image aims to emphasize certain features 
or remove other features. Image processing operations imple-
mented with filtering include smoothing, sharpening, and 
edge enhancement. In this work, a block-matching and 3D 
filtering algorithm (BM3D) was adopted to enhance image 
dimensions. It is considered one of the current state-of-the-
art methods for image denoising. This algorithm has a high 
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capacity to achieve better noise removal results than other 
existing algorithms.33,34 Several studies have applied BM3D 
to deep learning for image classification.35,36 Figure 1 shows 
the result of applying BM3D filtering on a sample image. 
The images in the dataset were regenerated and resized to a 
scale of 224 224. The images have the same ratio scale and 
therefore do not need padding.

Deep learning models for classif ications

In this stage, classification was performed by employing differ-
ent pretrained models for image classification. VGG is the first 
model considered in this study. It was proposed in 2014 by 
Simonyan and Zisserman37 to test the efficiency and accuracy 
of layer depth on classification. The target was to evaluate the 
robustness of the model with layer weights up to 16. The model 
at that time was efficient and pretrained for other contexts of 
datasets. The second model is Inception-v3 (see Figure 2) 
introduced by Google, and it is the third version in the 
Inception family of deep convolutional architectures.38,39 It is 
based on parallel connected layers instead of a stacked layer 
architecture.40 The Inception deep convolutional architecture 
was developed as GoogLeNet and later named Inception-v1.38 
Then, the Inception architecture was enhanced in Inception-v2 

by including some batch normalization. Inception-v3 was 
launched after Inception-v2 with improvements in terms of 
factorization and fewer parameters that reached the 42-layer 
deep learning network. The third model applied in this study is 
residual networks or ResNet, which is presented as a network-
in-network architecture.41 The ResNet model is a block-based 
architecture where layers stacked on top of one another and 
form a block. The residual blocks (see Figure 3) are connected 
where each layer connects the input of a block with the output 
to ensure nonlinearity. The fourth model is MobileNets intro-
duced by Howard et al.42 as a class of CNNs with lightweight 
architectures. It has 2 layers, one for filtering and the other for 
combining. This architecture reduces the computation and 
model size in comparison with the standard convolution archi-
tecture. MobileNets, as stated in Howard et  al.42 performs 
depthwise convolution as a single filter on each input channel, 
and pointwise convolution performs a 1 × 1 convolution to 
combine the outputs of the depthwise convolution. We have 
included NasNet43 as the fifth model in our evaluation. It 
stands for the neural architecture search network, which is 
designed to directly and automatically learn from the dataset to 
build the model architectures. This model is robust since it is 
applied in the search space where it looks for an architectural 
building block on a small dataset and then transfers the block 
to a larger dataset. The last model is EfficientNet,44 which is 
based on scaling up CNNs using compound coefficients, where 
each dimension scales with fixed scaling coefficients. The opti-
mized EfficientNet architecture relies on a baseline network 
built by performing a neural architecture search using the 
AutoML MNAS framework.44

In summary, the classification process of CNN architectures 
for this work has passed through different stages. It is summa-
rized in Figure 4. The process first takes the image for classifi-
cation as input, and then BM3D filtering and denoising are 
applied. The filtered image is resized to 224 × 224 × 3 to pre-
pare it for the CNN architecture model. Here, the architecture, 
the convolution layers in Figure 4, is one of the 6 CNN archi-
tectures included in this study. The results of the CNN archi-
tecture are sent to predictors to predict the image class. The last 
step is the result of the detected class.

Experiment and Result
In this section, quantitative evaluations of the results obtained 
from CNN-based architectures are presented. In this experi-
ment, we performed hyperparameter tuning to obtain a high-
performing model, as shown in Table 1, which has 50 epochs, 
10 steps per epoch and 5 validation steps, and Table 2, which 
has 50 epochs, 10 steps per epoch, and 10 validation steps. 
Finally, in Table 3, we increased the number of epochs to 100 
with 10 steps per epoch and 5 steps to the validation. Figure 5 
shows a sample of the resulted lesions for the 3 diseases.

Figure 1. Result of applying BM3D filtering: (a) image before applying 

BM3D and (b) image after applying BM3D.
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Evaluation measures

The evaluation process of the pretrained models designed in this 
work considered some evaluation measures that have been exten-
sively applied to measure the quality of the models. The results 
obtained from the pretrained models were evaluated according 
to accuracy, precision and sensitivity values. Equations (1)-(3) 
show how to calculate the values of these measures:

 Accuracy TP TN
TP FP TN FN

=
+

+ + +
 (1)

 Precision TP
TP FP

=
+

 (2)

 Sensitivity TP
TP FN

=
+

 (3)

Where TP (true positive) is the number of images correctly 
classified with the correct disease, FP (false positive) is the 
number of images classified with the incorrect disease, TN 
(true negative) is the number of images correctly classified with 
no disease, and FN (false negative) is the number of images 
falsely classified with the correct disease. We included the F1 

score, which is the harmonic mean of the precision and recall, 
to measure the performance of the classification. Matthew’s 
correlation coefficient (MCC) was also included to evaluate 
the performance of the models. The F1 score and MCC were 
computed with equations (4) and (5):

 F TP
TP FP FNscore1 =
2

2
×

× + +
 (4)

MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

( )( )( )( )

× − ×

+ + + + val
  (5)

Evaluations for CNN-based architectures

In this work, we performed an image classification problem for 
dermatology diseases. A number of pretrained CNN-based 
architectures have been used. To measure the efficiency and 
compare the performance of the architectures, we performed 
some evaluations. The 6 models were evaluated using different 
hyperparameters and the same image sets in the training and 
testing stages. All networks were tested using the Python Keras 
interface for ANNs with TensorFlow at the backend. The 
accuracy of all tested hyperparameters is shown in Tables 1 to 3. 
The results include the comparison of these networks in terms 
of accuracy, precision, F1 score, MCC and sensitivity values at 
different hyperparameters, as shown in Tables 4 to 6. The net-
works were also tested considering each dermatological disease 
included in this study, atopic, psoriasis, and eczema. The result 
is shown in Table 7.

Discussion
This work aims to examine and better understand the effect  
of DL on dermatological disorders. Most current works  
are directed to skin cancer classification based on DL.  

Figure 3. Residual learning: A building block.41

Figure 2. Inception Model v3 source.39
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The challenge in medical analysis and dermatology in particu-
lar is in the availability of data themselves. It has been noted 
that DL architectures are data-driven where data are crucial. 
In addition, local data for Middle Eastern dermatological dis-
orders are also limited. Accordingly, we limited the analysis to 

photographs of 3 classes of dermatological disorders, atopic, 
eczema, and psoriasis, which commonly appear in the Middle 
East. Six CNN architectures were examined to classify these 
classes of dermatological disorders and test their performance. 
To measure the performance, (i) data were collected with pre-
determined classes, (ii) image filtering and noise reduction 
were applied using BM3D,33-36 (iii) 6 pretrained models with 
hyperparameter tuning were used, and (iv) evaluation and 
testing been performed.

Comparative evaluations of performance are shown in 
Tables 1 to 3. In these evaluations, we base our discussion on 
the hyperparameter at epochs = 100, val_step = 5, steps = 10 
where it achieved the maximum performance. The compara-
tive evaluations of performance are shown in Table 3, where 
the MobileNet architecture42 produced high accuracy for 
training (99.3%) and testing (95/7%). The loss value of the 
MobileNet architecture reached the minimum loss (0.09). 
This indicates that the MobileNet architecture produced the 
highest performance against the other 5 architectures. Table 6 
shows the results of precision, F1 score, MCC and sensitivity 

Figure 4. The process of image classification using the CNN architecture.

Table 1. Accuracy obtained by the CNN-based architectures 
applied in dermatology dataset at epochs = 50, val_step = 5, 
steps = 10.

MODELS ACCuRACy vALuES

TRAINING (%) TESTING (%)

vGG16 69.1 67.6

EfficientNet 84.6 88.1

Inceptionv3 76.1 69.9

MobileNet 95.4 92.8

NasNet 91.7 72.1

ResNet50 82.5 85.1

Table 2. Accuracy obtained by the CNN-based architectures 
applied in dermatology dataset at epochs = 50, val_step = 10, 
steps = 10.

MODELS ACCuRACy vALuES

TRAINING (%) TESTING (%)

vGG16 65.1 69.6

EfficientNet 81.8 89.2

Inceptionv3 68.2 68.4

MobileNet 96.1 93.2

NasNet 86.3 78.1

ResNet50 78.9 88.5

Table 3. Accuracy obtained by the CNN-based architectures 
applied in dermatology dataset at epochs = 100, val_step = 5, 
steps = 10.

MODELS ACCuRACy vALuES

TRAINING (%) TESTING (%)

vGG16 71.4 76.3

EfficientNet 84.2 91.3

Inceptionv3 71.7 72.1

MobileNet 99.3 95.7

NasNet 96.7 80.3

ResNet50 70.9 91.1
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values of the 6 architectures. The MobileNet architecture also 
produced maximum values in the other evaluation metrics. 
The precision value of MobileNet was 94.3%, which indicates 
that 94.3% of all the patients actually suffering from dermato-
logical disorders were correctly classified. In the same context, 
Table 7 shows the precision, F1 score and sensitivity values of 
each disease class for all 6 architectures. It clearly demonstrates 
that the MobileNet architecture produced the highest values 

on each dermatological disorder for all evaluation metrics. 
Only the EfficientNet architecture produced higher values in 
atopic, while NasNet produced values for eczema and psoriasis 
close to those of MobileNet. This is because of the compound 
coefficient used in EfficientNet in scaling up networks and the 
structure of atopic photographs. The second highest perfor-
mance was obtained by the EfficientNet architecture.

The aforementioned results and discussion are significant; 
however, finding the correlation between the 3 classes for our 
classification is also crucial. The MCC correlation coefficient 
computes the similarity variables. The higher the correlation 
between true and predicted values, the better the prediction. 
This metric is perfect for symmetric classification, where no 
class has higher importance than the other. In our analysis, the 
results show positive correlations in all architectures for all 
classes (see Table 6). The MobileNet architecture reaches 
95.4%, which is very close to 1 and indicates perfect positive 
correlation. EfficientNet comes after it with 91.2% correlation, 
which indicates that the predicted class and the true class are 
strongly correlated.

Conclusion and Future Works
The interest of DL and CNN in the field of medical sciences 
has increased recently. Several studies and experiments have 
been performed in different disciplines, including dermatology. 
While DL and CNN have been successfully adopted in skin 
cancer, they tend to be limited in dermatological disorders such 
as atopic, eczema, and psoriasis. In this work, we measured the 
performance of 6 CNN architectures on a dataset of dermato-
logical disorder images. It is known that DL architectures are 
data-driven where data are crucial and image augmentations 
have been applied in some works45 to increase the number of 
images. We have not used an image augmentation in this work. 
The results show that the MobileNet architecture outper-
formed the other 5 architectures. EfficientNet was next in 
terms of accuracy and other evaluation metrics. Despite the 
surpassing performance of CNN architectures in terms of 
medical analysis in dermatology, they face various challenges 
because of their data-driven nature. This is increasingly chal-
lenging since dermatological disorders are based on image 
analysis and computer vision. In addition, most dermatological 
disorder images have common features, which makes the pro-
cess of preprocessing crucial. In this work, image filtering and 
denoising were applied throughout BM3D noise removal and 
edge enhancement.

Future works for this analysis include different directions. 
Collaborations between computer science practitioners and 
dermatologists will open novel data-driven solutions toward 
dermatological disorder detection and diagnosis. This domain 
still requires further enhancements in terms of data availability, 

Figure 5. Sample of the resulted lesions for the 3 diseases: (a) eczema 

lesion, (b) atopic lesion, and (c) psoriasis lesion.
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real clinical experiments, and robust automated diagnosis sys-
tems. One crucial point in adopting this kind of approach is the 
acceptance of patients and physicians. Patient privacy, ethical 
data, and trustworthiness are critical issues that lead to reluc-
tance. Other enhancements may include powerful CNN archi-
tectures in computer vision for dermatological disorders. 
Communities of dermatologists and computer vision special-
ists must work together to achieve this goal. This kind of col-
laboration will further explore opportunities that are cost 

effective, remotely accessible, and accurate. DL and CNN have 
demonstrated the capability of achieving highly accurate diag-
noses in the classification of dermatological disorders. However, 
real datasets are still limited, and most current data available are 
detected for medical student illustrations. To proceed and suc-
ceed in this direction, initiatives should take place to offer a 
large dermatological disorder dataset while preserving patient 
privacy. This will have a positive effect on the proposed algo-
rithms and experiments that are tested in real life.

Table 4. Average accuracy, precision, F1 score, MCC, and specificity values obtained by the results of the CNN-based 
architectures applied at epochs = 50, val_step = 5, steps = 10.

MODELS ACCuRACy (%) PRECISION (%) F1 SCORE (%) MCC (%) SENSITIvITy (%)

vGG16 67.6 67.6 68.1 66.4 67.1

EfficientNet 88.1 89.3 87.3 87.6 87.3

Inceptionv3 69.9 69.4 70.4 68.5 68.7

MobileNet 92.8 92.2 92.6 93.3 91.5

NasNet 72.1 73.2 74.1 71.1 73.2

ResNet50 85.1 85.2 84.6 83.9 84.9

Table 5. Average accuracy, precision, F1 score, MCC, and specificity values obtained by the results of the CNN-based 
architectures applied at epochs = 50, val_step = 10, steps = 10.

MODELS ACCuRACy (%) PRECISION (%) F1 SCORE (%) MCC (%) SENSITIvITy (%)

vGG16 69.6 69.1 68.7 69.3 67.8

EfficientNet 89.2 88.3 89.1 88.7 89.3

Inceptionv3 68.4 67.8 67.4 68.2 68.1

MobileNet 93.2 92.1 92.5 93.1 92.3

NasNet 78.1 77.4 78.4 77.1 78.2

ResNet50 88.5 88.3 87.6 87.9 88.7

Table 6. Average accuracy, precision, F1 score, MCC, and specificity values obtained by the results of the CNN-based 
architectures applied at epochs = 100, val_step = 10, steps = 10.

MODELS ACCuRACy (%) PRECISION (%) F1 SCORE (%) MCC (%) SENSITIvITy (%)

vGG16 76.3 78.1 77.2 76.3 77.1

EfficientNet 91.3 92.1 90.5 91.2 91.6

Inceptionv3 72.1 71.2 70.1 71.4 71.8

MobileNet 95.7 94.3 94.8 95.4 96.1

NasNet 80.3 82 82.4 84.1 83.6

ResNet50 91.1 90.3 91.2 90.3 92.4
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