Skip to main content
. 2023 Jul 28;55(2):2238182. doi: 10.1080/07853890.2023.2238182

Table 3.

Eleven machine learning models for estimating resting energy expenditure ranked by the lowest root mean squared error.

  RMSE   Optimized features (N = 65) Run time
Model (Kcal) R 2 (n) (Seconds)
SVR 103.6 0.918 35 35.0
Linear regression 119.0 0.892 37 19.8
Elastic Net 121.1 0.888 24 25.5
Linear SVR 128.9 0.874 37 22.3
MLP regressor 131.2 0.869 41 1239.0
Bayesian ridge 134.6 0.862 24 22.8
Ridge 136.4 0.858 35 17.7
SGD regressor 139.1 0.853 29 25.6
Lasso 140.9 0.849 26 19.1
Gradient boosting 156.0 0.815 8 170.1
Random forest 161.6 0.801 15 412.4

MLP: multi layer perception; R2: correlation coefficient; RMSE: route mean squared error; SGD: stochastic gradient descent; SVR: support vector regression.