Table 3.
Eleven machine learning models for estimating resting energy expenditure ranked by the lowest root mean squared error.
RMSE | Optimized features (N = 65) | Run time | ||
---|---|---|---|---|
Model | (Kcal) | R 2 | (n) | (Seconds) |
SVR | 103.6 | 0.918 | 35 | 35.0 |
Linear regression | 119.0 | 0.892 | 37 | 19.8 |
Elastic Net | 121.1 | 0.888 | 24 | 25.5 |
Linear SVR | 128.9 | 0.874 | 37 | 22.3 |
MLP regressor | 131.2 | 0.869 | 41 | 1239.0 |
Bayesian ridge | 134.6 | 0.862 | 24 | 22.8 |
Ridge | 136.4 | 0.858 | 35 | 17.7 |
SGD regressor | 139.1 | 0.853 | 29 | 25.6 |
Lasso | 140.9 | 0.849 | 26 | 19.1 |
Gradient boosting | 156.0 | 0.815 | 8 | 170.1 |
Random forest | 161.6 | 0.801 | 15 | 412.4 |
MLP: multi layer perception; R2: correlation coefficient; RMSE: route mean squared error; SGD: stochastic gradient descent; SVR: support vector regression.