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Introduction
Colorectal cancer (CRC) is one of the most common 
malignant tumors and the leading cause of cancer-related 
deathin the world,1 is a highly heterogeneous disease driven 
by a range of genetic and epigenetic events.2 Genetic anal-
ysis of tumors is a powerful tool to personalize treatment by 

developing targeted therapies.3,4 BRAF encodes a protein-
dependent kinase, which is an important component of 
mitogen activated protein kinase pathway and plays a key 
role in regulating cell proliferation, differentiation and apop-
tosis.5,6 BRAF mutation was a negative independent prog-
nostic factor for survival and recurrence7,8 in CRC. BRAF 
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Objective: To develop and validate a radiomics nomo-
gram based on CT for the pre-operative prediction of 
BRAF mutation and clinical outcomes in patients with 
colorectal cancer (CRC).
Methods: A total of 451 CRC patients (training cohort 
= 190; internal validation cohort = 125; external valida-
tion cohort = 136) from 2 centers were retrospectively 
included. Least absolute shrinkage and selection oper-
ator regression was used to select radiomics features 
and the radiomics score (Radscore) was calculated. 
Nomogram was constructed by combining Radscore 
and significant clinical predictors. Receiver operating 
characteristic curve analysis, calibration curve and deci-
sion curve analysis were used to evaluate the predictive 
performance of the nomogram. Kaplan‒Meier survival 
curves based on the radiomics nomogram were used to 
assess overall survival (OS) of the entire cohort.
Results: The Radscore consisted of nine radiomics 
features which were the most relevant to BRAF muta-
tion. The radiomics nomogram integrating Radscore 

and clinical independent predictors (age, tumor location 
and cN stage) showed good calibration and discrim-
ination with AUCs of 0.86 (95% CI: 0.80–0.91), 0.82 
(95% CI: 0.74–0.90) and 0.82 (95% CI: 0.75–0.90) in the 
training cohort, internal validation and external valida-
tion cohorts, respectively. Furthermore,the performance 
of nomogram was significantly better than that of the 
clinical model (p < 0.05). The radiomics nomogram-
predicted BRAF mutation high-risk group had a worse 
OS than the low-risk group (p < 0.0001).
Conclusion: The radiomics nomogram showed good 
performance in predicting BRAF mutation and OS of 
CRC patients, which could provide valuable information 
for individualized treatment.
Advances in knowledge: The radiomics nomogram 
could effectively predict BRAF mutation and OS in 
patients with CRC. High-risk BRAF mutation group iden-
tified by the radiomics nomogram was independently 
associated with poor OS.
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mutation predicts a lack of response to antiepidermal growth 
factor receptor (EGFR) monoclonal antibodies.9 Several studies 
have also illustrated that anti-EGFR therapy is recommended 
for BRAF wild-type patients and that the combination of anti-
EGFR therapy with BRAF inhibitors significantly improves the 
prognosis of patients with BRAF mutation.10–13 The American 
Society of Clinical Oncology proposes to detect BRAF muta-
tion in patients with CRC at the time of diagnosis for prognostic 
stratification and assessment of risk for Lynch syndrome.14 In 
addition, the National Comprehensive Cancer Network guide-
lines have recommended that all patients suspected or diagnosed 
with metastatic CRC should be tested for BRAF mutation in 
tumor tissues.9

To date, the detection of BRAF mutation requires the analysis of 
specimens obtained from surgery or biopsy, which is not only 
an invasive and expensive procedure but may also be limited 
by temporal and spatial heterogeneity of tumors, or poor DNA 
quality. Therefore, at pre-treatment, non-invasive and repeatable 
identification of BRAF mutation status is critical for predicting 
treatment effect and determining individual treatment strategies 
for patients with CRC.

In clinical practice, CT is a common imaging method for pre-
operative evaluation of patients with CRC. Although traditional 
imaging characteristics, such as tumor enhancement modes, are 
related to BRAF mutation,15 traditional imaging characteristics 

are highly subjective and non-specific, depending on the expe-
rience of the observer. Radiomics can objectively reflect the 
heterogeneity of tumors, and can obtain more information 
that is invisible to the naked eye and hidden in the tumor.16–22 
In several studies, researchers have proved that it is practicable 
to use radiomics methods to predict the KRAS/NRAS/BRAF 
mutation of CRC.23,24 However, former studies had modest data 
sets (less than 200) and lacked independent external validation. 
Patients with any mutant KRAS/NRAS/BRAF were classified 
into the mutant group, which can confuse clinical application. 
Moreover, previous studies only focused on the evaluation of the 
value of radiomics in predicting KRAS/NRAS/BRAF mutation, 
and failed to provide further prognostic data.

Therefore, the purpose of this study was to explore the value of 
CT radiomics nomogram integrating Radscore and clinical inde-
pendent predictors in predicting BRAFmutation and clinical 
outcomes in patients with CRC.

Methods and materials
Patients
This retrospective study was approved by the ethics committees 
of the two centers, and waived the requirement for informed 
consent. We retrospectively recruited 451 patients with CRC who 
underwent radical resection in the two centers. Figure 1 shows 
the process of patient recruitment. The clinical characteristics 

Figure 1. The process of patient recruitment. CRC, colorectal cancer.
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of the patients were obtained from the hospital information 
system including age, sex, pre-operative carbohydrate antigen 
199 (CA199), carcinoembryonic antigen (CEA), tumor location, 
tumor size, clinical T (cT) stage, and clinical N (cN) stage. Patho-
logical information included BRAF mutation status, patholog-
ical TNM stage, tumor differentiation, lymphovascular invasion 
(LVI), and perineural invasion (PNI).

BRAF mutation analysis
The tumor tissue was routinely treated after surgical resection, 
and the pathological tissue was embedded in paraffin after tissue 
fixation, dehydration and embedding. DNA was extracted from 
paraffin-embedded pathological tissue by nucleic acid extraction 
reagent, and then the mutation status of BRAF (V600E) gene was 
detected by gene detection kit based on amplification-refractory 
mutation system (ARMS) and fluorescent PCR technology.

CT image analysis
Supplementary Table 1 shows the CT scanning protocol used by 
the two centers. The pre-operative CT images were interpreted 
independently by two imaging diagnosis doctors of abdominal 
tumor with 15 and 25 years of experience who were blinded to 
the patients’ clinicopathological information.The criteria for 
cT stage and cN stage on contrast-enhanced CT are shown in 
Supplementary Material 1. Any differences between them will be 
discussed before a final consensus is reached.

Tumor delineation
The workflow of radiomics is shown in Figure  2. Using ITK-
SNAP (v. 3.8.0, https://www.itksnap.org) to manually delineate 
the whole tumor at the portal venous phase. Interclass and intra-
class correlation coefficients (ICCs) were used to evaluate the 
inter- and intraobserver reproducibility of radiomics features 

extraction. Another two diagnostic radiologists with 8 years 
(Reader 1) and 16 years (Reader 2) of experience delineated the 
tumors for 40 randomly selected patients. Reader 1 repeated the 
delineation a month later. ICCs > 0.75 indicated that the consis-
tency of feature extraction was good.

Radiomics feature extraction
All CT images were pre-processed before feature extraction.25,26 
Spline interpolation was used to resample all CT images to 1 
mm× 1 mm × 1 mm voxel size; a bin width of 25 was used for 
grayscale discretization to reduce the effect of imaging noise; the 
image intensity was normalized using the μ ± 3 σ method. Pyra-
diomics software (https://pyradiomics.readthedocs.io/en/latest/) 
was used to extract radiomics features. The shape features, first-
order features, gray level dependence matrix (gldm) features, 
gray level co-occurrence matrix (glcm) features, gray level size 
zone matrix (glszm) features, and gray level run length matrix 
(glrlm) features were extracted.

Radiomics feature selection and model 
construction
The radiomics features of ICCs > 0.75 were retained. Then, the 
Max-relevance and min-redundancy (mRMR) is an effective 
and reliable method for radiomics feature selection. mRMR can 
seek the optimal feature subset by considering the importance 
of features and the relevance between features, i.e. maximizing 
the relevance between features and classification variables, while 
minimizing the redundancy between features.27–29 In this study, 
mRMR can maximize the distinction between the features of 
BRAF mutated and BRAF wild-type genes. mRMR can reduce 
the dimension and improve the modeling efficiency and gener-
alization ability of the model in the later stage (Supplementary 
Material 2). The least absolute shrinkage and selection operator 

Figure 2. Workflow of radiomics analysis.
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(LASSO) logistic regression method was used to select the best 
radiomics features with non-zero coefficients. Finally, the radio-
mics score (Radscore) of each patient was calculated through 
a linear combination of selected radiomics features weighted 
by their respective coefficients. The radiomics model was built 
based on the Radscore to predict BRAF mutation of CRC.

Nomogram construction
The statistically significant predictors (clinical features and 
Radscore) obtained by univariate logistic regression analysis 
were entered into multivariate logistic analysis to establish a 
clinical model and a combined model. The combined model was 
visualized in the form of a nomogram.The Hosmer-Lemeshow 
test was used to analyze the goodness of fit of the nomogram. 
Decision curve analysis (DCA) was used to evaluate the clinical 
net benefit of the nomogram.

Follow-up and survival analysis
Follow-up every 3 months in the first 2 years and every 6 months 
in the third and subsequent years. Follow-up lasted at least 3 
years or until the patient died. The end point of this study was 
overall survival (OS). Kaplan–Meier survival curves were plotted 
and compared using log-rank test. The statistically significant 
variables in univariate Cox regression analysis were included in 
multivariate Cox regression analysis to determine the indepen-
dent predictors of OS (Supplementary Table 1).

Statistical analysis
Data processing and modeling were performed using R software 
(v. 4.2.1, https://www.R-project.org). Supplementary Table 2 
shows the R software package used. Continuous variables were 
tested using an independent sample t test or Mann–Whitney U 
test. Classified variables were tested using the χ2 test or Fisher’s 
exact test. Using receiver operating characteristic (ROC) curves 
to evaluate the diagnostic efficiency of each model. DeLong test 
was used to compare the prediction performance of each model. 
P<0.05 was considered statistically significant.

Results
Patient characteristics
Overall, 451 CRC patients were included in the analysis. Char-
acteristics of clinical baseline data in this study are summarized 
in Table 1. The rates of BRAF mutation were 37.4% (71 of 190), 
37.6% (47 of 125) and 35.3% (48 of 136) in the training cohort, 
internal validation cohort and external validation cohort, respec-
tively. There were no significant differences between the mutated 
group and the wild-type group in the three cohorts in terms of 
sex, CEA, CA199, cT stage, cN stage, tumor size, tumor location, 
tumor differentiation, pTNM stage, LVI, and PNI. There were 
significant differences in age between the mutated group and the 
wild-type group in the three cohorts (p < 0.05).

Feature selection andradiomics model construction
First, 1011 radiomics features were retained (ICCs > 0.75). 
Second, using mRMR algorithm to reduce the number of features 
to 30. Finally, LASSO regression with the best λ of 0.044 deter-
mined the radiomics features of nine non-zero coefficients, which 
can be used to develop the Radscore (Supplementary Figure 1). 

The Radscore was calculated using these nine features weighted 
by their respective coefficients. The Radscore formula was shown 
in Supplementary Material 3. The Wilcoxon test showed that the 
Radscore of BRAF mutated group was significantly higher than 
that BRAF wild-type group (p < 0.001) (Supplementary Figure 
2). The AUCs of the radiomics model based on the Radscore 
were 0.81 (95% CI: 0.74–0.87), 0.79 (95% CI: 0.71–0.88) and 0.79 
(95% CI: 0.70–0.88) in the training cohort, internal validation 
cohort and external validation cohort, respectively (Figure  3). 
Figure  4 provided a detailed visualization of each radiomics 
feature used over the CT image of a patient with BRAF mutation.

Development and performance of the nomogram
For the potential clinical features, univariate logistic regression 
analysis showed that age, tumor location and cN stage were 
correlated to BRAF mutation (p < 0.05). Multivariate logistic 
regression analysis revealed that age (odds ratio [OR] = 1.05; 
95% CI: 1.02–1.08; p = 0.002), tumor location (OR = 0.64; 
95% CI: 0.41–0.99; p = 0.045), and cN stage (OR = 1.99; 95% CI: 
1.04–3.80; p = 0.037) were clinical independent predictors of 
BRAF mutation (Supplementary Table 3). The clinical indepen-
dent predictors (age, tumor location and cN stage) were used 
to construct the clinical model. The AUCs of the clinical model 
in the training cohort, internal validation cohort, and external 
validation cohort were 0.68 (95% CI: 0.60–0.76), 0.66 (95% CI: 
0.56–0.75) and 0.65 (95% CI: 0.55–0.75), respectively. For the 
potential clinical features and the Radscore, univariate logistic 
regression analysis showed that Radscore, age, tumor location, 
and cN stage were correlated to BRAF mutation (p < 0.05). 
Multivariate logistic regression analysis revealed that Radscore 
(OR = 6.91; 95% CI: 3.74–12.76; p < 0.001), tumor location (OR 
= 0.53; 95% CI: 0.31–0.90; p = 0.019), and cN stage (OR = 3.70; 
95% CI: 1.68–8.12; p = 0.001) were independent predictors of 
BRAF mutation (Table 2). Correlation coefs between Radscore 
and each clinical feature were showed in Supplementary Table 
4. When the absolute value of the correlation coef was less than 
0.2, it could be considered that there was a very weak correlation 
or no correlation between Radscore and each clinical feature. 
By integrating Radscore, tumor location, cN stage and age, a 
combined model was successfully constructed. The AUCs of 
the combined model in the training cohort, internal validation 
cohort, and external validation cohort were 0.86 (95% CI: 0.80–
0.91), 0.82 (95% CI: 0.74–0.90) and 0.82 (95% CI: 0.75–0.90), 
respectively. Figure 3, Table 3 provide the predictive performance 
of the radiomics model, clinical model, and combined model in 
the three cohorts. DeLong’s test showed that there was a statis-
tically significant difference in AUCs between the combined 
model and the clinical model (p = 0.0001, 0.0020 and 0.0006 in 
the training, internal and external validation cohorts, respec-
tively). The difference of AUCs between radiomics model and 
clinical model was also statistically significant (p = 0.015, 0.044 
and 0.038 in the training cohort, internal and external validation 
cohorts, respectively). The nomogram was used to visualize the 
combined model (Figure 5a). Supplementary Figure 3 showed an 
example of the clinical application of the developed nomogram. 
The Hosmer‒Lemeshow test showed that the nomogram fit well 
in the three cohorts (p = 0.350, 0.083 and 0.150 in the training 
cohort, internal and external validation cohorts, respectively) 
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(Figure 5c-e). DCA showed that when the threshold probability 
was within the range of 10‒20 and 28‒90%, the nomogram was 
more beneficial than the “treat all”,“treat none”, the clinical model 
and the radiomics model (Figure 5b).

Pre-operative predictors of survival
The median follow-up period of the whole cohort was 41 
months (range, 1–84 months). The Kaplan–Meier survival 
curves showed that the pathological BRAF mutation status and 
nomogram-predicted BRAF mutation status could significantly 
distinguish the high death risk group from the low death risk 
group (HR = 2.42; 95% CI: 1.62–3.62; and HR = 2.33; 95% CI: 
1.57–3.46; respectively, all p < 0.0001) (Figure 6a–b). The radio-
mics nomogram-predicted high-risk group had a worse OS than 
the low-risk group (p < 0.0001). The univariate and multivar-
iate Cox regression analysis results of the predictors of OS in 
the whole cohort were showed in Table 4. The multivariate Cox 
regression analysis showed that the nomogram-predicted BRAF 
mutation was an independent predictor of OS (HR, 1.93; 95% CI: 
1.31–2.85; p < 0.001). In the whole cohort, the C-index of patho-
logical BRAF mutation and nomogram-predicted BRAF muta-
tion was 0.63 (95% CI: 0.58–0.67) and 0.62 (95% CI: 0.57–0.66), 
respectively.

Discussion
Using relatively large data sets from two centers, we developed a 
CT-based radiomics nomogram to predict pre-operative BRAF 
mutation. The model had a good diagnostic significance for the 
state of BRAF, and its results were also validated in the internal and 
external cohorts, which indicated the reliability and reproducibility 
of the developed prediction model. Therefore, CT-based radiomics 
nomogram may provide additional information to determine BRAF 
status of CRC patients to guide targeted therapy. Additionally, the 
radiomics nomogram was significantly related to OS, which played 
an important role in predicting the prognosis of patients with CRC.

A previous study showed that CT radiomics features have potential 
value for evaluating KRAS mutation in patients with CRC.22 More-
over, two recent studies showed that MRI or ultrasound radiomics 
features performed well in predicting BRAF mutation in patients 
with melanoma brain metastases or papillary thyroid microcarci-
noma.30,31 The above studies indicated that it was feasible to use 
radiomics to predict the BRAF mutation status of tumors. Shi et 
al23 constructed a CT-based radiomics model to predict RAS/BRAF 
mutation of CRC liver metastasis and achieved moderate predictive 
efficiency (AUC = 0.74) in the validation set (159 cases). In addi-
tion, Yang et al24 established a CT-based radiomics model to predict 
KRAS/NRAS/BRAF mutation inpatients with CRC and found good 
predictive efficiency (AUC = 0.83) in the validation set (117 cases). 
Our research has some advantages compared with previous research. 
First, our study not only included a relatively large number of patients 
(451 cases), but also had an independent external validation cohort. 
Second, in previous studies, researchers identified the positive group 
based on the mutation of KRAS/NRAS/BRAF; i.e. one or more gene 
mutations were defined as the positive group, which will undoubtedly 
complicate the clinical application of the results found in their studies. 
Finally, previous studies only focused on evaluating the predictive C
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value of radiomics features for KRAS/NRAS/BRAF mutation, but did 
not provide further prognostic information.

1218 radiomics features were simplified into 9 key features, 
which had the best identification ability and the richest 
biological information. Interestingly, we found that wavelet-
filtered features were the optimal radiomics features (6/9), 

which means that the wavelet transform filter can improve 
the efficiency of capturing BRAF mutation-related features 
in CRC. Wavelet features can quantify the heterogeneity of 
tumors at different scales and have the characteristics of 
multiresolution analysis.32 Because it can mine rich texture 
information in images, related studies also show that wavelet 
features have strong prediction ability and are an important 

Figure 3. The ROC curves of the radiomics model, clinical model, and combined model for predicting BRAF mutation in CRC in 
the training cohort (a), internal validation cohort (b) and external validation cohort (c). CRC, colorectal cancer; ROC, receiver 
operating characteristic.

Figure 4. Detailed visualization of each used radiomics feature over the CT image. (a) The CT image of a 70-year-old female 
colorectal cancer patient with BRAF mutation. (b) Enlarged view of tumor region of interest. On the right side of figure a and b, 
detailed visualization of each used radiomics feature over the CT image, the name of each radiomics feature used was displayed 
below the corresponding figure. (glcm, gray level co-occurrence matrix; gldm, gray level dependence matrix; glrlm, gray level run 
length matrix;glszm, gray level size zone matrix)
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part of the optimal radiomics feature set to predict KRAS 
mutation in CRC.22,24 We found that the wavelet-filtered 
feature “inverse variance” of the glcm played an important 
role in predicting BRAF mutation in this study. “Inverse vari-
ance” was the measurement of image spatial heterogeneity, 
and larger values of “inverse variance” reflect greater hetero-
geneity. That is, the greater the possibility of BRAF mutation. 
This observation is also in line with the results of previous 
studies.22,24,33 All these results suggested that our radiomics 

features provide a wealth of information related to BRAF 
mutation.

In clinical practice, joint analysis of multiple markers can 
achieve better results than single analysis. Previous studies 
had reported the combination of CT-based radiomics features 
and clinical risk factors, such as pre-operative cN stage, age 
or tumor location, it was of great value in predicting lymph 
node metastasis, LVI, PNI and microsatellite instability 

Table 2. Univariate and multivariate logistic regression analysis in the training cohort

Variable

Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value
Sex 1.25 (0.70–2.26) 0.454 ... ...

Age 1.04 (1.01–1.07) 0.009 1.03 (0.99–1.06) 0.174

CEA 1.68 (0.93–3.04) 0.085 ... ...

CA199 0.84 (0.44–1.59) 0.586 ... ...

Tumor size 0.94 (0.80–1.10) 0.431 ... ...

Tumor location 0.65 (0.42–0.98) 0.041 0.53 (0.31–0.90) 0.019

cT stage 1.44 (0.90–2.30) 0.130 ... ...

cN stage 1.86 (1.01–3.42) 0.045 3.70 (1.68–8.12) 0.001

Radscore 5.41 (3.15–9.29) < 0.001 6.91 (3.74–12.76) < 0.001

CA199, carbohydrate antigen 199; CEA, carcinoembryonic antigen.
Note. CI, confidence interval; cN stage, Clinical N stage; cT stage, Clinical T stage; OR, odds ratio; Radscore, radiomics score.

Table 3. Comparison of predictive performance of the radiomics model, clinical model, and combined model in the three cohorts 
(training cohort, internal validation cohort, and external validation cohort)

Model Cut-off Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV
Radiomics 
model

−0.50 Training 
cohort

0.81 (0.74–0.87) 0.75 0.85 0.70 0.63 0.88

Internal 
validation 

cohort

0.79 (0.71–0.88) 0.74 0.83 0.68 0.61 0.87

External 
validation 

cohort

0.79 (0.70–0.88) 0.80 0.60 0.91 0.78 0.81

Clinical 
model

−0.44 Training 
cohort

0.68 (0.60–0.76) 0.67 0.62 0.70 0.55 0.75

Internal 
validation 

cohort

0.66 (0.56–0.75) 0.61 0.51 0.67 0.48 0.69

External 
validation 

cohort

0.65 (0.55–0.75) 0.65 0.56 0.69 0.50 0.74

Combined 
model

−0.42 Training 
cohort

0.86 (0.80–0.91) 0.82 0.83 0.81 0.72 0.89

Internal 
validation 

cohort

0.82 (0.74–0.90) 0.76 0.65 0.84 0.77 0.76

External 
validation 

cohort

0.82 (0.75–0.90) 0.79 0.90 0.60 0.81 0.76

Note. AUC, area under the receiver operating characteristic curve; CI, confidence interval; NPV, negative-predictive value; PPV, positive-predictive 
value.
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Figure 5. The developed radiomics nomogram to predict BRAF mutation (a); decision curve analysis for the nomogram (b); the 
calibration curves of the nomogram in the training cohort (c), internal validation cohort (d) and external validation cohort (e).

Figure 6. Kaplan‒Meier survival curves according to pathological BRAF mutation (a) and nomogram-predicted BRAF mutation 
in the whole cohort (b).
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in CRC.17–20 Similarly, in our study, multivariate logistic 
regression analysis found that age, tumor location and cN 
stage were clinical independent predictors for BRAF muta-
tion. Consistent with previous studies,34–36 clinical factors 
are associated with genetic alterations in tumors. Our study 
showed that BRAF mutation in CRC predominantly occurs in 
older patients and on the right colon. This may be explained 
by the distinct embryologic origins of the right and left 
colon, leading to different biological characteristics.37 While 
the clinical model based on independent predictors (age, 
tumor location and cN stage) was moderately effective, with 
an AUC of 0.68 in the training cohort, which was lower than 
that of the radiomics model. There may be two main reasons 
to explain this phenomenon. First, clinical models containing 
clinical risk factors only reflect specific tumor information. 
Even patients with the same features may exhibit a differ-
ential BRAF mutation status. Second, radiomics features 
extracted from the whole tumor are able to comprehen-
sively quantify intratumor heterogeneity, which is consid-
ered a well-established predictor that is barely available from 
traditional clinical models. In addition, the good predictive 
power of radiomics models for BRAF mutation confirmed 
their predictive values. As shown,the predictive efficacy was 
further improved by integrating the radiomics model with 
the clinical model to construct a combined model. A nomo-
gram was generated for the visualization of the combined 
model. This nomogram allows clinicians to make individu-
alized predictions about the risk of BRAF mutation in CRC 
patients.

Previous studies have demonstrated that CT radiomics 
features can predict survival in patients with CRC.19,21 

Many studies have shown that pathological BRAF muta-
tion are associated with poor prognosis in CRC patients.5–7 
We obtained a similar result that BRAF mutation could 
lead to poor OS in patients with CRC. Additionally, there 
was a significant difference between the survival outcomes 
of high- and low-risk group determined by the radiomics 
nomogram, and the OS of the patients in the high risk group 
was significantly lower than that in the low risk group. 
Through uni- and multivariate Cox regression analysis, 
nomogram scores was an independent prognostic factor for 
OS. Because of unsatisfactory outcomes in high-risk group, 
alternative intention to treat methods should be provided 
in time to avoid unnecessary toxicity and improve survival 
outcomes. Therefore, it is practical to use our nomogram 
model in guiding treatment plans and carrying out person-
alized treatment.

This study has some limitations. First, this was a retrospec-
tive study, which may have inevitably led to selection bias. 
A prospective study is needed to validate the generaliz-
ability and clinical applicability of this model. Second,in 
this study, the radiomics features of CT portal phase images 
were extracted. Plain scan and arterial phase images may also 
contain information to predict BRAF mutation.

In conclusion, the radiomics nomogram, which integrates CT 
radiomics features and clinical independent predictors, has a 
good performance in predicting BRAF mutation and clinical 
outcome of CRC patients. This approach allows for better risk 
stratification of CRC patients prior to treatment, and provide 
support for clinical decision-making and personalized treatment.

Table 4. Univariate and multivariate Cox regression analysis of predictors of OS in the whole cohort

Variable

Univariateanalysis
Multivariate analysis 

(Pathological)
Multivariate analysis 

(Nomogram)

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
Sex 1.06 (0.73–1.56) 0.750 ... ... ... ...

Age 1.03 (1.01–1.05) < 0.001 1.02 (1.01–1.04) < 0.001 1.03 (1.01–1.04) 0.005

CEA 1.87 (1.27–2.74) 0.001 1.32 (0.89–1.96) 0.167 1.35 (0.91–2.00) 0.141

CA199 2.16 (1.48–3.15) < 0.001 1.63 (1.10–2.42) 0.016 1.68 (1.13–2.49) 0.011

Tumor size 1.04 (0.95–1.14) 0.422 ... ... ... ...

Tumor location 0.91 (0.70–1.19) 0.488 ... ... ... ...

cT stage 2.88 (1.93–4.29) < 0.001 2.54 (1.69–3.83) < 0.001 2.51 (1.66–3.79) < 0.001

cN stage 1.82 (1.20–2.76) 0.005 1.40 (0.91–2.17) 0.129 1.40 (0.91–2.16) 0.129

Pathological BRAF 
mutation

2.25 (1.54–3.29) < 0.001 1.90 (1.28–2.81) 0.001 ... ...

Nomogram-predicted 
BRAF mutation

2.21 (1.51–3.23) < 0.001 ... ... 1.93 (1.31–2.85) < 0.001

CA199, carbohydrate antigen 199; CEA, carcinoembryonic antigen.
Note. CI, confidence interval; cN stage, Clinical N stage; cT stage, Clinical T stage; HR, hazard ratio,
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